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Abstract: In this article, a new technique for determination of 2D signal source (target) position
is proposed. This novel approach, called the Inscribed Angle (InA), is based on measuring the
time difference of sequential irradiation by the main beam of the target antenna’s radiation pattern,
using Electronic Support Measures (ESM) receivers, assuming that the target antenna is rotating
and that its angular velocity is constant. In addition, it is also assumed that the localization system
operates in a LOS (Line of Sight) situation and that three time-synchronized sensors are placed
arbitrarily across the area. The main contribution of the article is a complete description of the
proposed localization method. That is, this paper demonstrates a geometric representation and an
InA localization technique model. Analysis of the method’s accuracy is also demonstrated. The
time of irradiation of the receiving station corresponds to the direction in which the maximum
received signal strength (RSS) was measured. In order to achieve a certain degree of accuracy of the
proposed positioning technique, a method was derived to increase the accuracy of the irradiation
time estimation. Finally, extensive simulation was conducted to demonstrate the performance and
accuracy of our positioning method.

Keywords: localization method; positioning technique; covariance matrix; target localization

1. Introduction

Localization of non-cooperative signal emitters (targets) is a common task in many
security and surveillance systems. These systems can be applied to a wide variety of
areas, such as military applications [1,2], target tracking, electronic intelligence systems [3],
perimeter protection systems [4], or location-based services [5]. The most commonly used
approaches, or techniques, for measuring a target position are Time of Arrival (TOA) [6],
Time Difference of Arrival (TDOA) [7,8], Received Signal Strength (RSS) [9], Doppler Differ-
ence (DD) [10], Angle of Arrival (AOA) [11], and combinations of these techniques [12,13].
The localization techniques can be described by a number of different features, such as
accuracy, complexity, ambiguity, cost, etc.

In this paper, we focus on the time-based localization systems. Their general operation
principle is based on either measuring the Time Difference of Arrival or measuring the
Time of Arrival of the signal of interest to different receiver positions. These systems
allow instantaneous target position measurement but only if the condition of simultaneous
irradiation of all the ESM receivers [14] of the localization system is satisfied. However,
localization of Low Probability of Intercept (LPI) targets [15,16], especially in military
applications, can be problematic in these systems. One of the features of the LPI signal
emitters (radars) is a side lobes suppression of their antenna patterns. This means that
the condition of simultaneous irradiation of the time-based localization system may not
be satisfied and that the target cannot be localized. There are several approaches for
overcoming this limitation. A baseline shortening of the time-based positioning systems
is one of the possible approaches [17]. Although the short baseline significantly increases
the probability of the system simultaneous irradiation, it also reduces the accuracy of the
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target localization, assuming a constant TOA or TDOA measurement error [18]. The second
group of possible approaches is based on a certain degree of cooperation between the
target and the positioning system sensors. This group includes, for example, the sequential
TDOA method [19]. However, this cooperation can be a major limitation, especially for
military applications.

All the recent time-based localization systems are able to measure both the TOA
and the amplitude of the target signal. We propose a new localization technique in 2D
that is based on measuring the time difference of sequential irradiation of three receiving
localization system stations by the main beam of the target antenna radiation pattern.
If we further assume that the angular velocity of the target antenna rotation is constant
and that it is known (the angular velocity is measurable as well as the time difference
of station irradiation), we are able to determine two inscribed angles [20] in two circles.
The position of the target is then determined by the intersection of these two circles. As
the knowledge of the inscribed angle is the key parameter of the proposed method, this
localization technique is called Inscribed Angle method. In connection with the assumption
of the constant angular velocity of the target antenna rotation, a typical application of the
proposed method can be the tracking of fishing boats equipped with small maritime
radar because these radars are just typical of constant antenna rotation speed and circular
scanning of the area. Another possible application of the InA method is the localization
of long-range surveillance radars where only irradiation by radar antenna main beam
(without antenna sidelobes) is available.

This paper is organized as follows: Section 2 introduces a geometric representation of
the InA method and shows mathematical model of this method and its algorithm, including
a demonstration of the method performance. Section 3 briefly describes accuracy analysis
of the proposed method. Section 4 presents simulation results demonstrating the accuracy
of our positioning method. Section 5 describes the technique for increasing accuracy of the
irradiation time estimation.

2. Geometric Representation and Description of the InA Localization
Technique Model

In this section, a typical scenario for using the InA localization method is described.
Furthermore, a mathematical model of the method and its final proposed solution are
also presented.

