
RESEARCH ARTICLE

A framework model using multifilter feature

selection to enhance colon cancer

classification

Murad Al-RajabID*, Joan Lu, Qiang Xu

School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom

* m.al-rajab2@hud.ac.uk

Abstract

Gene expression profiles can be utilized in the diagnosis of critical diseases such as cancer.

The selection of biomarker genes from these profiles is significant and crucial for cancer

detection. This paper presents a framework proposing a two-stage multifilter hybrid model

of feature selection for colon cancer classification. Colon cancer is being extremely common

nowadays among other types of cancer. There is a need to find fast and an accurate method

to detect the tissues, and enhance the diagnostic process and the drug discovery. This

paper reports on a study whose objective has been to improve the diagnosis of cancer of the

colon through a two-stage, multifilter model of feature selection. The model described deals

with feature selection using a combination of Information Gain and a Genetic Algorithm. The

next stage is to filter and rank the genes identified through this method using the minimum

Redundancy Maximum Relevance (mRMR) technique. The final phase is to further analyze

the data using correlated machine learning algorithms. This two-stage approach, which

involves the selection of genes before classification techniques are used, improves success

rates for the identification of cancer cells. It is found that Decision Tree, K-Nearest Neighbor,

and Naïve Bayes classifiers had showed promising accurate results using the developed

hybrid framework model. It is concluded that the performance of our proposed method has

achieved a higher accuracy in comparison with the existing methods reported in the litera-

tures. This study can be used as a clue to enhance treatment and drug discovery for the

colon cancer cure.

1. Introduction

Generally, cancer is reckoned, by the World Health Organisation (WHO), to be the second-

most communal source of death in the world [1]. Colon cancer, in particular, is ranked as the

third-most prevalent cancer in the United States [2]; similarly, it is ranked in third position

among cancers in the UK [3] and is responsible for a large number of fatalities across the globe

[4, 5].

There is short of effective medical treatment that exists for most common types of cancer

[6]. One major traditional approach for detecting cancer is to use the microscopic observation
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of a biopsy sample that is time overwhelming, not cost effective, and sometimes ends with

inaccurate results [7, 8]. Other traditional approaches are using morphological presence of

tumors or parameters resulting from clinical inspections, but they may lead to imprecise

results [9, 10].

As the cancer is considered to be a disease involving dynamic genome changes [10, 11], the

considerable efforts have been made by researchers and technologists to explore the precise

assessment and diagnose of the cancer, including the tumor prediction. Gene expression pro-

files using microarray data combined with computation method analysis are considered as the

recent techniques and approaches toward reliable cancer features investigation and can predict

more accurate results [6–10, 12, 13].

A major technological advance in classifying cancers has been the development of DNA

microarray techniques, which have enabled the simultaneous measurement of a large number

of genes’ expression levels [10, 14–16]. The big challenge that faces the high dimensionality of

genes (features) compared to the limited sample size available [6, 9, 14, 17–24]. They might

result in many redundant, noisy, and irrelevant genes (features). To overcome the high

dimensionality of genes resulted from the microarray technology, there must be a way to

choose a reduced subset of genes (features) from the immense number of genes, in order to

produce high cancer classification accuracy, and reduce the redundant genes. Therefore, fea-

tures selection becomes an important pre-requisite step for cancer classification and detection;

because it reduces the redundancy and selects the most relevant genes and enhance the classifi-

cation of the cells into benign (normal) and malignant (cancerous) [14, 24–26].

The current paper describes a two-stage approach to improving the successful identification

of colon cancer genes. The proposed model will be composed of a pre-selection step by apply-

ing a hybrid between an Information Gain ranker and a Genetic Algorithm. Thereafter,

mRMR (minimum Redundancy Maximum Relevance) filter method was applied as second

stage. This mechanism is deployed to produce out a reduced subset of genes that contains an

optimal subset with less noise and more relevant genes. To assess and compare the results of

the proposed two stage hybrid method, a set of machine learning classification methods are

used in this investigation.

The rest of the paper is structured as follows: section two presents the background and the

literature review, section three presents the dataset, tools and techniques applied, while section

four discusses the methodology implemented and the research approach. Section 5 renders the

experimentation of the proposed method. Section six presents the results of the experiments,

while section seven discusses and analyze the performance of the results. Finally, conclusion

and future work are presented in section eight.

2. Background and literature review

In the context of the microarray technology, feature selection can be organized into three cate-

gories [14, 15, 18, 19, 27]: filter, wrapper, and embedded. In the filter method; the genes are

evaluated and ranked against the class label and it does not take into considering the correla-

tion and the interaction between the genes. It is independent from the predictor without using

a learning algorithm (classifier) [28–34]. While, the wrapper method depends on adding or

deleting features using the learning algorithm (classification algorithm) to assess the subset fea-

tures [18, 31, 34, 35].

When comparing alternative classification algorithms, the advantage of ‘filter methods’

over ‘the wrapper method’ is that they provide a faster alternative, albeit with reduced accuracy

[36, 37]. In contrast, the latter approach achieves accurate results, but with the disadvantage of

being computationally slow. The embedded method, comparable to the wrapper method,

PLOS ONE A framework model using multifilter feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0249094 April 16, 2021 2 / 26

https://doi.org/10.1371/journal.pone.0249094


applies searching algorithms for optimal feature subsets but correlated with a specific classifier

construction [32, 34, 38]. The model proposed in [34] is an amalgamation of the filter and

wrapper approaches and is designed to mitigate the problem of the wrapper method’s compu-

tational complexity. The approach of using such a hybrid method of classification has been

used extensively in recent years to categorise cancer genes.

