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Abstract

The aim of this study was to test the reproducibility of three-dimensional (3D) surface models

of maxillary incisors and to propose a characterization of root morphology. The sample was

comprised of pre-treatment cone-beam computed tomography (CBCT) images of fifty-five

patients. The CBCTs were used to construct 3D surface models of the maxillary incisors. The

reproducibility of surface models was tested by repeated construction of them by two observ-

ers. A 3D surface model that corresponded to the average of all lateral and all central incisors

was generated. 3D surface distances and vector differences were calculated for each individ-

ual tooth and the average of the teeth considered. The corresponding points on the 3D sur-

face mesh for each subgroup were compared statistically to those of the neutral subgroup

using shape analysis MANCOVA and Hotelling’s t-statistic (p < 0.05). Repeated construction

of surface models demonstrated adequate inter-rater reproducibility. The distribution of 3D

models into root morphology subgroups was: blunt (11% and 26% of the central and lateral

incisors, respectively), conical (15% of the central incisors), long (27% and 20% of the central

and lateral incisors, respectively), and short (15% and 4% of the central and lateral incisors,

respectively). Compared to the neutral average, statistically significant differences in root

morphology were found for blunt, long, conical, and short central incisors and for blunt, long,

and short lateral incisors. We can conclude that 3D surface models construction for upper

incisors is reproducible. 3D shape analysis using CBCT images allows a phenotypic charac-

terization of incisor root morphology.

Introduction

External apical root resorption (RR) is present in 7% to 13% of individuals who have not had

orthodontic treatment [1,2] An increase in RR, primarily in the maxillary anterior teeth, is a

commonly occurring pathological sequela of orthodontic treatment [3]. Greater than 2 mm of

RR in 25% of orthodontic patients[4] or even>3 mm in 30% of patients[5] has been reported.

Mechanical forces and other environmental factors do not explain adequately the variation

seen among individual expressions of RR[6].

PLOS ONE | https://doi.org/10.1371/journal.pone.0178728 June 8, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ahlbrecht CA, Ruellas ACdO, Paniagua B,

Schilling JA, McNamara JA, Jr., Cevidanes LHS

(2017) Three-dimensional characterization of root

morphology for maxillary incisors. PLoS ONE 12

(6): e0178728. https://doi.org/10.1371/journal.

pone.0178728

Editor: James K. Hartsfield, University of Kentucky,

UNITED STATES

Received: January 26, 2017

Accepted: May 17, 2017

Published: June 8, 2017

Copyright: © 2017 Ahlbrecht et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper, except files that can identify

subjects of the sample. There are ethical

restrictions preventing the authors from publicly

sharing the files obtained directly from CBCT due to

the fact that the subjects could be identified. Since

the UofM IRB approved the research, Dr Cevidanes

is responsible for protecting patients from being

identified. Data requests may be sent to Dr

Cevidanes, contact information: luciacev@umich.

edu.

https://doi.org/10.1371/journal.pone.0178728
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178728&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178728&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178728&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178728&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178728&domain=pdf&date_stamp=2017-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178728&domain=pdf&date_stamp=2017-06-08
https://doi.org/10.1371/journal.pone.0178728
https://doi.org/10.1371/journal.pone.0178728
http://creativecommons.org/licenses/by/4.0/
mailto:luciacev@umich.edu
mailto:luciacev@umich.edu


Root resorption susceptibility following the application of an orthodontic force can be asso-

ciated with tooth type (with a greater risk for the upper incisor)[7], treatments with extraction

[7–9], the presence of supraocclusion or open bite[7], treatment duration[10], root resorption

before treatment[8,9], and root morphology[7–9]. Although root resorption can occur with or

without orthodontic treatment, research in this area indicates that RR is influenced by a com-

plex genetic trait[3,6,11,12], individual predisposition and multifactorial etiology[4,12–16].

Orthodontic patients with sharp, pointed (triangle-shaped) roots that require premolar extrac-

tion, however, have a greater risk of severe root resorption[17]. Therefore, interest in variabil-

ity in root morphology has increased recently[18,19].