A network, composed of three fixed positions and time-synchronized receiving sen-
sors, is assumed. In this example, there are sensors S1, S2, S3, and one target, T. The number
of sensors N = 3 represents a sufficiently determined system in 2D. The arrangement of
such a network is shown in Figure 1. It is assumed that each sensor is able to measure
irradiation time TRi, i.e., the time when the sensor i is irradiated by the main beam of the
target antenna radiation pattern. The times of irradiation can be, for clarity, written in the
form of vector TR = [TR1, TR2, TR3]. Next, it is assumed that the target antenna is rotating
and that its angular velocity Ω is constant. It means that an arbitrary sensor can estimate
the rotation period of the target antenna TA from two consecutive times of irradiation.
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If the coordinates of the target and sensors are T = [xt, yt], S1 = [x1, y1], S2 = [x2, y2]
and S3 = [x3, y3], then the time of irradiation TRi of the sensor i is

TRi = T0 +
αi
Ω

(1)

where T0 is a priori unknown time when main lobe of the transmitter antenna pattern is
directed to x axis. This orientation (as a mathematical zero angle) is used for simplicity
instead of standard azimuth angle oriented northward and clockwise, and αi expresses the
direction to the target from i sensor at the moment of its irradiation by the main antenna
beam of the signal source.

ai = tan−1
(

yt − yi
xt − xi

)
(2)

This set of Equations (1) and (2) represents the model of the InA localization method.
Using this method model, the target position can be found as follows: First, if the

irradiation times and the period of target antenna rotation are known (are measured), then
the angular velocity of the target antenna Ω can be determined as

Ω =
2π

TA
(3)

Next, the inscribed angles in circles C1 and C2 can be computed as

∆Φ1 = (TR2 − TR1).Ω (4)

∆Φ2 = (TR3 − TR2).Ω (5)

If the inscribed angles are determined, it is possible to describe the circles C1 and C2,
i.e., to find their center coordinates O1, O2 and their radii r1, r2.

For circle C1, it can be done as follows: In order to simplify determination of the
circle C1 parameters, it is advisable to transform the sensor arrangement from a standard
coordinate system {x, y} into a new coordinate system {x*, y*} by translation and rotation
via the following transformation equations:

x∗ = (x− x1). cos(β1) + (y− y1). sin(β1) (6)

y∗ = −(x− x1). sin(β1) + (y− y1). cos(β1) (7)
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where β1 = tan−1
(

y2−y1
x2−x1

)
.

Then, the new sensor coordinates are S∗1 [0, 0], S∗2 [a, 0] and the center of the circle C1
has coordinates O∗1

[
x∗o1, y∗o2

]
, where

x∗o1 =
a
2
=

√
(x2 − x1)

2 + (y2 − y1)
2

2
(8)

y∗o1 = cot(∆Φ1).x∗o1 (9)

The radius of C1 is

r1 =
√

x∗2o1 + y∗2o1 (10)

A transformation of the C1 circle center back into the standard coordinate system {x, y}
is provided by the following formulas:

x = x∗. cos(β1)− y∗. sin(β1) + x1 (11)

y = x∗. sin(β1) + y∗. cos(β1) + y1 (12)

Similarly, the center O2 [xo2, yo2] of the circle C2 and its radius r2 can be determined.
Note that in this case, the sensor coordinates are S∗2 [0, 0] and S∗3 [b, 0] in the new coordinate

system and the angle β2 = tan−1
(

y3−y2
x3−x3

)
is used in transformation Equations (6), (7), (11),

and (12).
Finally, the target position can be found as an intersection of the circles C1 and C2. If

the equations of circles are expressed as

(x− xo1)
2 + (y− yo1)

2 = r2
1 (13)

(x− xo1)
2 + (y− yo1)

2 = r2
1 (14)

then a new system of these equations is obtained and is equivalent to (13), (14) after the
transformation of O1 [xo1, yo1]→ O∗1 [0, 0], O2 [xo2, yo2]→ O∗2 [c, 0] :

x∗2 + y∗2 = r2
1 (15)

(x∗ − c)2 + y∗2 = r2
2 (16)

where c=
√
(xo2 − xo1)

2 + (yo2 − yo1)
2.

