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Abstract

Purpose: Daily online adaptive plan quality in magnetic resonance imaging guided

radiation therapy (MRgRT) is difficult to assess in relation to the fully optimized,

high quality plans traditionally established offline. Machine learning prediction mod-

els developed in this work are capable of predicting 3D dose distributions, enabling

the evaluation of online adaptive plan quality to better inform adaptive decision‐
making in MRgRT.

Methods: Artificial neural networks predicted 3D dose distributions from input vari-

ables related to patient anatomy, geometry, and target/organ‐at‐risk relationships in

over 300 treatment plans from 53 patients receiving adaptive, linac‐based MRgRT

for abdominal cancers. The models do not include any beam related variables such

as beam angles or fluence and were optimized to balance errors related to raw dose

and specific plan quality metrics used to guide daily online adaptive decisions.

Results: Averaged over all plans, the dose prediction error and the absolute error

were 0.1 ± 3.4 Gy (0.1 ± 6.2%) and 3.5 ± 2.4 Gy (6.4 ± 4.3%) respectively. Plan

metric prediction errors were −0.1 ± 1.5%, −0.5 ± 2.1%, −0.9 ± 2.2 Gy, and

0.1 ± 2.7 Gy for V95, V100, D95, and Dmean respectively. Plan metric prediction

absolute errors were 1.1 ± 1.1%, 1.5 ± 1.5%, 1.9 ± 1.4 Gy, and 2.2 ± 1.6 Gy.

Approximately 10% (25) of the plans studied were clearly identified by the predic-

tion models as inferior quality plans needing further optimization and refinement.

Conclusion: Machine learning prediction models for treatment plan 3D dose distri-

butions in online adaptive MRgRT were developed and tested. Clinical integration of

the models requires minimal effort, producing 3D dose predictions for a new

patient’s plan using only target and OAR structures as inputs. These models can

enable improved workflows for MRgRT through more informed plan optimization

and plan quality assessment in real time.
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1 | INTRODUCTION

The efficacy of radiation therapy (RT) for abdominal cancers is lim-

ited by a prescription dose (Rx) that can be tolerated without toxicity

in nearby organs‐at‐risk (OARs). The abdominal OARs (liver, kidney,

and all GI organs, etc.) are highly deformable in nature and their daily

motion throughout treatment is substantial. Interfraction motion

over 3 cm is possible.1‐3 GI OARs (stomach, duodenum, esophagus,

small and large intestines) are also sensitive to high doses of radia-

tion.4,5 As a result, tumors associated with such difficult abdominal

sites have not been treated to the same curative doses that have

been achieved for other sites, ie a biologically effective dose (BED)

>100 Gy.6‐8 Daily, online adaptive treatment with magnetic reso-

nance image guided RT (MRgRT) can provide an opportunity to

simultaneously escalate gross tumor volume (GTV) dose while meet-

ing OAR constraints in these difficult cases.9 Both modeling stud-

ies3,10,11 and completed phase I clinical trials12‐14 have shown the

feasability of ablative dose escalation without significant adjacent

organ toxicity in the central thorax and abdomen. Such trials have

shown an increase in both local control and overall survival while

decreasing radiation‐induced toxicity events, leading to a prospective

clinical trial for further evaluation in pancreatic cancer (SMART:

NCT03621644).

As the use of online adaptive MRgRT has grown recently across

a variety of clinics, both the potential benefits and practical difficul-

ties of its utilization are beginning to be understood.12‐21 But ample

opportunity remains for assessment and improvement of online

adaptive RT as this unique treatment method continues to develop

clinically. Analysis of a collection of patient data and their treatment

plans in order to better understand and improve a particular RT pro-

cess can proceed in a variety of ways. But the most common

method used recently falls under the general term of knowledge‐
based (KB) prediction models.22 KB methods have been used to pre-

dict achievable dose‐volume histograms (DVHs),23,24 plan metrics,25

and full 3D dose distributions.26‐31 In fact, using information from

previously treated patients and plans to better inform future proce-

dures is now present in nearly all aspects of RT.32‐35 Much of the

recent work related to KB methods for improving RT has focused on

3D dose prediction: voxel‐by‐voxel prediction of dose for a “future”