Maxillary incisor root morphology has been characterized in several studies in the ortho-

dontic literature[5,20,21]. These efforts have been qualitative and were based on two-dimen-

sional (2D) radiographic observations. Levander and Malmgren[20], and later Mirabella and

Årtun[21] described and schematically illustrated classification systems for maxillary incisor

root morphology that have been applied in additional studies[4,22,23]. These subjective 2D

interpretations of root morphology describe normal, blunt, eroded, bent, pointed, or bottle

(pipette) incisor root shapes. Taithongchai et al.[24] presented a 2D quantitative evaluation of

tapering of incisor root form. To date, efforts to categorize maxillary incisor root morphology

have not utilized three-dimensional (3D) shape analysis techniques.

Previous studies using cone-beam computed tomography (CBCT) have demonstrated high

accuracy and reliability of measurements of root length and root shortening when CBCT

images are compared both to direct skull measurements[25] and to periapical radiographs[26].

A recent case report using CBCT, microfocus CT and scanning electron microscopy describes

the valuable use of CBCT in the diagnosis of root resorption[27]. Furthermore, ex-vivo studies

using bovine teeth showed that, when compared to measurements made from micro CT,

CBCT scans detect simulated defects of 0.6 mm depth accurately[28].

With the growing use and improved quality of CBCT images, recent research has focused

on evaluating the use of these images for detection and quantification of external apical root

resorption (EARR), which includes resorption that is induced orthodontically (OIIRR)[29]. It

has been proposed that the enhanced root visualization afforded by CBCT could be important

in the assessment of pre-orthodontic and post-orthodontic root status[30]. Additionally, the

ability of CBCT to provide distortion-free, slice-by-slice views of individual tooth roots offers

an excellent opportunity to evaluate root resorption[25].

For these reasons, the current study utilizes CBCT images for a novel characterization of

3D incisor root morphology, applying a 3D surface mapping technique. This new technique of

shape analysis has been applied previously for assessment of brain morphometry in MRI and

for localization and quantification of the extent of resorptive changes in mandibular condyles

using CBCT images[31–33]. The present study is the first to apply this method to characterize

incisor root morphology.

This study was conducted to validate the reproducibility of the construction of 3D surface

models of maxillary incisors and to test a novel and detailed phenotypic characterization of

pre-treatment root morphology.

Methods

Sample

Data collection for this study was approved by the University of Michigan Health Sciences

Institutional Review Board (#HUM00064320).

CBCT baseline scans of 112 consecutively-treated patients from two private orthodontic

practices (Practices A and B) were utilized. Twenty-second CBCT scans using a Classic i-Cat

Three-dimensional characterization of root morphology for maxillary incisors

PLOS ONE | https://doi.org/10.1371/journal.pone.0178728 June 8, 2017 2 / 16

Funding: Support was provided by the National

Institutes of Health [www.nih.gov]: R01 DE024450

(LHSC received the funding).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0178728
http://www.nih.gov


machine (Imaging Sciences International, Hatfield, PA) were taken using 0.3 mm3 voxel size

(120 kVp, 5mA) by Practice A and 0.4 mm3 voxel size (120 kVp, 28.3 mA) by Practice B. The

following inclusion criteria were applied to the sample:

1. Subjects must have been 10–18 years old at the onset of treatment and have a pre-treatment

CBCT of sufficient quality to be segmented accurately.

2. Subjects must have complete root formation of the maxillary right central and lateral inci-

sors at the time of the initial scan.

3. Subjects must be free from periapical pathology at the maxillary right central and lateral

incisors.

The exclusion criteria were:

1. Subjects with unerupted canines in close proximity to the root apex of the maxillary right

central or lateral incisor.

2. Subjects having undergone previous orthodontic treatment.

3. Subjects with previous endodontic or restorative treatment of the maxillary right central or

lateral incisor.

55 patients who satisfied the above criteria were included in this study, 25 from Practice A

and 30 from Practice B. The average patient age was 13 years 5 months (± 1 year 5 months),

with 65% females and 35% males.

Measurement

To standardize voxel size, all scans were re-sliced to 0.3 mm3 voxel size using Slicer3D (open-

source, http://www.slicer.org). The goal was to improve the computational power and decrease

the time for image analysis.