Other algorithms have been used for the purpose of genetic classification in the field of can-

cer research, featuring both machine learning algorithms and feature selection [39]. Some of

these have been very successful in identifying signs of colon cancer [22, 40, 41]; the taxonomic

approaches used include Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), Infor-

mation Gain (IG), minimum Redundancy Maximum Relevance (mRMR) (for feature selec-

tion), Support Vector Machines (SVM), Naïve Bayes (NB), Decision Trees (DT) and Genetic

Programming (GP) [39, 40, 42–45].

2.1. Algorithms reviewed

The performance of various models in accurately classifying genes associated with colon can-

cers is summarised in Table 1. Among these studies, which have used algorithms based on

multifilter and hybrid approaches to feature selection, four in particular [24, 46–48] have been

successful in as much as they performed with an accuracy in excess of 90% in the context of

colon cancers. Other approaches assessed among this sample of studies have been found to

have an accuracy level of from 66% to 89%. Among these algorithms, ten of them applied a

SVM as a machine learning algorithm and noted to have the highest classification accuracy

[18, 46–52]. An accuracy of 90% or more was attained using GA, PSO and mRMR at a pre-

selection stage.

Shutao et al. [48] isolated a subset of the top ten genes in their study in order to perform

highly accurate classification, while Abdi et al. [46] used the minimum Redundancy Maximum

Relevance (mRMR) technique on a pre-selected sample of 50 genes. In both cases, the size of

the sample was predetermined. Mohamed et al. [47] conveyed a classification accuracy of

90.32%, using a hybrid selection approach and Support Vector Machines (SVM).

Hybrid selection was also employed by Ammu et al. [59], to ascertain information gain fig-

ures, after which a biography-based optimisation technique was used. The hybrid approach

used by Chaung et al. [31], started with a genetic algorithm with a dynamic variable to select a

sample of genes, which were then ordered using chi square analysis; the level of accuracy of the

selection was then evaluated using SVM.

The strategy used by Dash et al. [18] was to use a combination of wrappers and filters. Fea-

ture selection was carried out using three wrappers—J48, Random Forest (RF) and Random

Trees–and a sample of genes, which were assessed using the Correlation-based Feature Selec-

tion (CFS) technique. K-Nearest Neighbour (KNN) analysis and SVM were then used to mea-

sure classification accuracy. El Akadi et al. [49] initially used both mRMR and GA to study

genes associated with colon cancer, verifying this approach using Naïve Bayes classifiers and

SVM.

Wang et al. [60] used a two-stage hybrid method which entailed initially using a ranking

procedure to obtain a sub-sample of genes. This was followed by a hierarchical grouping of the

genes selected, after which an analysis was carried out using the classification algorithms C4.5,

KNN, NB and SVM. The hybrid approach used by Tan et al. [61] involved a feature selection

enhancement of a sample of genes using a GA; this was achieved by combining the best results

from a group of feature selection methods, after which SVM were used to analyse the data.

Kim and Cho [62] classified genes by employing an evolutionary neural network, while Moha-

mad et al. [19] made their selection of genes from microarray data, using a Cyclic-GASVM
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hybrid method. In a separate study, Mohamad et al. [63] used a variation of the GASVM,

(referred to as “GASVM-II + GASVM”), for the gene selection process.

An alternative means of feature selection was used by Hanaa et al. [57], using a combination

of GA and information gain; subsequent analysis was carried out using Genetic Programming

(GP). Elyasigomari et al. [64] applied “MRMR-COA-HS”, which first used mRMR to make a

selection of genes, before using a wrapper which involved an algorithm known as COA-HS

and SVM for classification. Alshamlan et al. [17] also used SVM at the final stage, having car-

ried out feature selection using both mRMR and an ABC algorithm. Shukla et al. [22] pre-

sented a two-stage selection approach composed of the combination of Spearman’s

Correlation (SC) and the distributed filter FS methods. In [35] Shkula et al. had proposed

another hybrid wrapper method to obtain the key gene expressions which is composed of Cor-

relation-based Feature Selection (CFS) as the first step, followed by the TLBO algorithm as the

second step. The accuracy has been ranged from 92.23% to 88.52% [35].

Table 1. Colon cancer hybrid methods literature review for classification accuracy.

No. Reference Method Accuracy

Feature Selection Classifier [%]

1. [48] PSO+GA SVM 91.90

2. [46] mRMR + PSO SVM 90.32

3. [47] Genetic Algorithm (GA) SVM 90.32

4. [18] CFS + Wrapper (J48) SVM 89.03

5. [51] Filter (F-Score+IG) + Wrapper (SBE) SVM 87.50

6. [18] CFS + Wrapper (Random Forest) SVM 87.10

7. [18] CFS + Wrapper (Random Trees) SVM 85.48

8. [49] mRMR SVM 85.48

9. [50] mRMR+GA-SVM SVM 85.48

10. [52] mRMR+GA SVM 85.48

11. [24] FSBRR + MI KNN 91.91

12. [18] CFS + Wrapper (Random Forest) KNN 87.10

13. [18] CFS + Wrapper (J48) KNN 85.48

14. [18] CFS + Wrapper (Random Trees) KNN 82.26

15. [53] Genetic Algorithm (GA) DT 88.8

16. [48] PSO+GA DT 83.9

17. [54] GE Hybrid DT 83.41

18. [53] IG DT 77.26

19. [55] MF-GE DT 76.64

20. [48] PSO+GA Naïve Bayes 85.50

21. [54] GE Hybrid Naïve Bayes 84.96

22. [55] MF-GE Naïve Bayes 75.07

23. [49] mRMR Naïve Bayes 66.13

24. [56] MIM+AGA Extreme Learning Machine (ELM) 89.09

25. [57] Information Gain (IG) & Standard Genetic Algorithm (SGA) Genetic Programming 85.48

