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Abstract
Bioprocess modeling has become a useful tool for prediction of the process future with the aim to deduce operating decisions 
(e.g. transfer or feeds). Due to variabilities, which often occur between and within batches, updating (re-estimation) of model 
parameters is required at certain time intervals (dynamic parameter estimation) to obtain reliable predictions. This can be 
challenging in the presence of low sampling frequencies (e.g. every 24 h), different consecutive scales and large measurement 
errors, as in the case of cell culture seed trains. This contribution presents an iterative learning workflow which generates and 
incorporates knowledge concerning cell growth during the process by using a moving horizon estimation (MHE) approach 
for updating of model parameters. This estimation technique is compared to a classical weighted least squares estimation 
(WLSE) approach in the context of model updating over three consecutive cultivation scales (40–2160 L) of an industrial 
cell culture seed train. Both techniques were investigated regarding robustness concerning the aforementioned challenges 
and the required amount of experimental data (estimation horizon). It is shown how the proposed MHE can deal with the 
aforementioned difficulties by the integration of prior knowledge, even if only data at two sampling points are available, 
outperforming the classical WLSE approach. This workflow allows to adequately integrate current process behavior into the 
model and can therefore be a suitable component of a digital twin.
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Abbreviations
MHE  Moving horizon estimation
WLSE  Weighted least squares estimation
OLFO  Open-Loop-Optimal-Control
CHO  Chinese hamster ovary

List of symbols
ΔpT  Euclidean distance between p and  

p̂ (-)
�  Constant tuning parameter (-)

μmax  Maximum specific cell growth rate 
 (h−1)

cΔp  constant term for regulation of the 
prior information (-)

cAmm  Ammonia concentration 
(mmol L−1)

cGlc  Glucose concentration (mmol L−1)
cGln  Glutamine concentration 

(mmol L−1)
cLac  Lactate concentration (mmol L−1)
i  Running index (-)
J  Objective function (-)
j  Running index (-)
k  Number of variables (-)
KS,Gln  Monod kinetic constant for glu-

tamine (mmol L−1)
KS,Glc  Monod kinetic constant for limiting 

substrate (mmol L−1)
KGlc  Monod kinetic constant for glucose 

uptake (mmol L−1)
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KGln  Monod kinetic constant for glu-
tamine uptake (mmol L−1)

n  Length of estimation horizon
  (= number of measurement time 

points within the estimation hori-
zon) (-)

np  Number of parameters (-)
p = (p1, ..., pnp)  Model parameter vector of length np

ps  Scaled model parameter vector
p̂  Prior model parameter vector (from 

past estimations)
p̂s  Scaled prior model parameter vec-

tor (from past estimations)
ti  Point in time with index i (h)
Via  Viability (%)
wm, ij  Weighting factor (-) for state esti-

mation, for variable with index j, at 
point in time with index i

Wm  Weighting matrix for state 
estimation

wp, ij  Weighting factor (-) for prior 
values, for variable with index j, at 
point in time with index i

Xt  Total cell density (cells L−1)
Xv  Viable cell density (cells L−1)
y  Matrix containing all simulated 

values within the estimation 
horizon

YAmm/Gln  Kinetic production constant for 
ammonia (mmol mmol−1)

yj = (yj1, ..., yjn)  Vector containing simulated values 
for variable with index j

yj, max  Maximum simulated value of vari-
able with index j

ŷj = (ŷj1, ..., ŷjn)  Vector containing prior values for 
variable with index j

  (= simulated values based on prior 
parameter vector p̂)

YLac/Glc  Kinetic production constant for 
lactate (mmol  mmol−1)

ym  Matrix containing all measured val-
ues within the estimation horizon

ym,j = (ym,j1, ..., ym,jn)  Vector containing measured values 
of variable with index j

Introduction

Mathematical models are playing an important role in simu-
lation and prediction of bioprocesses. Model-based methods 
are applied in the context of model-assisted Design of Exper-
iments, the design, layout and optimization of production 

processes [19, 20, 28, 31, 32, 36, 38, 44]. Furthermore, 
they are used as predictive models, enabling prediction of 
the process future, featuring the development of decision 
making, optimization and control strategies [9, 11, 29, 36]. 
The performance mainly depends on prediction accuracy of 
the model which in turn depends on data quality [39], the 
complexity of the model and the ability to address batch-
to-batch variabilities [43]. The latter can occur concerning 
cell growth, viability as well as uptake and production rate. 
They represent a challenging task, especially in the case of 
mammalian cell cultures. These are the most frequently used 
hosts for many biopharmaceuticals (e.g. antibodies and pro-
teins for diagnostic and therapeutic purposes) [42].

An iterative model updating procedure, meaning that 
model parameters are updated (re-estimated) after certain 
time steps, is required to take possible variabilities into 
account. Figure 1 illustrates the role of this model updating 
procedure within the production process steps. Data from 
the realized ongoing process was used to generate a digi-
tal twin of the process, that means a virtual representation 
of the process which provides a prediction of the remain-
ing future. This prediction is then used to deduce operating 
decisions, e.g. concerning cell passaging [8, 14, 18] or to 
control the process, e.g. through an Open-Loop-Optimal-
Control (OLFO) method for the control of optimal feeding 
[11, 26] or to control pH and temperature shifts [35]. As 
soon as new process data become available model updating, 
meaning re-estimation of model parameters over a grow-
ing estimation horizon (window), is performed (= dynamic 
parameter estimation).

