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In recent years, there has been an increasing interest in studying the propagation of polarized light in biological cells and tissues.
This paper presents a novel approach to cell or tissue imaging using a full Stokes imaging system with advanced polarization image
analysis algorithms for improved diagnostics. The key component of the Stokes imaging system is the electrically tunable retarder,
enabling high-speed operation of the system to acquire four intensity images sequentially. From the acquired intensity images,
four Stokes vector images can be computed to obtain complete polarization information. Polarization image analysis algorithms
are then developed to analyze Stokes polarization images for cell or tissue classification. Specifically, wavelet transforms are first
applied to the Stokes components for initial feature analysis and extraction. Artificial neural networks (ANNs) are then used to
extract diagnostic features for improved classification and prediction. In this study, phantom experiments have been conducted
using a prototyped Stokes polarization imaging device. In particular, several types of phantoms, consisting of polystyrene latex
spheres in various diameters, were prepared to simulate different conditions of epidermal layer of skin. The experimental results
from phantom studies and a plant cell study show that the classification performance using Stokes images is significantly improved
over that using the intensity image only.

Copyright © 2007 Jianhua Xuan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

With recent improvements in optical components, the acqui-
sition of polarized images has become easier and more cost
effective. Particularly, polarization imaging can reveal impor-
tant optical properties of the imaged sample in addition to
those revealed by a simple intensity imaging method. The
fact that the polarization state of the light contains useful in-
formation has been shown in many literatures, for example,
in [1–3]. Rahmann and Canterakis describe how the polar-
ization state of light can be used for specular surface recon-
struction to determine the shape of any three-dimensional
(3D) object [1]. They use the fact that light reflected by di-
electrics and metals becomes linearly polarized and that the
direction of polarization depends on the orientation of the
reflecting surface. Demos and Alfano demonstrate a tech-
nique based on polarization imaging that allows for optical
imaging of a surface as well as structures beneath the surface
[2].

The interest of applying polarization imaging to study
biological cells or tissues has been shared among many
biomedical researchers from very early years to nowadays
[4–15]. As early as in l949, it was reported that the activ-
ity of nerve cells was associated with changes in their opti-
cal properties [4]. When photons impinge on biological ma-
terials, their transmission depends on a combination of re-
flectance, scattering, and absorption effects. Absorption oc-
curs at specific wavelengths, determined by the molecular
properties of the materials in the light path. The relatively
good transparency of biological materials in the visible and
near-infrared (NIR) region of the spectrum permits suffi-
cient photon transmission through organs in site for mon-
itoring cellular events. It has been known for many years that
some intrinsic changes in the optical properties of the tis-
sue are dependent on electrical or metabolic activity [5, 6].
Changes in optical properties of brain cells have been re-
ported in cell cultures, brain slices, as well as in intact cortical
tissue [7]. Based on assessment of absorption and scattering,
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three types of activity-related signals have been recorded
noninvasively: (1) changes in haemoglobin oxygenation, (2)
changes in cytochrome-c-oxidase (co), and (3) optical signals
presumably related to changes in light scattering reflecting ei-
ther membrane potential (fast signals) or cell swelling (slow
signal). Villringer and Chance claimed that the advantages
of optical methods include biochemical specificity, a tempo-
ral resolution in the millisecond range, the potential of mea-
suring intracellular and intravascular events simultaneously,
and the portability of the devices enabling bedside examina-
tion [8].

The light scattered by a tissue has interacted with the ul-
trastructure of the biological tissue, which imprinted some
intrinsic properties of the tissue. Tissue ultrastructure ex-
tends from membranes to membrane aggregates to collagen
fibers to nuclei to cells. Photons are most strongly scattered
by those structures whose size matches the photon wave-
length. It has been demonstrated that light scattering can
provide structural and functional information about the tis-
sue [9, 10]. One important biomedical application of optical
imaging and spectroscopy is noninvasive or minimally inva-
sive detection of precancerous and early cancerous changes
in human epithelium, such as dysplasia or carcinoma in situ.