Construction of 3D volumetric label maps (segmentation). The process of constructing

3D volumetric label maps from CBCT scans is called segmentation. The label maps were con-

structed for the right central and lateral incisors to assess the individual morphology of these

teeth. All scans were segmented automatically with IntensitySegmenter software (distributed

as a 3DSlicer– www.slicer.org—extension, https://www.slicer.org/slicerWiki/index.php/

Documentation/Nightly/Extensions/IntensitySegmenter) and the output files were checked by

a rater interactively with ITK-SNAP software (open-source software, www.itksnap.org)[34]

slice by slice in all three planes of space (sagittal, coronal and axial) to correct for any errors in

the automatic segmentation (Fig 1).

The 3D volumetric label maps were converted to 3D surface models in Slicer software, and

the resulting surface models of individual central and lateral incisors were saved as separate

3D surface models (3D surface meshes) that described the 3D tooth shape.

Validation of methodology. A single investigator (CAA) constructed and refined the 3D

volumetric label maps for right maxillary incisors of the 55 patients included in this study. To

confirm the repeatability of the segmentation process, ten random samples were selected for

repeated segmentation by a second investigator (JAS). The resulting 3D surface models then

were overlaid using VAM software (Canfield Scientific, Fairfield, NJ), and the number of

points, triangles, surface area, and volume of the corresponding pair of 3D surface models

were computed to assess intra-class correlations. Signed distances between the two models

were calculated to provide the mean, median, standard deviation, and magnitude of maximum

differences between repeated surface models.

Three-dimensional characterization of root morphology for maxillary incisors
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Standardization of coordinate system. The 3D surface models for the maxillary right

central incisors were loaded in VAM software. Using a surface-to-surface best-fit alignment

(automatic surface registration in VAM software using the entire surface as reference), each

tooth in the sample was superimposed to establish a common coordinate system that approxi-

mated all the individual teeth within three-dimensional space.

The best-fit alignment utilized the entire tooth structure of each surface mesh because there

was no stable structure of reference for registration. The crown of the incisor, for example, is

not consistent across the sample. Approximation of the 3D image of the central incisors is

shown in Fig 2.

Parameterization of corresponding points between all teeth. SPHARM-PDM software

(distributed as a 3DSlicer– www.slicer.org—extension, http://www.nitrc.org/projects/spharm-

pdm) was used to compute the parameterization of 1002 corresponding surface points among

all central incisors and among all lateral incisors. SPHARM-PDM computed a mesh approxi-

mation from the segmented label files, whose 1002 surface mesh points and their respective

xyz coordinates were optimized for each corresponding tooth mesh (Fig 3).

Creating the average mesh. Linux scripts (MeshMath) distributed as part of

SPHARM-PDM was used to create the average mesh for the upper right central incisor and

upper right lateral incisor based on the fifty-five teeth sample. In this surface averaging process,

the 1002 original surface point correspondences were propagated through all stages of defor-

mations and were used for object averaging. The affine transformations were applied to the

points individually. In geometry, an affine transformation is a transformation that preserves

ratios of distances between points lying on a surface model, where parallel lines will remain

parallel to each other after an affine transformation. Grouping all the mean points provided

the linear and nonlinear deformation fields that resulted in the average tooth shape, which

subsequently was used as reference tooth for superimposition and classification of the mor-

phological differences.

Calculation of differences between each tooth and the average tooth (signed distances,

absolute and vector differences). MeshMath calculated 3D differences between each indi-

vidual tooth compared to the average to assess patterns of morphological differences

Fig 1. A and B) Construction of 3D volumetric label maps: resulting from automatic segmentation and after

manual retouching by careful inspection of grey level boundaries in cross-sectional slices; C) 3D surface

models.

https://doi.org/10.1371/journal.pone.0178728.g001
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quantitatively in the sample using 3D vector differences and signed surface distances. The

computed 1002 vector differences were displayed on the 3D surface model of the tooth, one

for each point on the surface mesh, scaled according to the magnitude of the difference and

pointing in the direction of the change (Fig 4).

With the goal to help the visualization of the differences, the patterns of variation across the

sample were determined through calculation of signed distances using the MeshMath script,

where the individual surface was displayed as smaller (negative, blue), the same (0 surface dis-

tances, white), or larger (positive, red) than the average. The blue to red color-coded scale was

Fig 2. Approximation and superimposition of all central incisors 3D surface models, under the same

coordinate system. Frontal (A) and distal (B) views.

https://doi.org/10.1371/journal.pone.0178728.g002

Fig 3. Examples of corresponding point-based surface meshes for a central incisor (A) and lateral incisor (B).