In literature, different approaches for re-estimation of 
model parameters over a growing database can be found [10, 
12, 13, 17]. They differ in terms of the objective function 
which has to be optimized, and in terms of the considered 
estimation horizon (number of data points used for param-
eter estimation). This can be growing or moving with a fixed 
horizon length. Furthermore, re-estimation approaches differ 
in terms of the applied optimization algorithm (e.g. Nelder-
Mead Simplex optimization [34] or particle swarm optimi-
zation [45]). Besides, estimation techniques can be divided 
into frequentist approaches (searching a point estimate, 
i.e. one single value for each parameter) and probabilistic 
approaches (searching an interval estimate, based on a prob-
ability distribution for each parameter). While frequentist 
parameter estimation can be combined with uncertainty 
analysis, probabilistic parameter estimation already consid-
ers uncertainty quantification within the estimation proce-
dure. One probabilistic approach is the Bayesian parameter 
estimation. This approach includes uncertainty quantifica-
tion and consideration of prior knowledge concerning model 
parameters. This prior knowledge is quantified in form of 
probability distributions. As soon as new data points are 
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added, these distributions are updated. Some examples 
within the field of biochemical engineering can be found in 
literature [15, 22, 44]. However, frequentist approaches are 
the predominating estimation techniques and therefore con-
sidered in this study. Two estimation techniques are applied 
and their robustness and impact on prediction performance 
are investigated, a classical weighted least squares estima-
tion (WLSE) approach and a moving horizon estimation 
(MHE) technique. While the objective function of the WLSE 
only considers information from data points within the esti-
mation horizon, the objective function of the MHE approach 
includes a term containing prior knowledge concerning the 
parameter values and a penalty term for the change in param-
eter values [10, 12, 37].

While typical applications found in literature cover cul-
tivations in one scale [10, 17], no recommendations can be 
found for re-estimation and prediction of cultivations over 
several consecutive scales as in the case of cell culture seed 
trains. However, these are required for the production of 
biopharmaceuticals in suspension culture to increase the 
cell number from cell thawing up to production scale [8, 
18]. Cells are cultivated in cultivation systems of different 
volumes starting with small volumes (typically with shake 
flasks) and they are passaged every 3–4 days into the next 

bigger one (using bioreactors in larger scales). It has been 
shown that cultivation conditions during the seed train have 
a significant impact on cell performance in production scale 
[21]. Consequently, simplifying or enabling better decision 
making for seed train operations is required. Moreover, mon-
itoring, control and development of optimization strategies 
play an important role.

Nevertheless, predictive modeling in case of only a few 
available data points are rarely considered in the literature. 
For various fields, such as many microbial and yeast pro-
cesses, a relatively high density of data points is available, 
typically from on-line measurements and in combination 
with soft sensors, whereas cell culture processes are usu-
ally characterized by a low data density and samples are 
often taken only once or twice a day. In this contribution, 
it is investigated how to integrate current knowledge into 
dynamic optimization to address possible variabilities, 
especially focusing on the impact of the estimation horizon 
(data points used for parameter estimation) and the objec-
tive function on model parameters and prediction perfor-
mance. It is shown how changes in cell growth behavior 
can be detected through changes in model parameter values 
after updating model parameters. A workflow, containing 
the recommended steps was developed and applied to an 

Fig. 1  Role of parameter estimation techniques within a biopharmaceutical production process
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industrial CHO cell culture seed train. Finally, similarities 
between the Moving Horizon Estimation technique and the 
Bayesian approach are described.

Materials and methods

In this study, different scenarios concerning estimation 
horizon and updating strategy are considered. Without loss 
of generality, they are explained for application to cultiva-
tion data over several consecutive scales (a seed train) and 
assuming that data from several consecutive seed trains are 
collected. Furthermore, two different estimation techniques 
having different objective functions [weighted least squares 
estimation (WLSE) and moving horizon estimation (MHE)], 
were applied.

Estimation and prediction horizon

Re-estimation of model parameters (or model updating) is 
performed at different points in time during the process. 
Therefore, the time span t1, ..., tend of the process (here 
explained for a seed train) is divided at the current point 
in time ti into an estimation horizon of length n, ti−n, ..., ti , 
containing the n most recent data points, and the prediction 
horizon, ti+1, ..., tend.

During prediction of one seed train, the right bound (the 
end) of the prediction horizon is kept fixed while the left 
bound (the beginning) of the prediction horizon moves for-
ward with new measurements (receding prediction horizon).

At the same time, the right bound of the estimation hori-
zon moves forward (moving estimation horizon). For the 
left bound of the estimation horizon different scenarios are 
applied (see Fig. 2a): (i) Fixed point in time at the beginning 
of the current seed train or at the beginning of each culti-
vation scale (described in this work as growing estimation 
horizon), (ii) moving left bound, meaning that as soon as a 
new data point becomes available, the oldest data point is 
excluded from the estimation horizon (described in this work 
as moving estimation horizon of fixed length).

Objective functions

The two applied objective functions (estimation techniques) 
in this study are presented below. To avoid confusion con-
cerning the terminologies containing ’moving horizon’ it 
should be noted, that the ’moving estimation horizon’ as 
described above refers to the data used directly within 
parameter estimation, whereby ’moving horizon estimation’ 
refers to an estimation technique characterized through a 
specific objective function which will be explained below.