Recently, many researchers have proposed various opti-
cal sensing modalities that could potentially be used to aid
in the diagnosis of superficial cancers and other dermato-
logical conditions. In 2000, Jacques et al. demonstrated the
use of polarized light for superficial tissue imaging [11]. In
their study, they showed that by simply collecting two po-
larization images through aligned and crossed polarizers and
then computing the degree of linear polarization, image con-
trast can be significantly improved thus revealing superfi-
cial structures previously not apparent. In the methods pro-
posed by other researchers, optical polarizers and retarders
were varied to provide additional incident and analyzed po-
larization states, thus enabling the reconstruction of a two-
dimensional (2D) Mueller matrix of biological samples [12–
15].

This paper presents a new approach to improved cell or
tissue classification through the application of Stokes imag-
ing techniques and artificial neural networks [4, 5]. Measur-
ing the polarization of backscattered light provides insight
into the optical properties of the cell or tissue, which could
lead to improved diagnosis of different tissue types. The po-
larization state of light can be represented by Jones vectors
or by Stokes vectors [16]. In particular, Stokes vectors can
represent fully polarized light as well as partially or unpolar-
ized light, hence a natural choice for polarization image rep-
resentation. In this paper, the intensity images, taken from
the backscattered light of the samples, are first converted to
Stokes vector images. Note that the Stokes vector, one for
each pixel location, fully describes the polarization state of
the light at this particular spatial position. In addition, a
broadband light source coupled with a tunable optical band-
pass filter allows for the illumination and collection of images
at different optical wavelengths.

Artificial neural networks (ANNs) have been introduced
to classify different cell/tissue types. In particular, multilayer
perceptrons (MLPs) are used to extract polarization signa-

tures of the cells or tissues, through which a nonlinear deci-
sion boundary can be determined to classify the cells or tis-
sues [17]. To further improve the classification performance,
we have also included a feature extraction step using wavelet
transforms to derive a joint space and frequency represen-
tation of Stokes images [18]. In order to compare the clas-
sification performance of Stokes imaging with conventional
imaging technique, we have constructed three realistic phan-
toms using different sizes of polybeans to simulate the epi-
dermal layer of skin. The classification performance, either
using full Stokes vector information or using intensity infor-
mation only, is estimated by a cross-validation method (i.e.,
3-fold cross-validation) to demonstrate an improved perfor-
mance of the proposed polarization imaging system.

The paper is organized as follows. In Section 2, we will
describe the polarization imaging system in principle. Specif-
ically, we will describe the design of polarization image de-
vice and its image analysis algorithms for classification. In
Section 3, we will present a detailed report of preliminary
experimental results using phantom studies and a plant cell
study, especially on the results of using either single- or mul-
tispectral polarization information. Finally, in Section 4 we
will conclude this paper with some future research direc-
tions.

2. METHOD

In this section, we will describe the principle, design, and al-
gorithms of the proposed polarization system in detail. In the
design, the polarization imaging device is targeted to acquire
a compact representation of polarization information. Tech-
nically, a sequential acquisition procedure is proposed to ac-
quire four intensity images with different polarization prop-
erties. Four Stokes images are then computed from the in-
tensity images to give a full description of polarization states.
In the data analysis subsystem, image analysis algorithms are
developed for feature extraction and classification, in which
wavelet transforms are used to extract polarization features
and artificial neural networks are trained for binary classifi-
cation.

2.1. Polarization imaging device

A detailed diagram of the polarization imaging device is
shown in Figure 1. As we can see from the figure, the de-
vice is composed of two aluminum cylindrical tubes for il-
luminator and detector, respectively. A 150-Watt tungsten-
halogen lamp is used as the light source providing a strong
intensity over a broad spectrum ranging from ultraviolet
(UV) (330 nm) to near infrared (NIR) (2 μm). An optical
fiber bundle guides the light to the illuminator consisting
of a collimator, a 0◦-aligned polarizer and a filter. The tun-
able optical bandpass filter allows us to select a desired illu-
mination wavelength for imaging, ranging from visible light
to NIR. The detector consists of an optical objective lens
with an infinite focal length, followed by two OptoCeramic
(OC) electro-optic phase retarders (with their axes aligned
at 45◦ and 22.5◦, respectively), a 0◦-aligned linear polar-
izer, and a digital camera. Two phase retarders are controlled
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Figure 1: A system diagram of the polarization imaging device.