By subtracting Equation (16) from Equation (15), we get the following formula:

2.c.x∗ − c2 = r2
1 − r2

2 (17)

By rearranging Equation (17), the formula for the x∗t target coordinate is:

x∗ = x∗t =
c2 + r2

1 − r2
2

2.c
(18)

Using (15), the formula for the y∗t target coordinate is:

y∗1,2 = y∗t1,2 = ±
√

r2
1 − x∗2t (19)

Equation (19) shows that the proposed method provides two target positions. Thus,
the InA localization technique is ambiguous. However, it is clear that one of the target
positions is always at the position of sensor that lies on both circles (it is from Figure 1).
Then the question of unambiguity need not be further solved in practical applications. A
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transformation of the target position back into the standard coordinate system {x, y} is
provided by the following formulas:

xt = x∗t . cos(γ)− y∗t . sin(γ) + xo1 (20)

yt = x∗t . sin(γ) + y∗t . cos(γ) + yo1 (21)

where γ = tan−1
(

yo2−yo1
xo2−xo1

)
.

From a practical point of view, the derived algorithm of the InA method is imple-
mented in the following way. Firstly, the TR1 to TR3 are measured and TA is derived from
them. Secondly, the parameters ∆Φ1 and ∆Φ2 are determined. Then, all the parameters of
the circles C1 and C2 are computed. Finally, the target coordinates xt, yt are found as the
intersection of the circles.

The following presented simulation shows the InA method performance. A network
was assumed, composed of three receiving sensors with coordinates S1 [−10 km, 5 km], S2
[0, 0], and S3 [10 km, 5 km]. The target position was T [−5 km, 50 km], and it irradiated
the sensor system twice. The vectors of the measured TRi were

T1
R = [1.0972 s, 1.1976 s, 1.3036 s] (the first irradiation) and

T2
R = [4.0972 s, 4.1976 s, 4.3036 s] (the sec ond irradiation).

Then, the estimation of the rotation period of the target antenna was TA = 3 s and
appropriate inscribed angles were ∆Φ1 = 12.51 deg and ∆Φ2 = 12.72 deg. Finally, the
calculated target positions were T1 = [−5 km, 50 km] and T2 = [0, 0]. Figure 2 shows a
graphical interpretation of this simulation.
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Figure 2. Example of the InA method performance.

The achieved simulation results show that the proposed method works correctly. It
is also important to note that in the presence of multiple target signals, it is necessary to
perform thorough deinterleaving, i.e., to separate the signals of individual targets before
applying the proposed algorithm. This can be done, for example, using knowledge (or
measurement) of the parameters of the signal of individual targets. However, the solution
to the problem of deinterleaving performance is not the subject of the present paper.
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3. Accuracy Analysis of the InA Localization Method

In estimation theory, the Cramér–Rao Lower Bound (CRLB) expresses a lower bound
on the variance of unbiased estimators of a deterministic parameter [21]. The approach
based on CRLB theory is used for analyzing the accuracy of the InA method in the presence
of noise. According to [22–24], it is possible to determine the covariance matrix C(T) of the
InA method as

CRLB(T) = C(T) = J
(
T̂R
)
.Cp
(
T̂R
)
.J
(
T̂R
)T (22)

where J
(
T̂R
)

is Jacobian Matrix. It consists of partial derivatives of the function f (TR, S1..3),
with respect to the variables TR1 to TR3 at the point T̂R. The T̂R is the vector of the measured
times of irradiation, i.e., T̂R is an estimation of TR,

J
(
T̂R
)
=

[
∂ f
(
T̂R, S1..3

)
∂TR

]
=

 ∂x(T̂R, S1..3)
∂TR1

∂x(T̂R, S1..3)
∂TR2

∂x(T̂R, S1..3)
∂TR3

∂y(T̂R, S1..3)
∂TR1

∂y(T̂R, S1..3)
∂TR2

∂y(T̂R, S1..3)
∂TR3

 (23)

and Cp
(
T̂R
)

is the covariance matrix of the vector T̂R. If the times of irradiation of particular
sensors are measured independently, as in the proposed method, the matrix Cp

(
T̂R
)

becomes a diagonal matrix in the following form:

Cp
(
T̂R
)
=

 σ2
TR1 0 0
0 σ2

TR2 0
0 0 σ2

TR3

 (24)

where σ2
TRi is a dispersion of the TRi parameter. An example of finding partial derivatives

of the function f (TR, S1..3) is shown in Appendix A.
The defined covariance matrix C(T) represents a confidence region including the

“true” target position with a certain probability level [25]. From a physical point of view,
the covariance matrix expresses an error ellipse with a certain probability of the “true”
target occurrence [26]. The computation of error ellipse parameters, i.e., the length of axes
and their directions, is described in detail in [27].