Each one of the 1002 surface points (with xyz coordinates) on the mesh of the 3D surface models correspond

to each other for all 55 central and lateral incisors.

https://doi.org/10.1371/journal.pone.0178728.g003
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standardized, allowing a proper comparison of all teeth within the sample. For the central inci-

sors, pure blue was set at -1.5 mm and pure red at 1.5 mm. For the lateral incisors, pure blue

was set at -3 mm and pure red at 3 mm, as morphological variability of lateral incisors was

greater (Fig 4).

Supervised criteria for 3D morphology subgroups. Subgroups of root morphology were

defined quantitatively from analysis of the comparisons of individual 3D models of the root

surface with the average 3D surface model of the central and lateral incisors separately (Fig 5A

and 5B). Subgroup averages were created using surface averaging of the constituent teeth (Fig

5C); the morphological subgroups were determined by the calculation of root morphology

signed distances. The subgroups shared phenotypic characterization following the proposed

classification, with the neutral group serving as the reference group.

The definition of each root classification was adapted from previous 2D descriptions

[20,21]. The following morphology subgroups were proposed:

Neutral—individual root that closely approximates the overall sample average

Blunt—root that presented apices notably shorter and less pointed, while the cervical region

was wider than the overall sample average

Long—root larger than the overall sample average in all dimensions (length and

circumference)

Fig 4. Summary of the surface-to-surface distance calculations. The 1002 corresponding surface points

on the individual mesh were subtracted from the homologous points on the overall average mesh (A) to

calculate vector differences (B). The dimension and directionality of the vector differences were computed as

signed 3D linear distances, where blue indicated a region smaller than the average and red indicated a region

larger than the average (D). A semi-transparent overlay (C) of the individual with the average 3D model was

used for quality control of the signed distances calculations.

https://doi.org/10.1371/journal.pone.0178728.g004
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Conical—root narrower in circumference, but may or may not have increased length com-

pared to the overall sample average

Short—root that presented obvious decrease in apical length and narrower circumference

compared to the overall sample average

Dilacerated—root that presents distal, mesial or lingual dilaceration compared to the overall

sample average

Statistical analysis. Statistical analysis was completed using shape analysis MANCOVA

and Hotelling’s t-statistics (p< 0.05). This method calculated the projections of the vector

directions for each tooth to determine areas statistically different from the average morphology

(Fig 5D and 5E). Statistical significance was assessed using a permutation approach, where the

vector was recomputed for each permutation.

Because the dimension of the data is 1002 (1002 surface points on each tooth mesh) while

the sample size is only 55, this study assessed high dimensional low sample size variability. To

correct for multiple comparisons, a false discovery rate estimation (FDR) at 0.05 was applied.

FDR correction allows confidence that 95% of areas described as statistically significant are

true positives. The FDR correction provided an interpretable and adaptive criterion with

higher power than non-parametric permutation tests[35].

Results

Validation study

The surface-to-surface distance calculations of the repeated segmentation models indicated

high reproducibility of the 3D shape analysis protocol. The average of the overall mean differ-

ences between surface models was 0.06±0.13 mm, and the maximum surface differences ran-

ged from 0.36 to 0.86 mm. The number of surface points and triangles in the repeated meshes

Fig 5. Flowchart of the steps for 3D characterization of maxillary incisor in subgroups morphology.

Individual teeth were classified into a morphology subgroup (A, B). Subgroup averages were created using

surface averaging of the constituent teeth (C). Regions of statistically significant morphologic variability were

visualized (E) using p-value color maps (p < 0.05) comparing subgroup average models to the neutral

average (D).

https://doi.org/10.1371/journal.pone.0178728.g005
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had excellent reproducibility, with an intra-class correlation (ICC) of 0.99; both surface area

and volume of the repeated models had an ICC of 0.98.

Table 1 shows the descriptive statistics of the surface differences between all the points in

the repeated surface models.