Weighted Least Squares Estimation (WLSE) Weighted 
non-linear least square methods are widely applied estima-
tion methods for static optimization problems [6, 13]. The 
aim is to minimize the squared deviation between n meas-
ured and simulated data points for k variables, 
ym,j = (ym,j1, ..., ym,jn) and yj = (yj1, ..., yjn) , respectively, for a 
variable yj , multiplied by a weighting factor wm,ij for 
i = 1, ..., n and j = 1, ..., k (e.g. to address measurement 
deviations and to compare quantities of different dimensions 
or assigning higher importance to specific quantities which 
is often done because some measured values or data points 
might be more reliable compared to others) for a fixed period 
of time t = (t1, ..., tn) . Here, the weighting factor for variable 
yj was determined through division by the maximum experi-
mental value yj,max over time span t, thus wm,ij =

1

yj,max

 . This 
can be formulated as an static optimization problem, consist-
ing in minimizing the following objective function J over the 
space of model parameters p = (p1, ..., pnp):

This notation is similar to J = (ym − y)TWm(ym − y) , also 
found in literature. This estimation method is simple to apply 
but suffers from sensitivities to outliers and high measure-
ment deviations, when applied during dynamic optimization 
[13].

Moving horizon estimation (MHE) Now, if more and 
more data are collected (e.g. from several seed trains) and 
past and present data are used for parameter estimation 
(dynamic parameter estimation), the computational cost 
of a simple least square estimation increases. As stated in 
[10], an adequate approach to prevent computational limita-
tions is to formulate the parameter estimation over a fixed 
size estimation horizon and to include information obtained 
from past data through a so called arrival cost term (some-
times called forgetting term). This method, presented in 
[37], is known as a moving horizon estimation (MHE) and 
is divided into two main parts, state estimation and arrival 
cost estimation. A fixed estimation horizon is defined con-
taining measurements used for the state estimation. Every 
time new measurements are supplied, old measurements are 
discarded and passed from the estimation horizon to the so 
called arrival cost window (or historical window), whenever 
they exceed a fixed estimation horizon length. Information 
from the past (up to the estimation horizon) is now sum-
marized within the arrival cost term and through a penalty 
term for the change in parameters. Figure 2b illustrates how 
cultivation data from various seed trains can be divided iter-
atively into an arrival cost window, an estimation horizon 
and a prediction horizon. Different approaches to estimate 
the arrival cost can be found in the literature [10, 12, 13, 41].

(1)J(p) =

k∑

j=1

n∑

i=1

wm,ij ⋅ (ym,ij − yij(p))
2
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In this contribution, a squared-error moving horizon 
estimation (MHE) was applied. The aim is to add penalty 
terms to the weighted squared errors (see eq. 1), taking 
into account learned information from historical batches 
(cultivations) of a fixed arrival cost window size (e.g. one 
preceding seed train). One term contains the prior values 
ŷj = (ŷj1, ...ŷjn) resulting from simulations (model values), 
based on the prior parameter vector p̂ , obtained after the pre-
vious estimation cycle. Then the deviation between the cur-
rent model values yj = (yj1, ..., yjn) and the prior model values 
ŷj = (ŷj1, ...ŷjn) is computed and multiplied by a weighting 
factor wp,ij for i = 1, ..., n and j = 1, ..., k for regulation of 
the prior’s impact. This term is also called ’forgetting term’ 
or ’forgetting penalty’. In this contribution the weighting 
factor is determined by wp,ij = 4∕n while n is the number 
of data points used for re-estimation. This means a higher 
weight of the forgetting term when having only a few data 
points for re-estimation, and less weight of the forgetting 
term as soon as more data points are considered. This is 
intended because generally, it is more difficult to obtain 
reliable parameter estimates when using only two or three 
data points for re-estimation than having four or more data 
points. The forgetting term helps to remember what has been 
already learned about the dynamic behavior of the same pro-
cess, enabling a kind of ’memory’ (serving as correction 

or confirmation). Furthermore, a penalty term ΔpTcΔp for 
the change in parameters is added, where ΔpT describes the 
euclidean distance between the current (estimated) p and the 
prior parameter vector p̂ (calculated by the euclidean norm 
of the differences) and cΔp is a constant value to regulate 
the impact of the prior information. This penalty term ful-
fills a similar purpose as the forgetting term. It discourages 
parameter movements without sufficient improvement in the 
model predictions [13]. More details on this regularization 
technique can also be found in [1].

The resulting dynamic optimization problem is defined 
by minimizing the following objective function over the set 
of model parameters [13]:

with Δp =
𝛾

np
‖p̂s − ps‖2 =

𝛾

np

�∑np

i=1
(p̂s

i
− ps

i
)2  for scaled 

parameter vectors p̂s and ps of length np (i.e. components are 
scaled to the interval [0,1]) and constant tuning parameter � . 
It should be noted that the squared-error MHE technique can 
also be found without the ’forgetting term’ in equation 2 
[12].

(2)

J(p) =

k∑

j=1

n∑

i=1

wm,ij ⋅ (ym,ij − yij(p))
2 + wp,ij ⋅ (ym,ij − ŷij)

2 + ΔpTcΔp.