patient based on a collection of previously treated patients’ plans

and/or other relevant data. Such a focus is understandable because

the ability to accurately and robustly predict 3D dose volumes for

future patients is significant. It produces in a single model the ability

to predict a wide variety of clinically relevant data such as target

and OAR dose‐volume metrics as well as conformity/homogeneity

indices which may also be important. Furthermore, 3D dose predic-

tions could serve as novel inputs for treatment plan optimization

that may completely alter the paradigm under which RT planning

currently occurs.26,28,30

Despite the growth in applications of KB methods to solving

interesting RT problems, a majority of the most relevant work has

focused on treatment sites such as prostate,23,24,26,28,31 head and

neck,25,29,30 breast,28 and lung.36 There are limited studies dedicated

to abdominal cancers15,27 because they are notoriously difficult to

treat and there is minimal consensus regarding the best RT treat-

ment approaches.37 These sites are however expected to benefit

most directly from MRgRT and online plan adaptation. Application of

KB methods to online adaptive RT is also new, with very few previ-

ous studies.15 KB methods typically require sufficient data collection

from previously treated patients and plans, and online adaptive RT is

a mostly new technique.

In this work, we have developed artificial neural network (ANN)

models to predict 3D dose distributions within the GTV for MRgRT

of abdominal cancers. The clinical goals are to enable real‐time guid-

ance for achievable plan quality of each online adaptive case, iden-

tify inferior plans, and assure plan quality. Unlike some previous KB

works,26,27 our ANN models do not require beam related variables

such as beam angles and fluence. They therefore can predict a 3D

dose distribution for a new patient’s plan using only target and OAR

structures as inputs. In addition, the ANN models are simple in

design and rely on small datasets. They do not require significant

training time and are not computationally demanding (no GPU

required). As a result, they can be integrated clinically with minimal

effort. To our knowledge, this work presents the development and

results of the first 3D dose prediction models for online adaptive

MRgRT.

2 | MATERIALS AND METHODS

2.A | Patient Characteristics

As shown in Table 1, datasets from a total of 53 patients with

abdominal cancers treated at Washington University in St. Louis with

online adaptive, linac‐based MRgRT were utilized. The patient data

were combined from two main treatment site groups, pancreas

(n = 34) and nonpancreas (n = 19). All patients were treated with

one of two high BED protocols: stereotactic body RT (SBRT, n = 48),

having prescriptions of 50 Gy in 5 fractions (BED ~ 100 Gy) and

critical OAR (OARCRIT) dose constraints of less than 0.5 cubic cen-

timeters (cc) receiving 36 Gy or more (V36 < 0.5 cc); or hypofrac-

tionation (HYP, n = 5) having prescriptions of 67.5 Gy in 15

fractions (BED ~ 100 Gy) and OARCRIT dose constraints of

V50 < 0.5 cc. Overall, 260 out of 315 (82.5%) treatment fractions

were adapted.

2.B | Treatment Plan Adaptation Techniques

Detailed descriptions of the specific workflows and planning strate-

gies for adaptive MRgRT using the ViewRay linac system (Viewray,

Cleveland, OH) have been presented previously.12,13,21,38‐41 A brief

summary, with particular focus on the details related to the online

adaptive process, follows.

Table 2 includes key definitions for structures associated with

the planning process. Additional OARs beyond those in OARCRIT

may have been included in the plan optimization such as the spinal

cord, liver, aorta, and one or both kidneys. PTVOPT is used as the
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target in the plan optimization instead of the PTV. It is often

observed in these plans that, after subtracting OAR5 mm, not all of

the GTV will be inside PTVOPT. The planning strategy is quite differ-

ent from traditional IMRT. PTV V95>=95% was still one planning

goal, but the hard OARCRIT dose constraints caused this target cov-

erage goal to be rarely achievable. Hotspots were generally limited

to <150% of the Rx inside the GTV.