independently by a computer through a two-channel driver,
and a D/A module with USB interface. The detector is
mounted onto an adjustable station that can perform an-
glular rotation. Further, a three-dimensional (3D) adjustable
platform is used to hold phantoms and other testing samples.
Hence, the system is flexible enough to examine the sample
with variable incident and collection angles.

In order to acquire the polarization information, that is,
the Stokes images, four intensity images (I0–I3) are taken se-
quentially, with two phase retarders (i.e., P1 and P2) con-
trolled by a sequence of voltages as shown in Figure 2. Specif-
ically, I0 is taken first with 0 volt applied to both P1 and P2;
I1 is taken second with a half-wave voltage Vπ applied to P1
and 0 volt applied to P2; I2 is taken third with Vπ is applied
to both P1 and P2; Finally, I3 is taken with a quarter-wave
voltage Vπ/2 applied to P1 and Vπ applied to P2. From the
intensity images, that is, I0–I3, four Stokes vector images S0–
S3 can be calculated by the following equations:

S0 = 0.5× (I0 + I1
)
,

S1 = 0.5× (I0 − I1
)
,

S2 = 0.5× (I2 − S0
)
,

S3 = 0.5× (I3 − S0
)
.

(1)

2.2. Image analysis algorithms

Figure 3 shows the diagram of the polarization image analysis
subsystem. Wavelet transforms (WTs) are applied to Stokes
images to extract polarization features; and artificial neural
networks (ANNs) are then trained to classify the patterns
based on the extracted features. Below we will describe the
principle of WTs and ANNs briefly, their application to po-
larization image analysis, and their performance evaluation
based on cross-validation.

2.2.1. Wavelet transform for feature extraction

Wavelet transforms are introduced to extract polarization
features by providing the space and frequency information

I3I2I1I0
Time
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0
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δ
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Figure 2: Timing diagram of control voltages applied to the phase
retarders OC P1 and OC P2.

simultaneously, resulting in a space-frequency representation
of the signal [19]. The definition of a continuous wavelet
transform for any 1-D signal f (x) can be described as

W(a, b) = 1√
a

∫

f (x)ϕ∗
(
x − b
a

)
dx, (2)

where z∗ denotes the complex conjugate of z, ϕ(x) the ana-
lyzing wavelet, a the scale parameter, and b the position pa-
rameter. The wavelet function ϕ(x) can be chosen as simple
as the Harr function or one of the popular Daubechies func-
tions. Figure 4 shows the waveform of Daubechies D4 func-
tion [6]. By scaling and shifting the wavelet function ϕ(x),
we can construct a family of analyzing functions ϕa,b(x) =
ϕ(x − b/a) to obtain a space-frequency representation of the
original signal. In this project, we apply wavelet transforms to
polarization images to extract detailed features or signatures
for classification of different polarization properties.

Using the Haar(or Daubechies D4) function as a trans-
form basis, an image can be decomposed into four separate
bands (denoted as LL1, LH1, HL1, and HH1; see Figure 5).
The LL1 band contains a scaled-down, low-resolution ver-
sion of the original image and the remaining three bands
(LH1, HL1, and HH1) contain the detail information (i.e.,
horizontal, vertical, and diagonal orientation features) about
the original image. The process of the wavelet transform can
be repeated by transforming the LL1 band into a second-level
representation: four subbands denoted as LL2,LH2, HL2, and
HH2. This repeating process, as illustrated in Figure 5, is also
called pyramid decomposition [19].