Fig. 2  Scheme of different estimation horizons. a (i) Growing estima-
tion horizon and (ii) moving estimation horizon of fixed length, both 
applied within the weighted least squares estimation (WLSE) tech-

nique; b Growing estimation horizon including an arrival cost win-
dow, applied within the moving horizon estimation (MHE) technique
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Investigated suspension cell culture process

In this contribution, the subject of the investigation is an 
industrial CHO cell culture process containing a seed train 
comprising five shake flask scales and three bioreactor scales 
as well as the production scale, whereby the focus lies on 
the bioreactor part of the seed train which is composed by 
bioreactor 1 (40 L), bioreactor 2 (320 L) and bioreactor 3 
(2,160 L). From experimental data (offline measurements), 
taken once a day, time profiles for viable cell density Xv , 
viability Via, concentrations of glucose cGlc , glutamine cGln , 
lactate cLac and ammonia cAmm have been used. In this work, 
data from 10 seed train cultivations from six campaigns with 
cultivation times between 72 and 96 h per scale (meaning 
4–5 measurement time points per scale including the meas-
urement at time 0 (inoculation)) were used for investigation. 
Additional data sets have been generated for modeling pur-
poses and first parameter estimations. Therefore, 12 batch 
cultivations in 4 flask scales (3 cultivations each) having 
filling volumes of 40, 70, 300 and 1500 mL were provided. 
They cover cultivation time spans of 264 h (11 days) each, 
meaning that also the stationary and death phase were 
included. Details, e.g. about controlled process parameters, 
analytics and data cleansing can be taken from [15].

Kinetic model and seed train prediction

The applied kinetic model, containing six mostly Monod-
type algebraic equations (description of growth rate, death 
rate, substrate uptake and metabolite production kinetics) 
and 17 model parameters describing cell culture dynamics 
of total and viable cell density, Xt and Xv , as well as con-
centrations of glucose cGlc , glutamine cGln , lactate cLac and 
ammonia cAmm , can be taken from [15].

Seed train prediction starts over three consecutive biore-
actor scales, containing two passaging steps between them 
and is updated stepwise at each new sampling point. Evalu-
ation of the prediction performance was realized calculating 
the relative prediction error in percent (= absolute deviation 
between predicted and afterwards added test data, divided by 
the test data). This criterion provides an intuitive assessment 
of the obtained prediction accuracy.

Since there are different overlapping factors having an 
influence on predicting several consecutive scales, (impact 
of estimated model parameters, e.g. maximum growth rate, 
and impact caused by possible deviations of the initial states 
at the beginning of each cultivation scale), the initial con-
centrations at the beginning of each cultivation scale are 
assumed to be known up to a certain experimental error. 
Otherwise, it would be unfeasible to make direct conclu-
sions about the impact of re-estimated model parameters 
on prediction performance. And the goal of this study is to 

learn about optimal updating strategies concerning model 
parameters and to develop an adequate workflow for model 
updating.

Results and discussion

The first goal of this study was to find out, how many data 
points (sampling points) are necessary for model param-
eter estimation to obtain predictions of the process future 
with high accuracy, using the widely applied weighted least 
squares estimation (WLSE) technique (see Sect. Impact 
of estimation horizon on prediction performance using 
weighted least squares estimation (WLSE)). In this context, 
it was also investigated if old data points can be ignored for 
parameter estimation. Second, it has been investigated to 
what extent analysis of the previous estimation steps con-
cerning differences in model parameters can improve predic-
tion performance of further seed trains of the same process 
(Sect. One parameter set for all scales vs. individual param-
eter sets per scale—Impact on prediction performance using 
WLSE). The third goal was to investigate if the presented 
moving horizon estimation technique, which contains an 
arrival cost term and a parameter penalty term (as explained 
in Sect. Objective function), is able to improve prediction 
performance (see Sect. Comparison: parameter estimation 
including prior knowledge—moving horizon estimation 
(MHE) vs. weighted least squares estimation (WLSE)). 
Finally, an iterative learning workflow is presented (see 
Sect. Developed iterative learning workflow), containing 
the recommended steps for dynamic parameter estimation, 
based on the findings of this study.

Application to an industrial CHO cell culture 
process—a case study

As a case study, a seed train data set (batch data set), consist-
ing of three consecutive bioreactor scales was divided into 
the past (past data points, e.g. time interval t1, ..., t3 ) and the 
future (future data points, e.g. time interval t4, ..., t12 ) of the 
current seed train. The estimation horizon covers part of the 
past (or the whole past) and is used to re-estimate model 
parameters (see Fig. 2). Each time new test data are added, 
the estimation horizon changes. Prediction performance of 
the remaining ’future’ (= prediction horizon) is evaluated 
through the relative prediction error in percent which is the 
discrepancy between measured (observed) data and their 
expected (modeled) values, relative to the measured value. 
It was calculated for all six variables but since viable cell 
density is the main variable of interest only the results for 
viable cell density Xv are presented in the figures of these 
sections.
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The model parameter values which are taken as initial 
parameter values in this study (prior to the re-estimation 
process), come from parameter estimation using shake flask 
data of the same process. To prevent identifiability problems, 
which is a typical challenge when applying complex non-
linear models containing several model parameters, cultiva-
tions at different shake flasks scales have been performed 
including lag phase, exponential phase, stationary phase 
and death phase. These values (estimated means and coef-
ficients of variation) are published in [15]. According to the 
used seed train data sets in this work which do not include 
the stationary nor the death phase, some model parameters 
have been kept fixed while others have been re-estimated. 
Otherwise, the parameter estimation process would face 
identifiability problems, e.g. when trying to estimate the 
maximum death rate based on data that do not include the 
death phase. Free parameters are the maximum specific cell 
growth rate �max , the Monod kinetic constant for glucose 
uptake kGlc and for glutamine uptake kGln , the Monod kinetic 
constant for glucose KGlc and for glutamine KGln as well as 
the kinetic production constants (yield coefficients) YLac/Glc 
and YAmm/Gln . Based on the coefficients of variation obtained 
from shake flask data, the boundaries for the parameters sub-
ject to re-estimation have been set to ±50% in this study.