The adaptive process workflow is shown visually in Fig. 1. To

start the adaptive workflow, on each treatment day the most

recently used treatment plan is loaded and a new volumetric MRI

with exhale‐breath‐hold is scanned after patient setup. The couch

table is shifted according to manual registration of the visible GTV in

the new image with the GTV in the loaded plan. Following this regis-

tration, all other contours in the loaded plan are then rigidly copied

onto the new images. All OARs within 30 mm of the PTV are re‐
contoured on the new MR image by the attending physician. The

overwhelming majority (>90%) of plans in this study had no GTV

contour change. If the GTV is recontoured, most commonly at a

patient’s first adapted treatment fraction, the PTV is regenerated by

expanding the GTV by an isotropic 5 mm margin. The attending

medical physicist reviews the manual OAR segmentation and

assesses for other organ changes such as known areas of hetero-

geneity and skin surface position. Note that other institutions may

choose to use the original simulation plan as the starting point for all

online adaptive plans.15 The use of the most recently treated plan

for this purpose is simply the chosen workflow at our institution.

The new radiation dose distribution is then calculated by apply-

ing the loaded plan to the current day’s anatomy. Target coverage

and OAR doses are reassessed relative to plan goals and constraints.

Only if target coverage can clearly be improved or any critical OAR

dose constraint is not met will a new plan be created. The new plan

is developed by reoptimization using the same beam angles and

objective functions established in the currently loaded plan. In rare

cases (~4%), attempts are made to adjust optimization objectives to

further reoptimize the plan. After the plan is reoptimized, the attend-

ing physician evaluates and approves the plan. Physics quality assur-

ance steps are taken next,42 and then the plan is delivered at free

breathing, with real‐time, continuous 2D cine MR guidance for gating

at the planned end‐of‐exhalation phase.41

All plans discussed in this work were developed with OAR isotox-

icity prioritized over target coverage. Essentially, the OARCRIT con-

straints discussed above were hard constraints that must not be

exceeded, regardless of target coverage. Therefore the goal of the

model predictions in this work is identifying improvements to GTV

coverage while maintaining the same OAR avoidance. By contrast,

most previous KB prediction models aimed at identifying planning

improvements related to OAR dose sparing while maintaining uni-

form target coverage, eg PTV V95% > 95%.23,24,26,27,31

2.C | GTV 3D Dose Distribution Prediction ANN
Model

In previously published KB methods, parameters associated with tar-

get size/shape, distance relationships between the target and OARs,

and patient size were deemed important for predicting OAR 3D

dose, with the most critical parameter the minimum distance from a

voxel inside an OAR to the target surface.23,26,27 We have a similar

approach in this study to predict 3D dose distributions inside the

GTV. Our model input parameters include the minimum distances

from a voxel inside the GTV to surfaces of various OAR structures

(OARCRIT, OAR5mm, etc.). To improve the prediction model accuracy

and robustness, additional parameters derived from the distance and

geometrical relationships between OARs and the GTV were added

TAB L E 1 Statistics for the plans and GTV V95% and D95% values.

Patient Group Type of Plan

# of Plans
V95% D95%

SBRT HYP Total Mean ± σ Mean ± σ

Pancreas Simulationa 29 4 33 86.2 ± 8.7 80.7 ± 12.6

Adapted 133 56 189 86.2 ± 8.8 78.5 ± 15.4

NonPancreas Simulation 16 1 17 94.6 ± 11.0 98.9 ± 13.0

Adapted 56 15 71 92.5 ± 10.3 94.1 ± 14.5

All Patients Simulation 45 5 50 89.3 ± 10.4 87.5 ± 15.5

Adapted 189 71 260 87.9 ± 9.6 82.7 ± 16.6

aSimulation plans are created on the patient's simulation image, receive normal planning time, attention, optimization, and checks just like traditional

IMRT plans, and serve as the starting point of plan adaptation for the first fraction. V95% is the percentage of the GTV volume receiving 95% or more

of Rx. D95% is the minimum dose received by 95% of the GTV, given as a percentage of Rx.

TAB L E 2 Structure names and definitions used throughout this
work.

Planning
Structure Definition

GTV Gross tumor volume

PTV GTV + 5 mm isotropic expansion

OARCRIT All abdomen organs in close proximity of GTV

(esophagus, stomach, duodenum, large bowel, small

bowel)