2.2.2. Artificial neural networks for classification

After the feature extraction step, we use multilayer percep-
trons (MLPs), a type of nonlinear ANNs, to perform binary
classification (see Figure 3). MLPs have been successfully ap-
plied to solve a variety of nonlinear classification problems
[17]. In our experiments, we specifically develop three-layer
perceptron networks for the polarization imaging system.
The so-called hidden nodes (neurons) in the middle layer
can further extract diagnostic features from the input pat-
terns for nonlinear classification. The connectivity weights
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Figure 3: A diagram of image analysis algorithms with wavelet transform (WT) and artificial neural network (ANN).
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Figure 4: An example of wavelet function-Daubechies D4 function.

are trained or learned in a supervised manner using the error
back-propagation algorithm [17].

One of the drawbacks of neural networks is that they do
not perform well when the number of inputs is too large
(the so-called curse-of-dimensionality phenomenon) [20].
For this reason only the 16 lower band coefficients of the
transformed blocks (in a size of 32 × 32) are selected as in-
puts to the MLP. Since the neural network receives input
values from four component images (16 input values from
each component), the total number of inputs to the neural
network is 64. The neural network is trained with a stan-
dard steepest decent backpropagation algorithm, where its
weights are initialized with small randomly selected values.
The transfer function for both hidden layer and output layer
is the sigmoid function f (x) = 1/(1− e−x). The target values
for two classes are 0 for the first class and 1 for the second
class, respectively.

LL2 HL2

LH2 HH2

HL1

LH1 HH1

Figure 5: 2D wavelet transform-pyramid decomposition of the im-
age.

To estimate the generalizable performance of our classifi-
cation scheme, cross-validation is used to calculate classifica-
tion error rates (CERs) of the MLP. The input blocks are ran-
domly divided into two sets, one set is used for training and
the other is used for cross-validation. This random division
of blocks into two sets was repeated 10 times and the neural
networks are retrained and tested. The mean classification
error rate (CER) and its standard deviation are then com-
puted to evaluate the classification performance. In practice,
we performed either L leave-one-out (LOO) test (i.e., hold-
ing out one block for testing) or 3-fold cross-validation (i.e.,
holding out 1/3 of the blocks for testing) to estimate the clas-
sification error rates.

To compare the performance of polarization imaging to
that of unpolarization imaging, we computed the improve-
ment of polarization imaging over unpolarization imaging
using the following formula:

Improvement = CERunpolarized − CERpolarized

CERunpolarized
× 100%,

(3)
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(a) (b)

Figure 6: (a) Stokes imaging apparatus consisting of the illuminator and detector. (b) Close-up view of the adjustable platform used to hold
the phantom samples.

where CERpolarized and CERunpolarized are the estimated CERs
of polarization imaging and unpolarization imaging, respec-
tively.

3. EXPERIMENTAL RESULTS

In this section, we will report our preliminary results of us-
ing polarization imaging and artificial neural networks for
improved diagnostics. First, the polarization imaging device
has been developed using two electrically tunable retarders
for acquiring polarization images. Second, different types
of phantoms were built to simulate the epidermal layer of
the skins for testing the performance of the proposed sys-
tem. Third, image analysis algorithms have been developed
to extract polarization features and classify the phantoms and
plant cells. The performance of classification accuracy was
evaluated by cross-validation, and the improvement of per-
formance was demonstrated by comparing the performance
of the system using polarization information over that with-
out using polarization information.

3.1. Polarization imaging system

Figure 6 shows a photograph of the prototyped imaging de-
vice, showing an illuminator tube, a detector tube, and an ad-
justable platform for holding testing samples. The key com-
ponent, electrically tunable retarder, which supports high-
speed operation of the Stokes polarization imaging system, is
based on BATi’s newly breakthrough electro-optical ceramic
material featuring high electro-optic effect, high operation
speed, ruggedness, and ease of fabrication [21]. As described
in Section 2, a sequential image acquisition scheme has been
implemented to acquire four intensity images with different
polarization properties. From our experience, we learn that
the accuracy of Stokes polarization imaging is mainly deter-
mined by the accuracy of retardation on the phase retarders.
Therefore, a careful phase retarder characterization and cal-
ibration procedure is developed to minimize the errors be-
tween measured and desired phases. In our experiments, the
error is less than 0.035 rad, which meets the requirement of
the proposed system.