Impact of estimation horizon on prediction performance 
using weighted least squares estimation (WLSE)

The following investigations deal with the question of how 
many data points should be used for re-estimation of model 
parameters (= model updating) using the weighted least 
squares estimation (WLSE). First, the left horizon bound 
is kept fixed meanwhile the right bound of the estimation 
horizon is growing after each iteration step.

Second, the estimation horizon length is kept fixed, i.e. 
adding a new data point means that the oldest data point of 
the estimation horizon is discarded (see Fig. 2a, top right). 
Three different fixed horizon lengths n were investigated, 
n = 2 , n = 3 and n = 4.

Figure 3 shows exemplary a problem that can arise, if 
only two data points are used for model updating. The pre-
diction top left is based on model parameters determined 
from flask scale experiments. As mentioned before, the ini-
tial concentrations of every scale are assumed to be known 
in this investigation in order to directly see the influence of 
model parameters on prediction performance. It becomes 
clear, that viable cell density of scale 2 and scale 3 can be 
predicted with high accuracy (5% and 4.2% relative predic-
tion error). Taking measurement deviations of approximately 
5% into account it can be concluded, that for this example 
the prediction error of scale 2 and scale 3 is more or less 
consistent (approximately at the same level) with the amount 

of irreducible uncertainty (within-lab precision). Prediction 
of scale 1 instead, shows a higher prediction error.

The seed train prediction in Fig. 3 top right grounds on 
model updating over two data points and it can be seen that 
prediction performance decreased for all three scales. If 
parameters change directly after model updating, two rea-
sons could explain the decrease, a change in cell growth 
behavior or a change in parameters due to measurement 
errors. Measurement deviations could get too much weight 
if the estimation is performed only over two data points, 
because the estimation algorithm only focuses on minimiz-
ing the discrepancy between simulated and measured values 
at those two data points. Only, after addition of further data 
points it can be concluded which of both explanations may 
be appropriate. In the presented example, taking a third and 
fourth data point for model updating (bottom left and bot-
tom right) indicates that the high prediction error after re-
estimation over the first two data points (top right) probably 
grounds on measurement deviations.

To compare the different estimation techniques more sys-
tematically, the mean of the relative prediction error over 
all re-estimation steps was calculated per seed train, as well 
as the minimum and the maximum prediction error. This 
was performed for 10 seed trains/batches and the results are 
presented through boxplots in Fig. 4a, b. The first group 
of boxplots within each diagram presents the mean predic-
tion errors per batch over 10 seed trains, the second group 
shows the minimum values and the third group the maxi-
mum values.

In Fig. 4a two estimation techniques are compared over 
all re-estimation steps from the point in time t2 on (mean-
ing that at the first model updating step, concentrations at 
sampling points t1 and t2 are known and the concentrations 
within the prediction horizon = remaining future, t3, ...tend , 
are predicted). A moving estimation horizon with a fixed 
horizon length of 2 data points is compared to a growing 
estimation horizon (keeping the left bound fixed at t1 ). It can 
be seen that taking only 2 data points for re-estimation of 
model parameters sometimes leads to low prediction accu-
racy (high maximum values for the relative error between 21 
and 66%, left boxplot of maximum values). As mentioned 
earlier, this is not surprising because the measurements con-
tain measurement deviations and those are getting too much 
weight if the estimation is performed only over two data 
points.

For comparison of larger estimation horizon lengths (con-
taining more than 2 data points for re-estimation of model 
parameters), the relative prediction errors were considered 
from point in time t4 on. The aim is to guarantee a fair 
comparison. When applying re-estimation over a horizon 
length of 4 data points, then the first considered prediction 
results are obtained for the prediction horizon t5, ..., tend , that 
means starting with t5 . No prediction on prediction horizon 
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t3, ..., tend can be made, neither for t2, ..., tend . Therefore, the 
comparison starts with the prediction horizon t5, ..., tend . The 
results are presented in Fig. 4b. Taking at least three data 
points for estimation typically reduces the undesired effect 

described for two data points (lower maximum values, sec-
ond boxplot of group maximum values). Taking the four 
recent data points for parameter estimation lead to a similar 
prediction performance as when taking three data points 

Fig. 3  Viable cell concentration over time exemplary for seed train 
no. 1, before parameter estimation (top left), in contrast after re-
estimation of model parameters based on data points at t

1
 and t

2
 (top 

right), after re-estimation of model parameters based on data points at 
t
1
 , t

2
 and t

3
 (bottom left) and after re-estimation of model parameters 

based on data points at t
1
 , t

2
 , t

3
 and t

4
 (bottom right)

Fig. 4  a Prediction error for viable cell density over 10 seed trains 
using weighted least squares estimation  and 1 parameter set for all 
scales; moving estimation horizon of length 2 vs. growing estimation 
horizon (from the second data point on). b Prediction error for viable 

cell density over 10 seed trains using weighted least squares estima-
tion and 1 parameter set for all scales; moving estimation horizon of 
length 2, 3 and 4 vs. growing estimation horizon (from the fourth data 
point on)
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(averaged batch mean over 10 batches: 12.9% relative pre-
diction error for horizon length = 2, 10.6% for horizon length 
= 3 and 10.3% for horizon length = 4). The best results are 
obtained if the whole past is used for model updating (9.99% 
averaged batch mean over 10 batches), especially concerning 
the maximum prediction error over one re-estimation cycle 
(fourth boxplot of group maximum values.