26. [54] GE Hybrid 7-Nearest Neighbor 85.34

27. [55] MF-GE 7-Nearest Neighbor 68.78

28. [54] GE Hybrid 3-Nearest Neighbor 84.93

29. [55] MF-GE 3-Nearest Neighbor 77.01

30. [54] GE Hybrid Random Forests 81.67

31. [55] MF-GE Random Forests 74.35

32. [58] PCA GA + ANN 83.33

https://doi.org/10.1371/journal.pone.0249094.t001

PLOS ONE A framework model using multifilter feature selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0249094 April 16, 2021 4 / 26

https://doi.org/10.1371/journal.pone.0249094.t001
https://doi.org/10.1371/journal.pone.0249094


Table 1 had listed 32 different approaches of applying the hybrid feature selection method,

4 of these methods had achieved a better classification accuracy of 90% or above. Most of the

state-of-the-art technologies found that for the colon cancer dataset, the mRMR, GA, IG, and

PSO are commonly applied for the hybrid feature selection and evaluates to better results.

2.2. The limitations of previous studies

In the light of above, the limitations of previous studies are highlighted below.

• The most literatures reported good results when they limited the quantity of gene selection

to a fixed number of genes prior to classification, thus ignoring the rest of genes which may

cause an ignore to important gene.

• Many studies had claimed that reducing the number of genes will enhance the classification

accuracy, but as shown in Table 1 the superlative accuracy reached 92%. Thus, there is a

need to a better method or a framework model to proof the classification enhancement of

the hybrid methods.

• To the superlative of the author’s knowledge, there is no previous study stated in the litera-

ture had touched the hybrid feature selection method with the approach of a two-stage mul-

tifilter hybrid selection method.

2.3. The objectives of investigation

The main objective of this investigation is to develop a new framework for selecting colon can-

cer genes, in two stages, the first comprising a multifilter hybrid stage (GA+IG) to optimize

the quality data from dataset, and the second consisting of an mRMR procedure for making

the final selection. The both stages will work as selection algorithms along with machine learn-

ing classifiers to predict the cases of colon cancer. These hybridizations of algorithms are pro-

posed to obtain genes subsets with a minimal number of relevant genes, which thereafter can

produce high classification accuracy that can be employed to better detect colon cancer.

To overcome the limitations mentioned in section 2.2, in this study we use three selection

algorithms (GA, IG, and mRMR). This combination is different from previous two stage

approached, and we tested the accuracy using four classifiers: SVM, NB, DT and KNN to ensure

the investigation is conducted rigorously. The reasons to employ these algorithms are: 1) They

had shown better performance than other selection algorithms in the field, and had reflected

very good effectiveness in many colorectal cancer research studies [39–41]; 2) GA has the ability

to manage high dimensionality datasets for the colon cancer [65–67]; 3) GA can achieve inter-

esting results when combined with other algorithms [68]; 4) GA is easily integrated and worked

in parallel with other algorithms; 5) IG had advantages in eliminating redundant genes and

reducing noise [26, 69, 70].; 6) Combining the GA and IG in stage 1 of this framework model

will achieve the target of generating a subset of features which are top ranked and with very

good quality; 7) utilizing the mRMR in as a multifilter in stage 2 will refine the subset generated

from stage 1 through another subset selection of features. These features are more correlated

and relevant with the class that has the lease correlation between the features. It follows that all

of these algorithms will be expected to result in very good interruptible gene expressions in

order to achieve a better identification to the colorectal cancer disease.

3. Dataset, tools and techniques applied

The datasets that are used for the colon cancer throughout the study are described in this sec-

tion; the tools used for the experimentation, and outline the selection techniques used.
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3.1. Background of the dataset

In this paper two datasets were used. The first one was collected from Alon et al. [71], which

has been used in several colon cancer research studies [18, 46–57, 59, 72]. This dataset is pub-

licly available and is still utilized in most recent studies [22–24, 35, 57, 56, 73–77]. Moreover,

to mandate the performance of the proposed model, another colorectal dataset was used. This

dataset was collected from Notterman [78], which is also used in recent studies [8, 79, 80].

Both data sets are publicly available and acquired as gene expressions. Table 2 presents the

details of these two datasets.

3.2. Tools utilised

The Weka machine learning environment is employed in this research https://ai.waikato.ac.

nz/weka/, as the Weka resource provides a number of techniques that can be used for data vali-

dation. Two such techniques are ‘leave-one-out cross-validation’, or LOOCV, and k-fold

cross-validation, both of which randomly classify items of data as being part of either ‘training’

or a ‘testing’ set [81, 82]. The LOOCV approach involves a ‘classifier’ being learned for all bar

one of a sample and tested on that one data point [83]. The k-fold cross-validation technique is

different in that the data are divided into an equal number of sub-samples. Each sub-sample is

tested once and then used for training; this process will be repeated k times to make sure that

all sub-samples are tested [84].

3.3. Feature selection techniques

Improving the accuracy of predictions by identifying certain features on the grounds of corre-

lation statistics is known as ‘feature selection’. For a dataset D having d dimensions, feature set

F can be expressed as:

F ¼ ff1; f2; . . . ; fdg; ð1Þ

where F stands for the feature set. The objective is to deduce an optimum group of features F’,

where (1) F’� F and (2) F’, since this will represent a very good rate of classification. On the

other hand, the classification process is the way to present out the test accuracy of the result. It

is also possible, using this technique, to assess accuracy as a function of the ratio of predicted

samples to total samples.