4. Accuracy Evaluation of the InA Localization Technique

Mathematical background for describing the accuracy of the InA method was provided
in the previous section. This section presents the simulated performance results of the
proposed technique in terms of its accuracy. The same sensor arrangement was assumed
as in the previous example (see Section 2). Then, it was also assumed that the TRi were
measured at each sensor independently with a standard deviation equal to 0.1 ms and that
all the sensors were time-synchronized. The antenna of the fixed target rotated with period
TA = 3 s, and the simulation was so long that the main beam of the target antenna was able
to irradiate the sensors several times. An example of such irradiation for particular sensors
is shown in Figure 3.

In this presented simulation, the system was irradiated 20 times. That means it was
possible to extract N = 20 vectors of T̂R and then calculate N estimates of the target position
^
T. The measured target positions are shown in Figure 4.
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Figure 4. Measured target positions and error ellipse.

This corresponds to the mean estimated position of the target
^
Tmean [−5.05 km, 50.005 km].

The accuracy of the target localization can be quantified by the following covariance matrix:

C(T) =
[

0.0455 0.0096
0.0096 0.0031

]
The error ellipse axes lengths are Ae = 109.1 m and Be = 16.0 m.
From the achieved results, it is clear that the proposed method had a significantly

larger cross-range error than the range one. In addition, it is also clear that the target
position error appeared to be strongly dependent on the standard deviation of the irradia-
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tion time measurement σTRi. This dependence could be generally assessed using the error
ellipse axes length or the CEP (Circular Error Probability) parameter. For simplicity, it is
also possible to use the range deviation parameter Rmean that is introduced as

∆Rmean =
∑N

i=1 T̂i − T
N

(25)

where
^
Ti is the i measurement of the target position, and N is the overall number of these

measurements. Note that ∆Rmean = 175.5 m in the above presented simulation.
Thus, another simulation was performed, and the same sensor system configuration

and target position were assumed as in the previous examples. The mean range deviation
∆Rmean was then calculated for interval of σTRi from 0.1 ms to 10 ms. N = 100 target position
measurements were considered for each σTRi. The results of this test are shown in Figure 5.
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Figure 5. Range deviation of the target.

The graph shows that the accuracy of the target location decreased sharply as the
measurement error of TRi increased. From a “practical application of this presented method”
point of view, the acceptable value of σTRi was in the interval from 0.1 ms to 1 ms. The
above simulation also makes it possible to determine the effect of sensor placement. It turns
out that the application of the proposed method for sensor arrangement with distances of
meters between particular sensors is problematic due to the requirement for accuracy of
irradiation time measurement. In this case, the difference of irradiation times of individual
sensors will be too short and thus the requirement for its measurement accuracy will
increase rapidly. Thus, in principle, the method will work correctly, but its technological
implementation will be very difficult. For short-range targets, influencing the transmitting
platform inherent rotation and tilt effect will be a problem.

Hence, these results represent a very strict requirement for the technological solution
of the ESM receiver. Therefore, the next section presents one of the possible solutions to
overcome this limitation.

5. The Technique to Increase Accuracy of Irradiation Time Estimation

Determination of the time of irradiation is generally based on a continuous mea-
surement of the received signal amplitude by the ESM receiver, followed by finding the
maximum amplitude for which the TR is extracted. The accuracy of determining the TR
in the presence of noise depends on both the signal-to-noise ratio (SNR) of the received
signal and the parameters of the ESM receiver [28,29]. The correct extraction of the time of
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irradiation is significantly affected by the flat shape of the target antenna main beam. A
graph of the measured amplitude of the received signal in the presence of noise is shown
in Figure 6.
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The accuracy analysis of the InA method showed that it is necessary to ensure the
most accurate measurement of the times of irradiation for the correct operation of the InA
method. Therefore, the following algorithm was proposed to improve the TR extraction.
The core of the algorithm is based on interpolation of the measured amplitude of the
received signal by a polynomial and subsequently finding its local maximum [30]. The
irradiation time then corresponds to this local maximum. Figure 7 shows the flowchart of
the proposed algorithm.
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Figure 7. Algorithm to increase accuracy of the TR extraction.