A detailed posterior analysis of the obtained model 
parameters at every updating step revealed further findings. 
If for example scale three should be predicted and model 
updating was performed including data from scale 1 and 
scale 2, the resulting prediction for scale 3 is not as good 
as a prediction based on shake flask experiments. This is 
due to slight differences in some model parameters for scale 
1 compared to scales 2 and 3 (maximum growth rate �max 
shows a difference of 7% on average). So, prediction for 
scale 3, based on model updating over scale 1 and scale 2 
is a compromise between the behavior in both scales and 
therefore not optimal for scale 3. This observation is already 
mentioned in [15]. Obviously, the lower cell growth in reac-
tor scale 1 occurs because mammalian cells have to adapt 
to different cultivation conditions (shaken system to stirred 
system). Variation of cell growth behavior is a common chal-
lenge in cell cultivation and reported among others in [43].

There may be differences in cell growth between differ-
ent cultivation systems and also between different cultivation 
runs (seed trains). The latter can be taken into account through 
model parameter updating after adding new process data over a 
growing time horizon within a seed train. Differences in model 
parameters between cultivation scales could be detected as 
soon as one or more whole seed train data sets are collected. 
Then, model updating for further seed trains can be performed 
for each scale individually. In the next section, it was inves-
tigated, how model updating for each scale individually can 
change prediction accuracy for the remaining process future.

One parameter set for all scales vs. individual parameter 
sets per scale—Impact on prediction performance using 
WLSE

Figure 5 shows the results for the relative prediction error if 
model parameters are re-estimated for each scale individually 
over a growing estimation horizon, keeping the model param-
eters for the other two reactor scales fixed. These results are 
compared to the previously described parameter estimation 
technique updating only one parameter set for all scales with 
a growing estimation horizon.

Fig. 5  Comparison of prediction error for viable cell density using 
weighted least squares estimation; Re-estimation of one parameter set 
over all scales (growing estimation horizon) vs. three parameter sets 

(re-estimation of one parameter set per scale, over growing estima-
tion horizon). a Exemplary for seed train no. 1, b results of 10 seed 
trains (from the second data point on)
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Figure 5a shows exemplary for one seed train how the rela-
tive prediction error develops within one sample-to-sample 
cycle. It becomes clear, that especially at the beginning of 
scale 1 (when only two or three data points are available), pre-
diction performance of the remaining future can be improved 
by using individual parameter sets per scale.

Figure 5b shows the results over 10 seed trains. It can be 
seen that prediction performance improves in terms of mean 
and minimum values, but especially concerning the maxi-
mum prediction error values. Therefore, it is recommended 
to analyze the updated model parameter values concerning 
differences between scales, as soon as seed train data are col-
lected. Nevertheless, relative prediction errors of nearly 20% 
(maximum values) are still not entirely satisfying and another 
estimation technique which takes more information concern-
ing model parameters into account was investigated. When 
several seed train cultivations are performed, a lot of knowl-
edge about growth behavior, which is expressed in form of cor-
responding model parameters, can be collected. Consequently, 
re-estimation of model parameters for the consecutive seed 
train does not have to start from the same starting point as the 
first seed train. A common way to induce knowledge concern-
ing model parameters is to set corresponding starting values 
and boundaries for the optimization algorithm. Nevertheless, 
within the given ranges the optimization algorithm using a 
common WLSE approach only focuses on minimizing the 
discrepancy between data of the current estimation horizon 
and corresponding simulations. The MHE approach, in turn, 
embeds a sort of memory, helping the optimization algorithm 
’not to forget’ which model parameter values are more plausi-
ble than others. A comparison of this approach to a common 
WLSE approach is presented in the following section.

Comparison: parameter estimation including prior 
knowledge—moving horizon estimation (MHE) vs. 
weighted least squares estimation (WLSE)

While, up to know, the sample-to-sample updating cycles 
were subject of investigation, now model updating is also 
investigated regarding the batch-to-batch updating cycles, 
meaning that knowledge learned within one sample-to-sam-
ple cycle is passed to the next sample-to-sample cycle. More 
specifically, this means the re-estimation of model param-
eters is performed using data of the current seed train (up to 
the current point in time) as well as information about model 
parameters from the last seed train. Technically, this can 
be realized using the moving horizon estimation technique 
described in Sect. Objective function. The objective func-
tion contains a term describing the discrepancy between the 
modeled values (e.g. for viable cell density) based on the 
prior model parameters (estimated during the previous seed 
train) and a penalty term for the deviation between prior 
and current model parameter values. The tuning parameter 
for this penalty term and the weighting factor for the prior 
model values were chosen as follows: cΔp =

1

n
 and wp =

4

n
 , 

with n: number of data points within the estimation horizon. 
The dependence on n was introduced to reduce the influence 
of prior information when the database of the current seed 
train grows.