4. Methodology

In this section, a description will be given of the methodology used, including the system

design and the creation and use of the appropriate algorithm.

4.1. System design

The key contribution of this research is to develop an original framework for the two-stage

multifilter hybrid method for colon cancer feature selection, to achieve better classification

Table 2. Description of the datasets’ gene expression used in the study.

TYPE OF DATASET NO. OF GENES ACROSS THE SAMPLES CLASSIFICATION TYPE NO. OF SAMPLES

Alon et al. [71] 2000 Tumour 62 40

Normal 22

Notterman [78] 7457 Tumour 36 18

Normal 18

https://doi.org/10.1371/journal.pone.0249094.t002
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accuracy shown in Fig 1. What makes our method distinguished in comparison to those in the

literatures is that we contributed to the whole colon cancer dataset (all genes), while previous

studies are rarely reported, and didn’t restrict the accuracy evaluation to a particular number

Fig 1. Proposed computational model framework.

https://doi.org/10.1371/journal.pone.0249094.g001
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of top genes in the selected subset. In addition, we applied the same machine learning algo-

rithms without any option of parameters tuning.

Although the use of hybrid models appears in the research literature, the novel aspect of the

present study is that it sets out to decrease the number of genes selected and enhance the accu-

racy of the classification by means of a multifilter two-stage feature selection process.

The rationale for striving to improve on current selection and ranking approaches is that

they rely on a one-stage process and the probability that their results contain the ‘noise’ of

redundant and unrelated genes still exist. The current study tries to alleviate this problem

using a two-stage, multifilter technique, which proceeds as follows:

• As a first stage, a hybrid procedure (GA+IG) is applied to the entire dataset, which both

selects genes (GA) and ranks them (IG). The key idea of utilizing this hybridization is that

the IG will rank the genes according to their importance, while GA is considered a well-

known algorithm to find an optimal solution and easy to implement. Both algorithms will

refine and reduce the dataset for stage two and for the classification thereafter.

• Then we filter out the selected features using a secondstage of ranking genes (mRMR),

which will remove redundant genes, reduce noise, and leave only correlated genes in the

newly subset selected.

As rendered in Fig 2, the procedure is as follows:

• The raw dataset comprises of actual tissue samples obtained from patients suffering with

colon cancer, prepared for analysis in the form of a microarray.

• The comprehensive gene expression information that is contained within the microarray is

prepared in a format that enables analysis using the appropriate computer programs.

• The first phase of the analysis is to process the data to reduce the ‘noise’ in the dataset and to

perform some initial categorisation, to improve the accuracy of the subsequent classification.

This consists of a two-stage action:

� 1. The (GA+IG) hybrid procedure

� 2. Feature selection, consisting of mRMR and Stage 1 hybridisation

• Assessment of prediction accuracy, which is performed with a number of classification algo-

rithms, such as SVM, NB, DT and K-NN. This final stage provides an evaluation of the accu-

racy with which a cell from a patient can be diagnosed as being cancerous or normal.

The following paragraphs outline the proposed framework model, whilst Fig 2 presents the

pseudocode. To recap, the overall objective of this work is to improve the accuracy with which

cells are classified as being cancerous or non-cancerous, with the approach of this work being

to improve feature selection so that a better subset of genes is used for the analysis, including

genes that are more closely related.

4.2. Definitions and descriptions

It is assumed that the dataset subjected to the initial GA process is m-dimensional and that the

format of the data can be defined by the matrix (Datan×m), where n represents the number of

data points (individuals being treated for colon cancer, in the current context) and m is the

number of genes involved in the analysis. The process of multifilter feature selection has the

objective of deriving the best possible subset of features for the analysis. Let the initial set of

features, X, having m dimensions, be defined by the equation X = {x(i)|i = 1,2,3,. . .,m} where x
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Fig 2. Pseudocode of the proposed model.

https://doi.org/10.1371/journal.pone.0249094.g002
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(i) are the defined features and m are the genes. The feature selection process, IG, is used to

derive Y, which is calculated as Y = {y(i)|i = 1,2,3,. . .,p} where y(i) are the selected optimal fea-

tures and p represents the revised set of genes. The next step in the method is to rank all of the

genes (features) in terms of the amount of information that is derived from including each

one, with the criterion for inclusion being a positive value (i.e. an information gain threshold

value of above zero). This ordering is passed out to identify the features that have the greatest

influence on the classification of the genes. Y must be an optimal subset of X, so that Y�X, and

p�m. The features y(i)2Y are then subjected to GA, to create the vector Z = {Z(i)|i = 1,2,3,. . .,

q}, where Z(i) represents the new subset of features and q is now the number of features in the

subset, although Z�Y and q�p. A disadvantage of using the IG procedure is that the features

are dealt with separately, so that the correlations between them may be lost. Using mRMR

minimises redundancy in the process, due to its emphasis on high relevance and close correla-

tion; in the context of the Z data, mRMR identifies features that are strongly relevant to the

task of classification and which carry with them the least redundancy, thus deriving an original

set of vectors A = {A(i)|i = 1,2,3,. . .,s}, where A(i) is the final subset of features and s is the

number of features. In this case, A�Z and s�q. In the next phase, the vectors A are categorised

in terms of whether they refer to a tumour or normal tissue, using the binary labelling

system {−1,+1}. This provides a new dataset of genes, which is defined by the equation

fð‘ðAiÞ;CiÞg
l
i¼1
¼ ‘ðDÞ, with ‘ðAiÞ 2 R

m0
, where ‘ selects m0<m features from n genes, and

D represents the microarray of gene expressions.