3D phenotypic characterization of incisor morphology. Neutral, blunt, long, conical,

short, distal dilaceration, and mesial dilaceration root morphologies following the proposed

criteria described in the methods section were observed. A signed-distance color map and

semi-transparent overlay are provided as examples of each central incisor morphology sub-

group (Fig 6).

Sample distribution. The distribution of central and lateral incisors into subgroups is

shown in Table 2.

Average tooth model for morphology subgroups. The averaged neutral group model

was used as a standard against which the other subgroup average models were tested statisti-

cally. Each subgroup average model also was compared visually to the neutral average model

using semi-transparent overlays (Fig 7).

Statistical analysis

Raw p-value color maps. Regions of statistically significant differences (p< 0.05) in root

morphology from subgroup average models compared to the neutral average were found for

all central incisor subgroups using Hotelling’s t-tests. Additionally, significant differences in

crown morphology also were observed for all groups except for the blunt group. Raw p-value

color maps for central incisors can be found in Fig 8. The regions of significant morphological

differences between the subgroup averages to the neutral average were as follows:

Table 1. Descriptive statistics of inter-observer differences computed as surface-to-surface distances between repeated incisor surface models.

Case Tooth Voxel (mm3) Median Difference(mm) Max Difference(mm) Mean Difference (mm) SD

1 UR1 0.3 0.06 0.59 0.06 0.15

1 UR2 0.3 0.03 0.51 0.04 0.14

2 UR1 0.4 0.04 0.40 0.05 0.12

2 UR2 0.4 0.00 0.64 0.02 0.13

3 UR1 0.3 0.00 0.55 0.00 0.12

3 UR2 0.3 0.00 0.66 0.04 0.13

4 UR1 0.4 0.03 0.55 0.05 0.14

4 UR2 0.4 0.00 0.50 0.06 0.13

5 UR1 0.4 0.08 0.67 0.08 0.17

5 UR2 0.4 0.05 0.86 0.05 0.17

6 UR1 0.3 0.08 0.49 0.10 0.12

6 UR2 0.3 0.07 0.49 0.09 0.10

7 UR1 0.3 0.03 0.43 0.04 0.09

7 UR2 0.3 0.01 0.36 0.01 0.10

8 UR1 0.4 0.15 0.54 0.14 0.15

8 UR2 0.4 0.10 0.50 0.11 0.11

9 UR1 0.4 0.08 0.56 0.10 0.13

9 UR2 0.4 0.10 0.50 0.11 0.11

10 UR1 0.4 0.02 0.53 0.03 0.12

10 UR2 0.4 0.00 0.40 0.01 0.10

Total inter-observer variability: Range: 0.36–0.86 Average: 0.06 0.13

https://doi.org/10.1371/journal.pone.0178728.t001
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Blunt—wider at the cervical portion of the root and shorter at the apex.

Long—longer and wider along entire root surface.

Conical—narrower along entire root surface.

Short—narrower along entire root surface and shorter at apex.

Distal dilaceration—narrower at mesial aspect of apical 1/3 of root, distally deviated at root

apex.

Mesial dilaceration—narrower at mesial aspect of apical 1/3 of root, longer and mesially devi-

ated at apex.

Fig 6. Characteristic examples of individual morphological variability. Morphological variability quantified by

signed-distance color maps, standardized at ± 1.5 mm for visual comparisons (top), and semi-transparent overlays

(bottom). Individual tooth examples are shown for each central incisor classification subgroup: neutral (N), blunt (B), long

(L), conical (C), short (S), distal dilaceration (DD), and mesial dilaceration (MD).

https://doi.org/10.1371/journal.pone.0178728.g006

Table 2. Distribution of maxillary right central and lateral incisors into morphology subgroups. Total sample size n = 55.