Figure 6 shows the prediction results comparing the 
WLSE technique using 1 parameter set for all scales, using 
1 individual parameter set per scale and the MHE tech-
nique using also 1 individual parameter set per scale and 
including prior knowledge. The diagram in Fig. 6 (left side) 
shows exemplary the development of the relative prediction 
error for one seed train and all three methods, showing that 

Fig. 6  Comparison: Prediction error for viable cell density for three 
different re-estimation procedures. Re-estimation based on weighted 
least squares estimation (WLSE),  without prior, i.e. which does not 
include any arrival cost term containing information from a-priori 
performed parameter estimation (re-estimation of one parameter 
set for all scales and re-estimation per individual scale). And as a 

third procedure, moving horizon estimation (MHE) is shown, which 
includes an arrival cost term containing information from a-priori 
performed parameter estimations (with prior), here from 1 seed train 
(arrival cost window  =  1). a Prediction error (relative deviation 
between predicted and measured values) over sampling times exem-
plary for seed train no. 1; b Prediction error over 10 seed trains
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especially during the first model updating steps, the WLSE 
techniques, using only one parameter set for all scales shows 
a higher prediction error (> 30%) than using individual 
parameter sets (prediction error < 15%) or using the MHE 
approach (prediction error < 10%). An improvement can 
be achieved using individual parameter sets, one per batch. 
However, the best result is obtained using the MHE tech-
nique, even during the first updating steps when only very 
few data points are available for parameter estimation.

To obtain more representative results, the prediction error 
was evaluated over 10 seed trains. These results are pre-
sented in Fig. 6 (right side). It can be seen that the MHE 
technique leads to lower mean and maximum values of 
relative prediction error than the compared techniques (see 
Fig. 6 (right side) first three boxplots and last three box-
plots). Moreover, it should be highlighted that there is a very 
low variation of the prediction error during a sample-to-
sample updating cycle which stands for a robust estimator. 
In sect. Impact of estimation horizon on prediction perfor-
mance using weighted least squares estimation (WLSE) it 
has been shown that estimation over two data points can 
lead to low prediction accuracy (relative prediction error 
sometimes higher than 60%) in the presence of measurement 
deviations. The MHE approach turned out not to be sensitive 
to measurement deviations or outliers. Prediction errors of 

more than 20% were not observed over 10 tested seed trains 
and the mean comes to 9%.

It has been shown that a possible bias caused by measure-
ment deviations can be prevented this way. Furthermore, this 
benefit can be achieved without high computational costs, 
because learned information is included without increasing 
the database used for parameter estimation. Another benefit 
is, that batch-to-batch variabilities and variabilities between 
cultivation systems can be taken into account.

Furthermore, it was investigated if it is necessary to go 1, 
2 or 3 seed trains back and to learn from these cultivations 
to receive an optimal prediction.

The following results show what happens if three con-
secutive batch-to-batch cycles are performed. This means 
that learned knowledge from seed train one is used for re-
estimation and prediction of seed train 2. The obtained infor-
mation is used for seed train 3 and the updated knowledge 
after seed train 3 is used for seed train 4 (see Fig. 7a). This 
could be also described as a arrival cost window size of 3 
seed trains / batches. The results presented in Fig. 7 indicate 
that it is not necessary to include more than one historical 
seed train. The example in Fig. 7a show that there is hardly 
any difference in prediction performance between the three 
arrival cost window sizes and at all points in time, a relative 
prediction error less than 10 % has been achieved. Although, 

Fig. 7  Impact of historical (arrival cost) window size for the  MHE 
technique. a Prediction error for viable cell density at different sam-
pling points and for a growing estimation horizon, exemplary for 

seed train no. 1, b prediction error for viable cell density over 10 seed 
trains for a growing estimation horizon (from the second data point 
on) and c the corresponding updating scheme
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there are differences between the investigated seed trains, 
Fig. 7b shows that most seed trains show a mean prediction 
error of approximately 9 % and maximum values of approxi-
mately 14 %, not exceeding 18%.

Developed iterative learning workflow

Based on the findings obtained in this study, a workflow for 
seed train prediction was deduced illustrating the required 
steps to account for variabilities and possible differences 
between scales. The concept of the proposed workflow 
(see Fig.  8) is to iteratively include knowledge gained 
from ’new’/current data, without discarding the knowledge 
already obtained during the previous steps.

After providing a kinetic model, model parameters from 
previous experiments and a process model (e.g. containing 
equations for the computation of passaging between two 
scales/vessels) a new seed train for given initial concen-
trations is considered. Samples are taken in specific time 
steps and the following ’sample-to-sample’ updating cycle 

is performed. At every new sampling point, the model is 
updated, meaning that model parameters are re-estimated 
through the moving horizon estimation technique taking 
model parameters from previous experiments into account 
in form of additional terms within the objective function 
(see eq. 2).

The now obtained model parameters are used as the new 
prior model parameters in form of additional terms within 
the objective function for the next cultivation run and so on 
(batch-to-batch updating cycle).

Moreover, if differences between scales are observed it 
is advisable to use different model parameter sets for each 
individual scale and to update them individually (first model 
parameters for the first scale, then for the second scale and 
so on). Then the next cultivation run (e.g. the next seed train 
within the same production process) is considered. A new 
’sample-to-sample’ updating cycle is performed, including 
learned knowledge from the first sample-to-sample updat-
ing cycle.

This proceeding leads to the results presented in Sub-
sect. Comparison: parameter estimation including prior 

Fig. 8  Proposed iterative learning workflow. Incorporation of knowl-
edge (combining previous knowledge and new knowledge) during 
the whole process progress through sample-to-sample updating cycle 

during a batch/seed train and batch-to-batch updating cycle between 
batches/seed trains
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knowledge—moving horizon estimation (MHE) vs. 
weighted least squares estimation (WLSE). Compared to a 
common weighted least squares approach, prediction accu-
racy for viable cell density could be improved this way from 
16.7 to 8.6% mean values and from 38.8 to 13.2% maximum 
values. Moreover, the standard deviation of the relative pre-
diction error has been reduced from 9.5 to 2.9% relative 
prediction error. These results emphasize the robustness of 
the proposed estimation workflow.