The effect of the procedure described here is to create a situation where F:A!C, whereas

previously F:X!C.

5. Experimentation

This section presents the data preparation, the instrumentation tools, the experiments design,

and the experiment process.

5.1. Data preparation

An issue that needs to be overcome in gene research is that any set of data analysed will be

small in relation to the total gene population. Furthermore, the global genetic dataset is charac-

terised by ‘noise’ and redundant information [85]. Using feature filtering techniques is consid-

ered one way to address this situation which prepares the raw data into a suitable form for

analysis.

A popular method to pre-process the data is to discretise it using the entropy-based discreti-

sation method proposed by Fayyad & Irani [86]. The approach used in the present study as a

means of global discretisation is one that has already been used elsewhere [10, 16, 18, 49, 87,

88]. Since the first dataset is unprocessed [71], then we discretised the original data into cate-

gorical ones to minimize and eliminate the noise. This algorithm applies an entropy minimiza-

tion heuristic recursively to discretise the continuous-valued attributes. The stop of the

recursive step for this algorithm depends on the minimum description length (MDL) principle

[10]. However, the second dataset [78] is being processed by first removing any duplicated

genes to keep only the unique ones, and then each array is being standardised into zero mean

and unit variance. It is found that 860 duplicates exist, and they were removed.

When using GA, GI, mRMR and the selected classification process, certain default assump-

tions were made initially, namely the sample population for GA was 20 and the termination

criterion was 20; similarly, the crossover probability was 0.6 and the mutation probability was

0.033, and the IG threshold was fixed at zero.
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5.2. Instrumentation and resources used

The experiment was conducted using the Weka machine learning environment and the related

library packages, with default values for all parameters [11, 89]. The computing environment

used a PC with the Windows 10 operating system, a 1.8GHz Intel Core i5 processor and 8GB

of installed RAM.A number of programs were used for the analysis, including Windows 7,

Windows 8, Intel Core i7 and 16GB RAM, but this did not affect the output obtained.

5.3. Experimental design

Prior to starting the analysis, the data were separated into two sets: training and testing, in

order to create an independent test set, and improve the validity and the accuracy of the classi-

fication. The experiments were using different testing models (K Fold cross-validation,

LOOCV, and splitting into training and testing proportions). As the number of samples in the

datasets are considered small, the 10-fold cross validation is adopted as a value for the cross

validation [90]. We also adopted the testing model to divide the samples into training almost

(70%) and testing about (30%). The creation of the training set enabled a validation of feature

selection; the test set fulfilled a similar validation role in relation to the classification process. It

is significant to note that in the proposed method to implement cross validation, we separately

discretised the training set for each fold in order not to have an access to the testing data,

which will result in optimistic error rates and compromise the reliability of the experiment.

Thus, during the dataset training process, the test set will be unseen (hidden) to assure the vali-

dation of the results when applied to fresh data.

5.4. Experimental processes

Data preprocessing techniques were carried out on the datasets prior to the analysis (see Sec-

tion 5.1). Features were then selected using the following two-stage approach:

• Stage 1: Discriminative scores were derived for each gene using IG, and all genes with a

score of zero were eliminated from the dataset. Genes providing a large amount of informa-

tion were selected, using GA, in order to optimise the dataset with informative and corre-

lated genes.

• Stage 2: Redundancy levels were further reduced using mRMR, to maximise the efficiency of

the gene selection process. The objective, here, was to reduce the number of features in the

analysis to a minimum and to lower the amount of ‘noise’ in the data. mRMR was used to

derive a subset of preferred genes.

Next, the classifications carried out were evaluated using a number of approaches–DT, the

K-NN, NB and SVM–in order to identify the best and most efficient classification algorithm,

and to measure the classification rate. Fig 2 shows the pseudocode used in the method

described in sub-section 4.2. The first step was to rank the features by the extent of their infor-

mation gain, using IG, after which subset features were searched using the GA technique. The

evaluation, which dealt with each gene in turn, used a fitness function. The next step was to

derive a new, improved population, by selection, crossover and mutation; this was repeated

until pre-defined criteria for halting the process were achieved. mRMR was then used on the

subset of genes obtained by this method, retaining only genes that had high relevance and

which were closely correlated with one another. Finally, an evaluation was carried out, employ-

ing a number of algorithms, of the quality and accuracy of the classifications. A summary of

the implementation of the research is provided in Fig 3.
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6. Experimental results

As described above, a two-stage hybrid approach (IG+GA) and (mRMR) were used for the

selection of features, followed by subsequent classification. The results obtained will now be

presented in terms of the features selected number and of the outcome of the evaluation of the

quality of the classification process.

6.1. Number of selected features

Table 3 shows the results of Stage 1 of the analysis–feature selection. From the initial sample

population of 2,000 genes from the first dataset (Dataset 1), a subset of 68 genes was selected,

based on the parameters Information Gain and Genetic Algorithm and 475 genes were

selected at the same stage from the second dataset (Dataset 2).

On stage 2 of the analysis mRMR is used to rank the gene population according to each

gene’s level of redundancy and level of correlation with the other genes. This resulted in the

creation of a subset that minimised redundancy and maximised the chosen genes’ contribution

to the classification process. As Table 3 shows, a total of 22 features had been included at this

stage of the process from dataset 1, with the original dataset having been reduced by almost

Fig 3. The summary of the developed multifilter 2-stage framework method.

https://doi.org/10.1371/journal.pone.0249094.g003
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99%. However, 35 features had been included at this stage of the process from dataset 2, reduc-

ing the original dataset by almost 99.5%.