OAR5mm OARCRIT + 5 mm isotropic expansion

PTVOPT PTV minus OAR5 mm:

used as target in plan optimization
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and are explained in Table 3. GTV V95 and D95 were found to

strongly correlate with these additional parameters. It is important to

note that we did not include any beam parameters (beam angles or

fluence) so that the developed models could predict 3D dose before

a treatment beam plan is devised. This is different from some previ-

ous work using ANN models to make 3D dose predictions.26,27

In a separate study, we determined that for linac‐based MRgRT

plans, plan quality comparisons between online adapted plans and

fully optimized offline simulation plans showed no statistically signifi-

cant differences. Therefore, we developed our models using both

offline (simulation) and adapted plans. The model prediction output

was per voxel dose value normalized to Rx. By tracking the model

prediction accuracy in preliminary experiments, we identified the

most relevant input variables, eliminated the less significant ones,

and simplified the ANN models while avoiding overfitting. Our final

ANN model was a two‐layer feed forward neural network design

(one hidden layer: 2 nodes, one output layer: 1 node), shown in

Fig. 2. It was implemented using MATLAB’s neural network toolbox.

The default Levenberg‐Marquardt backpropagation was used for

model training. Other models with more nodes in the hidden layer

(eg up to ~ 5) provided very similar results if they were similarly

optimized. Continuing to increase the number of nodes further led

to model overfitting and clearly reduced model performance. Adding

more hidden layers was similar. As a result, we chose to keep the

simplest model possible that provided equal performance which was

a model with two nodes in a single hidden layer. A wide range of

different loss functions were also tested, including some that

F I G . 1 . Workflow showing the steps and estimated timeline to the online adaptive MRgRT process.

TAB L E 3 List of 16 ANN model input variables.

# ANN Input Variables # ANN Input Variables

1 % of all voxels within 5 mm

occupied by OAR5 mm

9 Square root of min

distance to GTV surface

2 % of all voxels within 10 mm

occupied by OAR5 mm

10 Min distance to OAR5 mm

(>=0 only)b

3 % of all voxels within 15 mm

occupied by OAR5 mm

11 Min distance to OAR5mm

(<=0 only)

4 % of all voxels within 20 mm

occupied by OAR5 mm

12 Square root of min

distance to OAR5mm

5 % of GTV occupied by

OAR5 mm
a

13 Min distance to PTVOPT

(>=0 only)

6 Distance to GTV centroid 14 Min distance to PTVOPT

(<=0 only)

7 Max distance from GTV

centroid to GTV surfacea
15 Min distance to (OAR5 mm‐

OARCRIT)

(>=0 only)

8 Min distance to GTV surface 16 Min distance to (OAR5 mm‐
OARCRIT)

(<=0 only)

Each variable was calculated for all voxels inside the GTV for each plan

unless indicated otherwise. Some ANN model input variables could have

both positive and negative values, with negative values corresponding to

an overlap between the GTV and the OAR structure associated with the

variable.
aEvery voxel for the GTV had the same value.
bA linear correlation was observed between this distance metric and

dose but only up to a distance of ~ 16 mm. So this metric has a maxi-

mum value of 16 mm for any voxel.

ALLAN THOMAS ET AL. | 63



weighted different types of voxels differently.26 But the loss func-

tion that provided the most consistent prediction accuracy among

the many that were tested was mean square error.

A flowchart for ANN model training, testing, and development is

shown in Fig. 3. The simple ANN model design we eventually

adopted allowed for very fast model training. So it was straightfor-

ward to utilize cross validation to train and validate the ANN models.

We were not limited to training potential models and then testing

on a small group of separate test patients/plans only once. The total

310 plans (50 simulation, 260 adapted) were separated into training

and testing groups as follows: the 53 patients were split into ten

groups of five and one group of three, then each group was cycled

through as the test group. For each iteration of the cross validation,

all of the plans from the test group patients made up the testing

data while all the plans from the other ten groups served as training

data. The cross validation was done on a patient‐by‐patient basis

instead of a plan‐by‐plan basis to avoid testing the models on any

plan coming from a patient whose plans were already used for

model training.

The ANN model datasets in each cross validation iteration were

quite large, with the typical training group composed of ~250 plans

from 48 patients. The total number of voxels available in such a

training group dataset was >2 million. It was not necessary to use all

available voxels in any given cross validation to produce optimized

and consistent model performance. So GTV voxels for each plan

from the training group were randomly sampled at a 1/20 ratio and

then accumulated to make the training dataset. This data sampling

was chosen in an effort to fairly sample each set of GTV voxels

regardless of GTV size differences in the group while achieving

reduced model training time and consistent prediction results. Each

cross validation iteration utilized ~120,000 voxels after data sam-

pling.