Central Incisor Lateral Incisor

Morphology Subgroup Number of Teeth Percent of Total Number of Teeth Percent of Total

Neutral 14 25.5 14 25.5

Blunt 6 10.9 14 25.5

Long 15 27.3 11 20.0

Conical 8 14.5 0 0.0

Short 8 14.5 2 3.6

Lingual dilaceration 0 0.0 3 5.5

Distal dilaceration 3 5.5 9 16.4

Mesial dilaceration 1 1.8 2 3.6

https://doi.org/10.1371/journal.pone.0178728.t002
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With FDR at 0.05, significant differences for the mesial and distal dilaceration average mod-

els were not observed compared to the neutral average (Fig 8). The distribution of statistically

Fig 7. Average models for neutral (N), blunt (B), long (L), conical (C), short (S), lingual dilaceration (LD),

distal dilaceration (DD), and mesial dilaceration (MD) maxillary right central and lateral incisor morphology

subgroups. Neutral average is shown in white; other subgroup averages are shown in arbitrary colors for

better visualization. A) Central incisor average models. B) Central incisor morphology subgroup averages

overlaid with semi-transparent neutral average. C) Lateral incisor average models. D) Lateral incisor

morphology subgroup averages for overlaid with semi-transparent neutral average. Lingual dilacerations

model is shown from distal view for better visualization of characteristic morphology.

https://doi.org/10.1371/journal.pone.0178728.g007
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significant regions for the blunt, conical, long, and short, as compared to the neutral average,

were very similar to what was observed with the raw p-value color maps.

For the lateral incisor subgroup averages, raw p-value color maps localized the regions of

statistically significant differences in root morphology for all groups compared to the neutral

average model (p< 0.05). Raw p-value color maps for the lateral incisors are shown in Fig 9.

The regions of significant morphological differences between the subgroup averages to the

neutral average were as follows:

Blunt—wider at the cervical portion of the root and shorter at the apex

Long—longer and wider along entire root surface

Short—narrower at entire facial and mesial root and cervical 1/3 of distal of root

Lingual dilaceration—lingual deviation at root apex

Distal dilaceration—distal deviation at root apex

Mesial dilaceration—mesial deviation at root apex

With an FDR set at 0.05, significant differences for the lingual, mesial, and distal dilacera-

tion average models compared to the neutral average (Fig 9) were not observed. Distribution

Fig 8. (A) Raw p-value (p < 0.05) color maps showing regions of statistically significant surface-to-surface

differences for central incisor blunt (B), long (L), conical (C), short (S), distal dilaceration (DD), and mesial

dilaceration (MD) subgroup average models compared to the neutral average using Hotelling’s ttests. (B) P-

values corrected for false discovery rate at 0.05.

https://doi.org/10.1371/journal.pone.0178728.g008
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of statistically significant regions for the blunt, conical, long, and short, as compared to the

neutral average, were similar to what was shown by the raw p-value color maps.

Discussion

Over the years, numerous studies have reported radiographic examinations of incisor root

resorption and root shape using various imaging modalities, yet these investigations lacked

well-defined diagnostic criteria for root morphology[4,20–24]. Because of recent advance-

ments in radiology, CBCT multiplanar (axial, coronal, and sagittal) images have been shown

to be superior to periapical radiography for the investigation of root resorption changes. A

recent study by Ponder et al.[36] demonstrated that CBCT scans can be used for quantifica-

tions of lateral resorption defects and can measure external apical root resorption accurately.

The present study quantifies precisely 3D incisor morphology using shape correspondence

methodology.

The current study validated the construction of surface models of maxillary central and lat-

eral incisors from CBCT images, with excellent intraclass correlation between repeated surface

models for total number of points, triangles, surface area and volume. For 20 repeated models

with thousands of points each, only one model showed a difference of 0.86 mm, which was

located at a single surface point distance in the crown. This validation study indicates that the

methodology presented is highly reproducible.

With visualization of the surface-to-surface distance color-coded maps, the smaller than 0.5

mm differences observed in constructed models would not affect the categorization of a

Fig 9. (A) Raw p-value (p < 0.05) color maps showing regions of statistically significant surface-to-surface

differences for lateral incisor blunt (B), long (L), short (S), lingual dilaceration (LD), distal dilaceration (DD), and

mesial dilaceration (MD) subgroup average models compared to the neutral average using Hotelling’s t-tests.

(B) P-values corrected for false discovery rate at 0.05.

https://doi.org/10.1371/journal.pone.0178728.g009
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particular tooth into a specific morphology subgroup. The excellent reproducibility using

CBCT scans observed in this study corroborates the findings of Lund et al. and Sherrard et al.

[25,26], respectively, comparing CBCT to dry skull measurements and periapical radiographs.