Table 4 illustrates that the top genes are ranked, selected, and considered to be as the key

genes in the occurrence and the development of colorectal cancer. The table contains the

Expressed Sequence Tag Number (EST) and Genes Expression Description. For example,

some of the key features in dataset 1 are M26383, M63391, M76378, J02854, and T968730,

while in dataset 2 are R36977, M77836, T96548, T64297, and M97496 as the key gene expres-

sions based on the proposed model.

6.2. Classification accuracy

Table 5 compares the classification accuracy prediction results between stage 1 and stage 2, in

order to verify the effectiveness of the proposed framework model with multiple testing mod-

els. From this table; it is recognized that the framework model has a clear direct effect on data-

set 2, because of the data nature and the structure of the dataset. Since the dataset 2 had

showed a very high classification accuracy in stage 1 (highest prediction accuracy 97% using

K-fold and LOOCV), then the effect is slightly noticeable in stage 2 (highest prediction accu-

racy 100%). However, splitting out dataset 2 into training and testing validation sets will not

have an effect on the dataset because of its nature and the smaller sample values included.

While the effectiveness of the proposed framework model on dataset 1 is clearly noticed, as the

highest accuracy in stage 1 is (90%),—in comparison with stage 2 that is (94%). Moreover, Fig

4 shows the evaluation results of the proposed procedure’s classification accuracy that was car-

ried out using a number of algorithms: DT, K-NN, NB and SVM following the different testing

models. In addition, Fig 5 renders the results that are considered as an appropriate process

with lower predication error rates and less computational time when validating dataset 1 using

the training and testing set, and for dataset 2 using the k-fold cross validation. The key findings

as per Fig 5 are: 1) for the dataset 1 was that DT and K-NN performed best, with classification

accuracy measured at (94%) when used as part of a two-stage process that began with a pre-

selection stage. The least accurate algorithm was SVM (81.25%), whilst the level of perfor-

mance achieved by NB (87.5%) was acceptable; 2) for the dataset 2 was that NB performed the

best with a classification accuracy measured at (100%) under the implication of the two-stage

model. The least accurate algorithm was DT (94.4%), whilst the level of performance achieved

by both SVM and K-NN was (97.2%) see Table 5 and Fig 5.

7. Analysis and discussion

There is clear evidence to suggest that the hybrid multifilter method proposed here performs

the task of feature selection better than similar approaches presented in the literature (see

Table 1). Classification algorithms providing the best performance in classification were K-NN

and DT (with an accuracy rate of 94%) for dataset 1, with NB emerging best algorithm for

Table 3. Number of selected features by the proposed method on each dataset.

Colon Features

Dataset 1 Dataset 2

Full Data Set 2000 6597�

Phase 1 (IG+GA) 68 475

Phase 2 (Phase 1 + mRMR) 22 35

� this number after eliminating duplicates.

https://doi.org/10.1371/journal.pone.0249094.t003
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Table 4. Top genes ranked and selected according the proposed framework model.

Dataset 1 Dataset 2

M26383 gene 1 "Human monocyte-derived neutrophil-activating protein

(MONAP) mRNA, complete cds."

R36977 yf53h07.s1 Homo sapiens cDNA clone 26045 3’ similar to SP:TF3A_XENLA

P03001 TRANSCRIPTION FACTOR IIIA;

M63391 gene 1 "Human desmin gene, complete cds. " M77836 "Human pyrroline 5-carboxylate reductase mRNA, complete cds"

M76378 gene 1 "Human cysteine-rich protein (CRP) gene, exons 5 and 6. " T96548 "ye49f12.s1 Homo sapiens cDNA clone 121103 3’ similar to gb:X16940 ACTIN,

GAMMA-ENTERIC SMOOTH MUSCLE (HUMAN);"

J02854 gene 1 "MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH MUSCLE

ISOFORM (HUMAN);contains element TAR1 repetitive element;."

T64297 "yc48a10.s1 Homo sapiens cDNA clone 83898 3’ similar to gb:M10050 FATTY

ACID-BINDING PROTEIN, LIVER (HUMAN);"

T96873 3’ UTR 2a 121343 HYPOTHETICAL PROTEIN IN TRPE 3’REGION

(Spirochaeta aurantia)

M97496 "Homo sapiens guanylin mRNA, complete cds"

U21090 gene 1 "Human DNA polymerase delta small subunit mRNA, complete

cds. "

X64559 H.sapiens mRNA for tetranectin

H40560 3’ UTR 1 175410 THIOREDOXIN (HUMAN);. Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor

M36634 gene 1 "Human vasoactive intestinal peptide (VIP) mRNA, complete cds." M83670 "Human carbonic anhydrase IV mRNA, complete cds"

T51571 3’ UTR 1 72250 P24480 CALGIZZARIN. T52362 yb23g02.s1 Homo sapiens cDNA clone 72050 3’

M91463 gene 1 "Human glucose transporter (GLUT4) gene, complete cds." H57136 yr08c08.s1 Homo sapiens cDNA clone 204686 3’ similar to SP:A40533 A40533

CAMP-DEPENDENT PROTEIN KINASE MAJOR MEMBRANE SUBSTRATE

PRECURSOR—;

T62947 3’ UTR 2a 79366 60S RIBOSOMAL PROTEIN L24 (Arabidopsis thaliana) U17077 "Human BENE mRNA, partial cds"

R97912 3’ UTR 2a 200181 SERINE/THREONINE-PROTEIN KINASE IPL1

(Saccharomyces cerevisiae)

T67077 ya52f06.s1 Homo sapiens cDNA clone 66563 3’ similar to SP:A40533 A40533

CAMP-DEPENDENT PROTEIN KINASE MAJOR MEMBRANE SUBSTRATE

PRECURSOR—;

L41559 gene 1 "Homo sapiens pterin-4a-carbinolamine dehydratase (PCBD)

mRNA, complete cds."