3.2. Phantom preparation and data acquisition

The polystyrene phantoms were used to simulate the epider-
mal layer of the skin. Three phantom samples, Phantom-
42, Phanom-74, and Phantom-99, were prepared using
polystyrene latex spheres with mean diameters of 42 μm,
74 μm, and 99 μm, respectively. For all 42 μm, 74 μm, and
99 μm spheres, distilled water was added to adjust the re-
duced scattering coefficient (denoted as μs) to match the scat-
tering property of the skin. India ink was also added to la-
tex phantoms to make the absorption coefficient (denoted
as μa) to match that of the epidermis. The optical proper-
ties of the polystyrene phantoms were set at μs = 2.0/mm
and μa = 2.46/mm. An Intralipid solid phantom was then
used to simulate the dermal layer of the skin. The Intralipid
solid phantom was made from agar (a stiffening agent), dis-
tilled water, India ink, and 20% Intralipid. The optical prop-
erties of the phantom were adjusted to the following num-
bers: μs = 2.0/mm and μa = 0.03/mm. The optical proper-
ties of the polystyrene phantom and Intralipid solid phan-
tom approximated the scattering and absorption of the epi-
dermal and dermal layer of the skin in the range of 550 nm–
950 nm. For each sample, a diameter of 3 cm cup of Intralipid
solid phantom was placed below the incident light. To simu-
late a thin skin layer, a small volume of polystyrene phantom
was placed onto the center of the solid phantom. This drop
spread out in a uniform circle with a diameter that could
be easily measured using a Vernier caliper. With the origi-
nal volume and area covered by the spheres, we can calculate
the polystyrene thickness approximately. After waiting a few
seconds for the drop area to become stable, polarization im-
ages were taken. Here, the thickness was controlled between
50 μm and 170 μm, which is comparable to the thickness of
an epidermal layer of the skin (varying from 70 μm to 150 μm
for a thin skin).

With Phantom-42, Phantom-74, and Phantom-99, dif-
ferent illumination wavelengths were chosen from a range of
visible to near IR. In our experiments, we selected 550 nm,
650 nm, and 950 nm for this study. Figure 7 shows exam-
ples of the four intensity images (I0–I3)of Phantom-42 and
Phantom-99 collected by the imaging device. These two sets
of images were acquired with an incident angle of 22.5◦ and
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Figure 7: Intensity images (I0–I3): (a) Phantom-42, and (b) Phantom-99. Note that the images are collected with an incident angle of 22.5◦

and a collection angle of 45.0◦, at the wavelength of 550 nm.
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Figure 8: Stokes images (S0–S3): (a) Phantom-42, and (b) Phantom-99. Note that the images are collected with an incident angle of 22.5◦

and a collection angle of 45.0◦, at the wavelength of 550 nm.

a collection angle of 45.0◦. The wavelength of the incident
light was 550 nm.

Figure 8 shows the Stokes vector images of Phantom-
42 and Phantom-99, respectively, obtained from the inten-
sity images by applying (1). The S0 component image reflects
the overall intensity (polarized and unpolarized components
combined). The component images S1, S2, and S3 contain in-
tensity differences as defined in (1) and can contain positive
as well as negative values.

3.3. Classification results

With the polarization images acquired using three phantoms
(Phantom-42, Phanom-74, and Phantom-99), we have con-
ducted a series of experiments to study characteristics of the
polarization system, for example, the incident/collection an-
gle, image quality, and its impact on classification of phan-
toms. In this section, we will report the classification results
on Phantom-42, Phantom-74, and Phantom-99, using either
single wavelength or multiple wavelengths of polarization in-
formation. The Stokes images were first processed by mul-

tiscale wavelet transforms to extract the discriminatory fea-
tures for classification. The features were then fed to train a
three-layer MLP to discriminate two phantoms. To estimate
the generalizable classification performance, we used 3-fold
cross-validation to compute the mean and standard devia-
tion of the classification error rate. The performance of using
polarization information (i.e., using S0–S3) has been com-
pared to that without using polarization information (i.e.,
using I0 only). From these results we have observed that a
significant improvement can be gained by using the polar-
ization information.