Common features of MHE and Bayesian parameter 
estimation

The estimation techniques applied in this study belong to 
the group of point estimates, meaning that for each future 
point in time within the prediction horizon, only one value 
per state variable is predicted (e.g. one value for viable cell 
density at a point in time t1 , one value at point in time t2 and 
so on).

Meanwhile, the Bayesian approach belongs to the group 
of interval estimates, meaning that for every future point in 
time a whole interval (e.g. a 90%-interval) containing the 
possible values for a state variable is predicted, including 
the specific probability of occurrence for each value. In other 
words, prediction can be made at every future point in time 
including information about the predictive uncertainty (pos-
sible deviation). Common features of Bayesian parameter 
estimation and the presented MHE approach are, that both 

techniques include prior knowledge concerning the possible 
model parameter values as a kind of ’memory’, integrated 
in the parameter estimation process. Especially when only a 
few data are available and these data contain measurement 
errors, this ’memory’ helps not to propagate the change in 
model parameters caused by the measurement deviation onto 
the prediction of the future process.

Despite the added values of the Bayesian approach men-
tioned in [15], the MHE-based workflow presented in this 
contribution may be useful for many applications, where it 
is desired to save computational cost and to use a parameter 
estimation process which is simple to implement.

Conclusion

Two different estimation techniques (weighted least 
squares estimation (WLSE) and moving horizon estima-
tion (MHE), having different objective functions) were 
applied and compared as well as the database used for 
re-estimation of model parameters.

When using the WLSE technique at least 3 data points 
are necessary to reduce the maximum values of relative 
prediction error for viable cell density to less than 25% 
for the applied set up. Moreover, if differences between 
cultivation scales are observed, individual model param-
eter sets should be updated per scale (see row three of the 
overview in Table 1). Concerning the compared estima-
tion techniques WLSE and MHE, it turned out that the 

Table 1  Summary table containing the mean and maximum values 
of the relative prediction error (Rel. pred. error) and the precision-
weighted prediction error (Precision-weighted pred. error) for differ-

ent estimation techniques (WLSE/MHE), estimation horizon, arrival 
cost windows and number of parameter sets (Par.-sets), here 1 param-
eter set for all three scales vs. 3 parameter sets = one per scale)

Estimation technique Mean values Max values

WLSE/MHE Estimation horizon Arrival cost window Par.- sets Rel. pred. 
error [%]

Precision- 
weighted pred. 
error [-]

Rel. pred. 
error [%]

Precision- 
weighted pred. 
error [-]

WLSE Whole past none 1 11.8 2.5 23.2 4.9
of current
seed train

WLSE The last 2 none 1 13.7 2.9 38.8 8.3
data points

WLSE Past of none 3 10.6 2.3 18.9 4
current scale

MHE Past of Shake 3 9.0 1.9 14.2 3
current scale flasks

MHE Past of 1 previous 3 8.6 1.8 13.2 2.8
current scale seed train

MHE Past of 2 previous 3 8.6 1.8 13.5 2.9
current scale seed trains

MHE Past of 3 previous 3 9.0 1.9 14.7 3
current scale seed trains
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optimal solution was obtained using the moving horizon 
estimation technique (MHE) and individual set of model 
parameters per scale in case of differences between scales. 
High prediction accuracy, represented through a relative 
prediction error of less than 15% maximum values was 
achieved from the beginning on as well as less than 10% 
on average. This estimation technique requires prior infor-
mation (estimated model parameters based on previous 
cultivation data), whereby estimation results based on one 
preceding seed train turned out to be sufficient.

These results were then formulated in form of an itera-
tive learning workflow which is presented in Sect. Devel-
oped iterative learning workflow. The performance of 
this workflow is described by the relative prediction error 
shown in row 6 of Table 1 (Arrival cost window: 1 previ-
ous seed train). A mean value of 8.6% relative predic-
tion error and maximum values of 13.2% on average were 
achieved for viable cell density.

To properly asses these results concerning prediction 
error, the intermediate precision (within-lab reproducibil-
ity) of viable cell density should be taken into account. 
As stated in [15] it is expressed as 4.7% coefficient of 
variation for the investigated process. Now, the prediction 
error has to be considered in relation to the intermediate 
precision, giving the precision-weighted prediction error. 
Values close to 1 mean, that the prediction error is more 
or less the amount of irreducible uncertainty which stands 
for stable models representing the stochastic nature of the 
environment. Therefore, low values are desired, meaning 
that there is not much reducible uncertainty. As can be 
seen in Table 1 columns 6 and 8, applying the MHE lead to 
a precision-weighted prediction error of 1.8–1.9 on aver-
age in comparison to 2.3–2.9 on average for the WLSE 
which shows the superiority of the MHE-based iterative 
learning workflow.

Advantages of this workflow are that process knowl-
edge is generated and incorporated during the process 
and possible variabilities (e.g. batch-to-batch variabili-
ties concerning maximum cell growth) can be taken into 
account which could lead to improved decision making 
(e.g. regarding points in time for passaging or split ratios). 
Problems arising from re-estimation over very few data 
points (e.g. bias due to measurement deviation when re-
estimating over two sampling points) can be mitigated 
through the integration of prior knowledge within the 
objective function. Furthermore, the computational cost 
can be kept manageable because past data points from 
previous cultivation runs don not have to be used for re-
estimation of model parameters. However, the learned 
knowledge from these cultivations flow in the re-estima-
tion process. The general form of this framework allows 
the application to other bioprocesses as well as an imple-
mentation as part of predictive control methods.
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