T55741 yb40d07.s1 Homo sapiens cDNA clone 73645 3’ similar to SP:TELO_RABIT

P29294

R39209 3’ UTR 2a 23464 HUMAN IMMUNODEFICIENCY VIRUS TYPE I

ENHANCER-BINDING PROTEIN 2 (Homo sapiens)

M12272 "Homo sapiens alcohol dehydrogenase class I gamma subunit (ADH3) mRNA,

complete cds"

T90350 3’ UTR 2a 110964 MYOBLAST CELL SURFACE ANTIGEN 24.1D5

(Homo sapiens)

D63874 "Human mRNA for HMG-1, complete cds"

T54276 3’ UTR 1 69195 PROTEASOME COMPONENT C13 (HUMAN). R71676 yj85e03.s1 Homo sapiens cDNA clone 155548 3’

R49459 3’ UTR 2a 38253 TRANSFERRIN RECEPTOR PROTEIN (Homo sapiens) M26697 "Human nucleolar protein (B23) mRNA, complete cds"

Z24727 gene 1 "H.sapiens tropomyosin isoform mRNA, complete CDS." M80244 "Human E16 mRNA, complete cds"

T51849 3’ UTR 2a 75009 TYROSINE-PROTEIN KINASE RECEPTOR ELK

PRECURSOR (Rattus norvegicus)

L11708 "Human 17 beta hydroxysteroid dehydrogenase type 2 mRNA, complete cds"

K03460 gene 1 "Human alpha-tubulin isotype H2-alpha gene, last exon." T46924 yb11b02.s1 Homo sapiens cDNA clone 70827 3’ similar to gb:U11863

AMILORIDE-SENSITIVE AMINE OXIDASE (HUMAN)

X61118 gene 1 Human TTG-2 mRNA for a cysteine rich protein with LIM motif. U17899 "Human chloride channel regulatory protein mRNA, complete cds"

R06601 3’ UTR 2a 126458 METALLOTHIONEIN-II (Homo sapiens) X73502 H. Sapiens mRNA for cytokeratin 20

H09351 yl95g07.s1 Homo sapiens cDNA clone 46019 3’ similar to gb:D28480 MCM3

HOMOLOG (HUMAN);

H06524 "yl78h01.s1 Homo sapiens cDNA clone 44386 3’ similar to gb:X04412 GELSOLIN

PRECURSOR, PLASMA (HUMAN);"

H77597 ys08a06.s1 Homo sapiens cDNA clone 214162 3’ similar to gb:X64177 H.sapiens

mRNA for metallothionein (HUMAN);

X15183 Human mRNA for 90-kDa heat-shock protein

R50129 yj54h10.s1 Homo sapiens cDNA clone 152611 3’ similar to gb:J02939 4F2

CELL-SURFACE ANTIGEN HEAVY CHAIN (HUMAN);

L03840 "Human fibroblast growth factor receptor 4 (FGFR4) mRNA, complete cds"

T51261 yb03h03.s1 Homo sapiens cDNA clone 70133 3’

H14506 ym18f10.s1 Homo sapiens cDNA clone 48421 3’

H08393 yl92a10.s1 Homo sapiens cDNA clone 45395 3’

T55200 yb43f08.s1 Homo sapiens cDNA clone 73959 3’ similar to gb:M10942_cds1 Human

metallothionein-Ie gene (HUMAN)

Z17227 H.sapiens mRNA for transmenbrane receptor protein

H65066 yr69f12.s1 Homo sapiens cDNA clone 210575 3’ similar to SP:VIS1_RAT P28677

VISININ-LIKE PROTEIN 1; contains MER6 repetitive element;

H17127 ym42e05.s1 Homo sapiens cDNA clone 50869 3’

https://doi.org/10.1371/journal.pone.0249094.t004
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dataset 2, with an accuracy level of (100%) using the appropriate testing validation models as

discussed in section 6.2.

A comparison of the proposed approach with those used in similar studies using the same

dataset (the dataset 1) indicated that it achieved better, in terms of classification accuracy, than

the method used by Zhang et al. [24] who resulted in (91.9%) accuracy using their proposed

method of FSBRR and MI, followed by the K-NN. Also, our proposed model outperforms

Abdi et al. [46], who reported a 90.32% level of accuracy when using mRMR and PSO, fol-

lowed by SVM. The approach described in the current paper also out-performed that of Shu-

tao et al. [48], who achieved an accuracy of 91.9% using a PSO+GA hybrid method, followed

by SVM. Al Akadi et al. [52] reported a classification accuracy of 85.48%, using mRMR+GA,

followed by SVM.

One difference with the previous studies is that they used fewer genes than the genes were

selected for the present study; Abdi et al. [46] used 10.3 genes, reporting a classification accu-

racy that did not match that measured in the current study, whilst Shutao et al. [48] and Al

Akadi et al. [52] used 18 and 40 genes, respectively. The classification accuracy achieved by

[48] is (91.90%), while by [52] is (85.48%).