Table 1 summarizes the classification performance of var-
ious phantom studies with different phantoms (Phantom-42,
Phantom-74, and Phantom-99) and different wavelengths
(550 nm, 650 nm, and 950 nm). As can be seen, polariza-
tion imaging with Stokes information has gained a signif-
icant improvement over unpolarization imaging. The im-
provements on reduction of classification error rate are rang-
ing from 38.27% to 96.82%, resulting in an average improve-
ment of 51.54%. Note that for each case in Table 1, we use
the best performances of unpolarized imaging and polarized
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Table 1: A summary of the classification performance in phantom studies. The average improvement of polarization imaging over unpolar-
ization imaging is 51.54%.

No.
Experiment
(Phantom
study)

Classification error rate (CER) Improvement

Unpolarized (using I0) Polarized (using S0–S3) (polarized over
unpolarized)

Mean Standard deviation Mean Standard deviation

1

Phantom-42
versus
Phantom-74
@ 550 nm

15.70% 4.96% 0.50% 0.81% 96.82%

2

Phantom-42
versus
Phantom-74
@ 950 nm

17.20% 3.35% 5.70% 2.50% 66.86%

3

Phantom-42
versus
Phantom-99
@ 650 nm

17.90% 2.10% 10.30% 1.90% 42.46%

4

Phantom-42
versus
Phantom-99
@ 950 nm

24.30% 2.50% 15% 1.70% 38.27%

Table 2: Classification error rates obtained with 3-fold cross-validation (Phantom-42 versus Phantom-99). The wavelength of the illumi-
nating light is 650 nm, and the incident angle is 22.5◦. Collection angles used are 22.5◦, 45.0◦, and 67.5◦, respectively.

No. of
hidden
neurons

Classification error rate (CER) Improvement
(polarized over
unpolarized)

Unpolarized (using I0) Polarized (using S0–S3)

Mean Standard deviation Mean Standard deviation

5 20.00% 2.40% 11.20% 2.40% 44.00%

10 18.40% 2.10% 10.50% 1.90% 42.93%

15 18.30% 2.50% 10.90% 1.80% 40.44%

20 18.00% 2.00% 10.80% 2.10% 40.00%

25 18.00% 2.10% 10.40% 2.20% 42.22%

30 17.90% 2.10% 10.30% 1.90% 42.46%

imaging, respectively, for comparison. Hence, the number of
hidden neurons does vary in each case; that is, the ANN clas-
sifier is optimized for each case. However, since the perfor-
mance is not very sensitive to the number of hidden neurons
(see Tables 2 and 3 later), we believe that the comparison is
reasonable and acceptable for this study.

3.3.1. Polarization imaging study
(Phantom-42 versus Phantom-99)

The results presented in this section show the classification
performance on polarized phantom images taken at incident
wavelengths of 650 nm, 850 nm, and 950 nm, respectively.
The network was trained and tested only on images acquired
with the same wavelength. In each wavelength category, a to-
tal of six images (three for each phantom type) were used. All
phantoms were illuminated at an incident angle of 22.5◦. The
collection angles used were 22.5◦, 45.0◦, and 67.5◦. In order
to use 3-fold cross-validation for estimating the network’s
classification performance, every image was subdivided into

64 by 64 pixel wide blocks. These blocks were randomly di-
vided into a training set (2/3 of the total number of blocks)
and a test set (1/3 of the total number of blocks). From each
of these blocks a total number of 81 overlapping windows, 32
by 32 pixels wide, were extracted as inputs to the classifica-
tion system. The process of dividing the blocks into training
and test sets was repeated 10 times to train and test the net-
work. The resulting classification errors were used to calcu-
late the mean classification error and its standard deviation.
Tables 2-3 show the results for the wavelengths of 650 nm and
950 nm, respectively.