Recent development with non-radiation imaging modalities such as dental magnetic reso-

nance still require further protocol developments to improve the three-dimensional rendering

of root morphology[37,38].

In the present study, statistically significant incisor root morphological differences were

established when blunt, long, conical, and short roots were compared to the neutral sample.

Only small dilacerations (distal, mesial, and lingual) were observed in this study sample; statis-

tically significant differences in the morphology of the dilacerated roots compared to the neu-

tral average could not be confirmed after correction for false discovery rate.

These data can be used as a possible predictor for root resorption during orthodontic treat-

ment because root resorption susceptibility following the application of an orthodontic force can

be associated with root resorption before treatment (shorter roots) [8,9], and root morphology,

particularly conical roots[7–9]. Dilacerated roots as observed in the incisor root finite element

models proposed by Kamble et al. and Oyama et al.[18,19] potentially led to an altered distribu-

tion of the stress when forces were applied to teeth during orthodontic tooth movement.

In the current study, we did not observe teeth with bottle shaped or eroded morphologies

described previously in the 2D study by Mirabella and Årtun[21]. Their evaluation was based

on adult patients, whereas adolescents were considered in the current study. Normal and

abnormal root loading during the aging process may contribute to erosions and bottle or

pipette shaped root apices. Such factors influencing non-orthodontically related resorptive

changes have been reported to include missing teeth, periodontal disease, bruxism, and occlu-

sal trauma[1,2,39,40]. Additional studies would be required to determine if this difference in

observed morphology is due to 2D versus 3D visualization methods or if it is the result of

changes in morphology with aging. Probably we did not observe teeth with bottle shaped or

eroded morphologies also due to the sample size in the current study.

The description of variability in root morphology in the current study was derived from the

calculated signed distance measurements comparing unaltered size of individual tooth models

to the average. It is possible that long roots could respond to stress and loading similarly as

neutral roots and the observed long root morphology in this study simply includes teeth of

larger dimensions.

Shape correspondence also offers the opportunity of mapping correlations of biological

markers with morphological variability, which was not undertaken in the present study. This

technology will allow future studies to map the stages of disease progression in root resorption

longitudinally and identify morphological variants or subtypes, which may explain the hetero-

geneity of clinical presentation.

Automatic continuous assessment of root morphology makes a quantification of root

resorption progress possible during treatment. Such assessment can be expected to decrease

inter-investigator variability as well as reduce artifacts introduced by measurements in cross-

sectional slices. Finesse in the quantification of root morphology is integral to the phenotyping

process. These improvements in shape analysis technique associated to adequate genotyping

[3,6] have the potential for acquiring new knowledge on the pathophysiology of root resorp-

tion and laying the groundwork for novel therapeutic intervention.

The entire tooth structure (crown and root) was used in this study to allow for the best

possible superimposition of the surface models and an accurate correspondence across the

sample. Differences in crown morphology for males versus females and in certain ethnici-

ties have been documented in the literature, as for example an average central incisor crown

width of 8.9 ± 0.6 mm in males versus 8.7 ± 0.6 mm in females[41].
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Overall, the results of this investigation indicate that 3D shape analysis can be applied to the

study of maxillary incisor root morphology, which offers the ability to evaluate changes in root

size and shape both across samples pre-treatment as well as pre- to post-treatment changes.

Application of this morphological characterization in additional studies may allow improved

understanding of factors affecting development of root shape or the influence of root morphol-

ogy on root resorption.

Pre- and post-treatment surface models presumably would have identical crown morpholo-

gies for registration of the models (unless of course restorative work or enameloplasty was per-

formed during treatment), allowing accurate surface-to-surface registration of the models. This

results in reliable comparisons of length, volume, and overall root morphology. Furthermore,

resorption levels for each morphology type could be compared to determine if a statistically sig-

nificant difference in the level of post-treatment resorption can be observed across subgroups.

Conclusions

1. Three-dimensional shape analysis using cone-beam tomography images is a reproducible

method for the construction of maxillary central and lateral incisor surface models.

2. Three-dimensional shape analysis using CBCT images allows a novel and detailed pheno-

typic characterization of maxillary incisor root morphology.

3. Statistically significant differences in root morphology exist between subgroup averages of

blunt, long, conical, and short central incisors compared to the neutral average.
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