Once the training dataset from randomly sampled GTV voxels

was created, it was further separated into “training” and “validation”

subsets at 85% and 15% respectively. The model was trained with

the “training” dataset until six consecutive error increases were

observed on the “validation” dataset or a maximum of 200 epochs

was reached. Many different epoch cut‐offs were also tested, but

the results did not strongly depend on this variable. The final training

method was chosen based on allowing the model to either naturally

find its optimal number of epochs based on error increases in the

“validation” dataset, or run through a sufficient number of epochs to

reach model convergence.

In an effort to ensure consistent model prediction performance,

the model training sequence was repeated 50 times and the pre-

dicted dose results on each plan in the test group were averaged.

The mean, mean absolute, and standard deviation errors of each

entire 3D dose distribution in the test group were calculated, as well

as mean dose (Dmean), V95, V100, and D95. DVHs for each real and

predicted dose distribution and their differences were determined (%

GTV volume error as a function of dose). This process was repeated

for each iteration of the cross validation until all patients were part

of the test group, and then the overall results from the cross valida-

tion were accumulated.

2.D | Outlier Detection, Rejection, and Model
Refinement

One main application of the prediction models is to identify inferior

plans by comparing the predicted plan quality metrics to those com-

puted in the actual plans. This concept also allows model refinement

by excluding inferior plans from training.25,26 To do so, inferior plans

were identified as any with an observed plan metric (V95, V100, or

D95) outside the 95% prediction interval (PI) of the original ANN

model, with:

95%PI ¼ meanerrorþ 1:96 � standard deviationof error

The inferior plans outside the 95% PI were then discarded and

the model was retrained. After two rounds, a total of 25 inferior

plans were identified and discarded. The model errors and results

are included only for the refined model with 285 plans.

3 | RESULTS

The prediction dose error statistics from the cross validation analysis

are shown in Table 4. Dose prediction error was computed as

F I G . 2 . The ANN models used in this work, with three distinct
layers: (1) input layer with 17 (16 inputs + 1 bias) nodes, (2) hidden
layer with two activation nodes and one bias node, and (3) output
layer with one activation node. The arrows represent the
connections between nodes in each layer and are mathematically
associated with the weighting parameters that get updated and
optimized during model training.
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ΔDose = Dactual – Dpredicted, then averaged across all plans of all

patients. Many different combinations of input variables could pro-

duce similar prediction dose errors yet distinct plan metric prediction

errors. So it was important to track plan metric prediction errors dur-

ing model optimization as well. In the end the most optimized ANN

model was chosen based on the best balance between dose and plan

metric error. As shown in Table 5, overall plan metric prediction

errors for V95, V100, D95, and Dmean were generally low with mean

absolute errors of 1.1%, 1.5%, 1.9 Gy, and 2.2 Gy respectively.

Removing inferior plans to make the refined model helped to

enhance its predictive ability for dose values relevant to plan quality,

despite only marginal improvements in overall dose prediction errors.

The dose prediction errors observed here are similar to previous

efforts at 3D dose predictions using ANN models,26,27 where errors

ranged from 2‐10% of Rx generally but had some contributions up

to 20% and greater. Care must be taken to recall that the fair com-

parison to previous results with this work would be in relating pub-

lished OAR dose errors to GTV dose errors here. Previously

published models focusing on OAR dose distributions also made

predictions for GTV/PTV dose,26,27 but due to the key differences in

treatment planning strategy and design discussed in Methods, a

direct comparison to previous GTV/PTV dose prediction results is

not fair. Furthermore, the doses being predicted in this work are

high, with the majority over Rx. As a result, the raw and % of Rx

errors will appear to be higher than models focusing on OAR dose

predictions.

Three axial slices of the planned dose, predicted dose, and the

prediction error for a representative pancreas SBRT plan are shown

in Fig. 4. It is evident that the predicted dose distribution is

smoother than the planned dose because the prediction models did

not consider beam angles. As a result, the dose distribution hetero-

geneity and hot spots are not easily predicted. Nevertheless, the

prescription isodose lines are very similar between the planned and

F I G . 3 . Process flowchart for ANN
model training and testing

TAB L E 4 ANN model 3D dose prediction results.