The classification error rates in the case of the images ac-
quired at 650 nm show an improvement of the classification
performance from 18% using intensity only to 11% using
Stokes vector images. The error rates in both cases are not de-
pendent on the number of hidden neurons. While the error
rate for the training set decreases when more hidden neurons
are added (Table 2), the testing error remains constant over
a wide range. The standard deviation of the classification er-
ror rate is about 2.5%, which is relatively low. In the second
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Table 3: Classification error rates obtained with 3-fold cross (validation – Phantom-42 versus Phantom-99). The wavelength of the illumi-
nating light is 950 nm, and the incident angle is 22.5◦. Collection angles used are 22.5◦, 45.0◦, and 67.5◦, respectively.

No. of
hidden
neurons

Classification error rate (CER) Improvement
(polarized over
unpolarized)

Unpolarized (using I0) Polarized (using S0–S3)

Mean Standard deviation Mean Standard deviation

5 24.30% 2.50% 18.10% 2.00% 25.51%

10 25.20% 3.90% 15.90% 1.20% 36.90%

15 25.20% 5.50% 16.90% 2.00% 33.73%

20 27.40% 6.50% 15.00% 1.70% 45.26%

25 24.40% 6.20% 16.70% 0.80% 31.56%

Table 4: Multispectral polarization imaging study-classification error rate obtained with 3-fold cross-validation (Phantom-42 versus Phan-
tom 74). The wavelengths of the illuminating light ware 550 nm, 650 nm, and 950 nm, respectively. The incident angle is 22.5◦, and the
collection angles are 22.5◦, 45.0◦, and 67.5◦, respectively.

No. of
hidden
neurons

Classification error rate (CER) Improvement
(polarized over
unpolarized)

Unpolarized (using I0) Polarized (using S0–S3)

Mean Standard deviation Mean Standard deviation

1 44.00% 4.40% 25.20% 3.10% 42.73%

2 37.50% 7.90% 19.00% 6.00% 49.33%

5 28.80% 7.80% 8.70% 4.00% 69.79%

10 24.70% 2.80% 7.20% 1.60% 70.85%

case, the incident light wavelength of 950 nm, the classifica-
tion performance of the Stokes vector images is significantly
better than that obtained by using intensity images only. As
shown in Table 3, the classification error rate is about 25%
when using the intensity information only. When the polar-
ization information is used in addition to the intensity infor-
mation, the classification error rate decreases to about 16%.
Table 3 also shows that the classification error rate is not de-
pendent of the number of hidden neurons either.

3.3.2. Multispectral polarization imaging study
(Phantom-42 versus Phantom-74)

The following results show the classification performance on
the two phantoms (i.e., Phantom-42 and Phantom-74) us-
ing multispectral polarization information. While the results
in Section 3.3.1 show the classification performance of the
system when trained and tested at a single wavelength, the
results in this section show the results when images taken at
different wavelengths are combined to train the neural net-
work for classification. Specifically, the images used in this
section were taken at the wavelengths of 550 nm, 650 nm, and
950 nm, respectively. As described in the previous section, 3-
fold cross-validation was used to estimate the MLP’s classifi-
cation performance. Again, each image was subdivided into
64 by 64 pixel wide blocks. These blocks were randomly di-
vided into a training set and a test set. From each of these
blocks a total number of 81 overlapping windows, 32 by 32
pixels wide, were extracted as inputs to the classification sys-
tem. The process of dividing the blocks into training and val-
idation set was repeated 10 times. The network was retrained
and the classification performance was estimated using the

test set. The mean classification error (from cross-validation)
and its standard deviation are shown in Table 4 where the
number of hidden neurons varies from 1 to 10. As we can see,
the classification error rate decreases when additional hidden
neurons are added to the neural network. This is the case for
using the intensity image (I0) only as well as for using four
Stokes images (S0–S3). The network performs significantly
better when trained on the Stokes images (7.2% error rate
with S0–S3) than that using intensity image only (24.7% er-
ror rate with I0 only). It can also be clearly seen from Table 4
that an increase of the number of hidden neurons improves
the classification performance. From this limited preliminary
study, it seems that the classification problem appears to be
more complex when images taken at different wavelengths
are combined, and the ANN classifier with more hidden neu-
rons might help extract polarization information for better
classification.