Performance of this algorithm was tested by a simulation with the following param-
eters: The target antenna had its main beam width θ-3dB = 0.5 deg and rotated with the
period TA = 3 s. The pulse repetition interval of a pulse radar signal was set to PRI = 100 s,
and the SNR of the signal was approximately 12 dB. Thus, the receiver was irradiated with
M = 40 pulses, as shown in Figure 8.
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Figure 8. Simulation of the algorithm to increase accuracy of the TR extraction.

Without the use of the proposed algorithm, the time of irradiation TR would have been
extracted for the maximum measured amplitude Amax. However, when these M measured
amplitudes were interpolated by a polynomial of degree 4, then the TR could be extracted
at a point more closely corresponding to the maximum receiver irradiation by the main
target antenna beam.

6. Conclusions

The presented Inscribed Angle method can be used for transmitter target location,
especially of fixed radars. The proposed method belongs to the time-based localization
techniques. The main advantage of this method is that it is able to locate targets that do not
satisfy the condition of simultaneous irradiation of all the localization system receivers,
which makes this method usable for surveillance of LPI/LPD non-cooperating targets.

In this paper, a model and computational algorithms of the method were described,
and the target positioning accuracy was analyzed for constant angular velocity of the target
antenna. The derivation of the method algorithm showed that the method is generally
ambiguous in terms of determining the target location but that the false target location is
a priori known. Next, it turned out that a limiting factor for practical application of the
InA method was a very strict requirement for extraction accuracy of the receiving sensor
irradiation time, as the standard deviation for the irradiation time measurement should
not exceed 1 ms for sensors arranged with their mutual distances on the order of km. To
reduce the effect of this limitation, an algorithm was proposed to improve the time of
irradiation extraction.

Nevertheless, it should be noted that the accuracy of the InA method has not reached
the accuracy of other time-based localization methods, such as the TDOA method. There-
fore, this proposed method is considered a complementary method for other practical
applications. A combination of TDOA/InA methods is a good example. Analysis of such
combined methods will be the focus of our further work, as well as the extension of the
InA method’s use for space sector scanning by the target antenna.
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Appendix A

The Jacobian matrix J is defined as:

J
(
T̂R
)
=

[
∂ f
(
T̂R, S1..3

)
∂TR

]
=

 ∂x(T̂R, S1..3)
∂TR1

∂x(T̂R, S1..3)
∂TR2

∂x(T̂R, S1..3)
∂TR3

∂y(T̂R, S1..3)
∂TR1

∂y(T̂R, S1..3)
∂TR2

∂y(T̂R, S1..3)
∂TR3

 (A1)

An example of a partial derivatives calculation is described below. For example, the xt
target coordinate is obtained by equation

xt = x∗t . cos(γ)− y∗t . sin(γ) + xo1 (A2)

where x∗t =
c2+r2

1−r2
2

2.c and y∗t1,2 = ±
√

r2
1 − x∗2t are substitutes. Then, the partial derivate of

xt with respect to TR1 is

∂x
(
T̂R, S1..3

)
∂TR1

=
∂x∗t

∂TR1
· cos(γ)− x∗t · sin(γ)−

∂y∗t1,2

∂TR1
· sin(γ)− y∗t1,2· cos(γ) +

∂xo1

∂TR1
(A3)

Next, the partial derivatives of substitutes x∗t and y∗t1,2 with respect to TR1 are

∂x∗t
∂TR1

=

(
2.c. ∂c

∂TR1
+ 2.r1. ∂r1

∂TR1
− 2.r2. ∂r2

∂TR1

)
.2.c− 2.

(
c2 + r2

1 − r2
2
)
. ∂c
∂TR1

4.c2 (A4)

∂x∗t
∂TR1

=

(
2.c. ∂c

∂TR1
+ 2.r1. ∂r1

∂TR1
− 2.r2. ∂r2

∂TR1

)
.2.c− 2.

(
c2 + r2

1 − r2
2
)
. ∂c
∂TR1

4.c2 (A5)

The derivation continues in the same way until the partial derivatives of input vari-
ables, i.e., the inscribed angles, are found. There are

∂∆Φ1

∂TR1
= −Ω (A6)

∂∆Φ1

∂TR1
= −Ω (A7)

Finally, a complete partial derivative of xt with respect to TR1 can be calculated by
inserting all of the above partial derivatives into Equation (A3). This approach takes into
account that all the variables (or substitutes) used in the method algorithm can be depended
on TR1. That means that it is necessary to calculate their partial derivatives with respect
to TR1 too. The remaining partial derivatives of the Jacobian matrix can be derived in the
same way.
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