Dose Prediction Error
Mean ± σ (% Rx)

Absolute Dose
Prediction Error

Mean ± σ (% Rx)

0.1 ± 3.4 Gy (0.1 ± 6.2%) 3.5 ± 2.4 Gy (6.4 ± 4.3%)

The listed errors represent the averages on a plan‐by‐plan basis.

TAB L E 5 ANN model plan metric prediction results.

Metric Prediction Error
Absolute Prediction
Error 95% R2

V95 (%) −0.1 ± 1.5 1.1 ± 1.1 3.3 0.97

V100 (%) −0.5 ± 2.1 1.5 ± 1.5 5.0 0.95

D95 (Gy) −0.9 ± 2.2 1.9 ± 1.4 4.6 0.95

Dmean

(Gy)

0.1 ± 2.7 2.2 ± 1.6 5.1 0.91

Averages across all plans for both raw and absolute prediction errors are

given. 95%: the value required to encompass the absolute error from

95% of all plans in the model. R2: coefficient of determination values for

the linear fit of actual vs predicted plan metric values.
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predicted doses, suggesting that the model can accurately predict

dose values near Rx as well as clinical DVH metrics. Similar effects

were observed generally throughout the model predictions. Note

that the example in Fig. 4 was chosen as representative of typical

predictions but not necessarily matched with all average metrics

tracked.

The results of some predicted plan metrics vs their true plan val-

ues are shown in Fig. 5. Overall, V95, V100, and D95 are well‐pre-
dicted, with R2 values of 0.97, 0.95, and 0.95, respectively, and

linear fit slopes all near unity. The 25 inferior plans were well‐identi-
fied by their divergence from the 95% PI for the V95 and V100 plan

metrics. Figure 6(a) shows results for comparisons between the real

and predicted DVH metrics: error in Vx as a function of x where x is

the percentage of Rx (eg V95 = % of GTV volume receiving 95% of

Rx). It is clear that Vx is predicted well for x < 100% and large errors

only occur for x > 100%. Figure 6(b) presents the overall dose pre-

diction error distributions in % Rx also as a function of x, confirming

that per voxel dose values are predicted well from x = 60%–100%.

4 | DISCUSSION

ANN models were designed in this study to predict 3D dose distri-

butions based on the average of prior plans used for model training.

Our models allow a direct, 3D dose comparison between the history

of previously treated plans and upcoming plans for future patients

without needing to take the time and effort to create an actual

treatment plan. This is possible because our models are based on

inputs that require only target and OAR structure data, not planned

beam parameters. Because beam angles and related information

were not included as input variables, the models generally do not

predict beam geometry‐dependent dose distribution heterogeneity

and hot spots for each individual patient’s plan. While overall raw

dose errors were not ideally low, the larger errors were generally

associated with localized dose heterogeneity and high dose regions

above Rx (Fig. 6). From a clinical standpoint, such errors are less rel-

evant and do not affect predictions for important DVH metrics such

as V95, or regions of the GTV receiving dose below Rx due to OAR

sparing and constraint requirements. Such overall plan metrics and

the predicted balance between OAR sparing and GTV coverage are

the most important to guide adaptive decision‐making.

Due to the time constraints associated with the online adaptive

process, adapted plans are not afforded the same level of optimiza-

tion and scrutiny as high‐quality offline plans. The 3D dose predic-

tion models establish benchmarking that can enable a rapid

evaluation of online adaptive plans in terms of both plan quality and

the overall dose distribution. Examples that showcase this idea are

evident in Fig. 5. The 25 plans deemed inferior during model refine-

ment are distinct from the general model predictions, with predicted

values outside the 95% PI of at least one plan quality metric. Future

treatment plans that are inferior to the history of previously treated

plans could likely be identified similarly by testing with the model.