3.3.3. Polarization imaging study of plant cells

In this experiment, we collected two kinds of leaves to test
our polarization imaging scheme. Two kinds of leaves were
picked off from different bushes. Alcohol was used to clean
the leave surfaces to get rid of the dusts and other con-
tainments. It is known that the plant cells can be viewed
or sensed directly by collecting the transmission light. The
transmission Stokes imaging system shown in Figure 9 was
used for the experiment. The setup shown in Figure 1
was modified to collect the transmission information, as
shown in Figure 9. The working principle of the system is
same, as that described in Section 2.1, except that the sig-
nal would be collected after the light passing through the
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Figure 9: A system diagram of the transmission-mode polarization imaging device.

(a) (b)

Figure 10: A polarization imaging study of plan cells-original acquired images (I0–I3): (a) Leaf A and (b) Leaf B.

sample. For those relatively thin and transparent samples,
measurement with a transmission mode would be better
than with reflective mode in achieving higher signal to noise
ratio.

As shown in Figure 10, the I0–I3 images of Leaf A and
Leaf B were acquired using the transmission mode as de-
scribed above. Figure 11 shows the Stokes images (S0–S3)
of the acquired polarization information, which clearly de-
correlate the dependency between I0–I3. Further processed

by wavelet transform and ANN training, the discrimina-
tory features from polarization imaging have been fully cap-
tured in hidden neurons for classification. The classification
performance is detailed in Table 5, where the improvement
over unpolarization imaging is also calculated. The classifi-
cation error rate (CER) has been significantly reduced from
34.80% for unpolarization imaging to 11.3% for polariza-
tion imaging, resulting in an improvement of 64.04% in av-
erage.
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(a) (b)

Figure 11: A polarization imaging study of plan cells-stokes images (S0–S3): (a) Leaf A and (b) Leaf B.

Table 5: Classification performance of plant cell studies. The average improvement of polarization imaging over unpolarization imaging is
64.06%.

No. of
hidden
neurons

Classification error rate (CER) Improvement
(polarized over
unpolarized)

Unpolarized (using I0) Polarized (using S0–S3)

mean standard deviation mean standard deviation

5 34.80% 4.20% 15.50% 4.50% 55.46%

10 34.30% 4.50% 13.40% 3.30% 60.93%

15 35.50% 3.80% 11.30% 3.20% 68.17%

20 35.30% 3% 11.60% 3.10% 67.14%

25 35.90% 2.90% 11.70% 2.70% 67.41%

30 35.70% 4% 12.40% 2.70% 65.27%

4. CONCLUSION

In this paper, we have presented a polarization imaging de-
vice to acquire a complete set of Stokes vector images for
improved diagnostics. An image analysis subsystem has also
been developed to classify different types of phantoms based
on the 2D discrete wavelet transforms (2D-DWTs) and mul-
tilayer perceptrons (MLPs). When trained and tested with the
complete set of Stokes images (i.e., using S0–S3), the classi-
fication performance is significantly improved compared to
that with intensity image only (i.e., using I0 only). The re-
sults have confirmed that the polarization state contains im-
portant information that can be used to classify two different
types of phantoms. While the results are encouraging and
this study shows the potential of this imaging device, fur-
ther study is needed. Future work may include more realis-
tic phantom studies and biological cell and tissue studies for
validation. Currently, polarization imaging of cell study has
been under investigation in collaboration with (Georgetown
University Medical Center DC, USA). Some optimization
procedure for ANNs (such as the optimized MLP in [22])
will be explored to avoid the local minima problem existed in
nonlinear classification problem. As also shown in our pre-
liminary result in Section 3, the use of multispectral polar-
ized images is another possible path to improve the classifica-
tion performance. Note that although we are encouraged by
the initial results using multispectral polarization imaging,
we have also realized that the problem seems to be compli-

cated by many other factors, like the proper wavelength and
illumination angle selection. To tackle this problem, we be-
lieve that some optimization approach needs to be developed
in future to replace the current simple combining approach.
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