F I G . 4 . Three axial slices (inferior, center, and superior of GTV) of planned dose, model predicted dose, and ΔDose of a representative
patient plan (SBRT: Rx = 50 Gy, OARCRIT constraint = 36 Gy). All OARs (stomach, duodenum, small bowel, large bowel, and spinal cord) are
shown in white. The prescription isodose lines are shown in blue for the planned and predicted dose views. Dose prediction
errors = 0.7 ± 3.9 Gy, absolute errors = 3.3 + 2.3 Gy. The plan metrics (planned/predicted) are V95 = 90.4%/88.5%, V100 = 86.8%/85.1%,
D95 = 42.6 Gy/41.4 Gy, Dmean = 57.2 Gy/56.6 Gy.
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Several of the 25 plans identified as inferior were retrospectively

replanned to assess for potential improvement. Conditions that

would be present during real‐time adaptation were simulated for the

replanning: no OAR constraints could be exceeded, optimization

parameters could be manually tweaked and adjusted, and time con-

straints for the reoptimization process were kept in mind (~5 min

maximum time allowed). Table 6 shows the results of the replanning

analysis. While the degree of improvement varied across the plans

tested, all plans that were reoptimized are closer to the quality

claimed as possible by the ANN prediction model. Generally, from

40–100% of the difference between the predicted plan metrics and

the original values were recovered after replanning. These results

help to further showcase the clinical relevance and utility of the

dose prediction models.

Despite the potential applications of the models developed in

this work, there are limitations that must be addressed. First, the

models were developed using only patient and plan data from a sin-

gle institution. Additionally, the inability of the models to account

for hotspots or other dramatic dose distribution changes prevents

clinical applications that relate directly to hotspots.44,45 Dose predic-

tion models would need to include more detailed plan information

related to beam angles and/or fluence26,27 in order to more accu-

rately predict such metrics.

In future applications, the predicted 3D dose distributions could

serve as an alternative input to the treatment plan development pro-

cess.26,30 This is a particularly desirable strategy for online adaptive

plans, much in the same vein as it is being pursued for automated

treatment planning. An estimated 3D dose prediction tailored to the

specific anatomy of the day could provide a much improved starting

F I G . 5 . Results for (a) V95, (b) V100, and (c) D95 predictions calculated from the model‘s 3D dose predictions. The 45° dashed lines in each
plot represent where the predicted and actual values are equal. The linear fit line and coefficient of determination (R2) are included. The
outside boundary lines represent the 95% PI. The 25 inferior plans identified during model refinement are shown as *.

F I G . 6 . Distributions of prediction error for (a) Vx: the percentage
of the GTV volume receiving dose of at least x percent of Rx (i.e.
V20 through V160), and (b) dose in % Rx. The error distributions are
shown as boxplots with a horizontal red line for the median, blue
box encompassing the 25% and 75% interquartile ranges, and dotted
line extending to the 95% range. The OARCRIT constraint (dotted)
and Rx (dashed) levels are shown in the figures.

TAB L E 6 Results of the replanning by manual reoptimization for
several plans from the group of 25 identified as inferior by the ANN
prediction models.

Metric Type Plan 1 Plan 2 Plan 3 Plan 4

V95 (%) Clinical 52.6 82.3 72.6 80.4

RePlan 63.3 87.9 76.3 83.1

ANN 61.9 91.5 81.0 86.0

V100 (%) Clinical 45.6 70.9 65.0 70.7

RePlan 60.0 84.5 70.4 75.6

ANN 60.7 89.0 79.3 82.4

D95 (Gy) Clinical 23.0 36.6 29.3 35.6

RePlan 22.7 38.9 35.2 37.3

ANN 23.5 42.3 38.0 39.1
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point for subsequent adapted plan development and optimization

each fraction. The fact that our ANN models can provide a 3D dose

prediction using contour information alone (a fully developed treat-

ment plan is not needed) helps to bolster their potential use as novel

inputs for alternative treatment planning strategies.

Additional future work that could extend this study relates

mostly to improving the 3D dose prediction models. ANN model

development and performance are based mainly on the ability to

identify key input data that strongly relates to making accurate out-

put predictions. Most likely, the best 3D dose prediction models

would be based on convolutional neural networks (CNNs),29‐31 which

have shown improved dose prediction performance relative to what

was achieved in this study. However, CNN models are well known

to require vast amounts of training data to learn the necessary rela-

tionships to make accurate and robust predictions.29‐31 As the num-

ber of patients treated with online adaptive MRgRT continues to

increase, future work may be possible related to CNN based predic-

tion models with improved capabilities.

5 | CONCLUSION

We developed ANN models to predict 3D dose distributions and

overall plan quality metrics for abdomen cancers in adaptive MRgRT.

The prediction models will be useful to improve adaptive planning

strategies and workflows through more informed plan optimization

and evaluation in real time.
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