Another comparison was conducted with studies which used similar dataset (the dataset 2),

and it was clearly indicated that our proposed method achieved better than Rathore et al. [8]

who achieved an accuracy of (97.2%) while ours achieved (100%) which is also similar and bet-

ter to approaches used by Al Snousy et al [80] who achieved also (97% - 100%). To confirm the

comparative performance of the approach used in the current study, classification accuracy

was 94% and 100%. The outcome of the research, therefore, is that, although some previous

research was carried out using fewer genes, the approach described in this paper yielded better

outcomes in terms of classification accuracy. This is because of the strategy to eliminate all bar

the most informative and relevant genes.

Table 5. Comparison summary between stage one and stage 2 accuracy results.

Classifier K-Fold Cross Validation

Stage 1 Stage 2

Dataset 1 Dataset 2 Dataset 1 Dataset 2

SVM 79.0% 97.2% 82.3% 97.2%

NB 80.7% 97.2% 83.9% 100%

DT 90.3% 94.4% 90.3% 94.4%

K-NN 77.4% 97.2% 79.0% 97.2%

Classifier LOOCV Validation

Stage 1 Stage 2

Dataset 1 Dataset 2 Dataset 1 Dataset 2

SVM 83.9% 97.2% 82.3% 97.2%

NB 82.3% 97.2% 88.7% 97.2%

DT 83.9% 91.7% 83.9% 91.7%

K-NN 80.7% 97.2% 85.5% 97.2%

Classifier Training and Testing Samples

Stage 1 Stage 2

Dataset 1 Dataset 2 Dataset 1 Dataset 2

SVM 81.3% 100% 81.3% 100%

NB 75.0% 100% 87.5% 100%

DT 81.3% 72.2% 94.0% 72.7%

K-NN 81.3% 100% 94.0% 100%

https://doi.org/10.1371/journal.pone.0249094.t005
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Fig 4. Evaluation of the proposed procedure’s classification accuracy using different testing models.

https://doi.org/10.1371/journal.pone.0249094.g004

Fig 5. Evaluation of the proposed procedure’s classification accuracy using the best testing model with low error rates.

https://doi.org/10.1371/journal.pone.0249094.g005
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It is noticed that most methods in the literature had achieved high classification accuracy

when they applied the ML algorithms to a limited and selected number of genetic populations

prior to classification not to all genes as in our case in which we didn’t exclude any gene from

the beginning. It follows that our methods achieved an advanced level.

7.1. Methods employed for evaluation

Beside the training and testing samples, there are performance evaluation measures: (1) confu-

sion matrix, (2) accuracy, (3) sensitivity, (4) specificity, (5) Matthews’s Correlation Coefficient

(MCC), and (6) Receiver Operating Characteristic (ROC) Area.

A confusion matrix records True Positives (TP), which are the number of successfully iden-

tified positive samples, True Negatives (TN), which are the number of correctly identified neg-

ative samples, False Positives (FP), the samples erroneously diagnosed as being positive, and

False Negatives (FN), those positive samples wrongly diagnosed as negative. An overall mea-

sure of classification efficiency is derived from this matrix, expressed as the percentage of cor-

rect diagnoses from the entire population of observations. According to Bolón-Canedo et al.

[29], a sensitivity analysis measures the proportion of True Positives (TP), which, in practical

terms, refers to the percentage of patients correctly diagnosed with cancer, whilst a specificity

analysis refers to performance in identifying True Negatives (TN).

To achieve total predictive accuracy, an algorithm needs to perform with both 100% sensi-

tivity and 100% specificity. The measurement of performance according to both of these indi-

cators is known as a measure of ‘accuracy’, with the parameters TP, TN, FP and FN being used

to calculate all of these measures.

Sensitivity ¼
TP

TP þ FN
ð2Þ

Specificity ¼
TN

TN þ FP
ð3Þ

Accuracy ¼
TN þ TP

TN þ TP þ FN þ FP
ð4Þ

One test for the level of performance of an approach to solving binary problems is Mat-

thews’ Correlation Coefficient (MCC), which yields values ranging from -1 to 1, where 1

describes a perfect classification performance and -1 indicates 100% error. An MCC value of

zero is used to represent random prediction. The coefficient can be computed using the fol-

lowing equation:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððTPþ FNÞðTP þ FPÞðTN þ FNÞðTN þ FPÞÞ

p ð5Þ

An alternative evaluation method is the Receiver Operating Characteristic (ROC) Area.

This method uses a two-dimensional graph to illustrate TP and FP outcomes in relation to

defined thresholds. The observed rate of False Positives (FPR) is represented by the x-axis

(sensitivity), whilst the y-axis shows the rate of True Positives (TPR) (1- specificity). The

optimum plotted position on this graph is the coordinate (0, 1), which is called the ‘best clas-

sification’ or ‘perfect classification’, since it indicates both perfect sensitivity and perfect

specificity.
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7.2. Analysis of evaluation results

The confusion matrix used in the present study to assess the classification performance of the

different approaches is shown in Tables 6 and 7. These data reveal that K-NN and DT per-

formed best in classification of the sample of 62 genes using the dataset 1, while the NB per-

formed the best in classification of 36 genes using the dataset 2. In dataset 1, these approaches

accurately identified four positive, and eleven negative samples, with the sole error being the

identification of a positive sample as being negative. However, in dataset 2, these approaches

accurately identified 18 positive, and 18 negative samples.

The TPR and FPR data can be plotted graphically, as shown in Fig 6 for the dataset 1 and in

Fig 7 for the dataset 2, with the TPR and FPR data being shown on the x-axis and y-axis,

respectively (ROC Curve). The four approaches used are plotted in the two-dimensional space

shown in Fig 6, which clearly indicates that DT and K-NN performed the best, with SVM

yielding the worst performance for the dataset 1. On the other hand, Fig 7 clearly also indicates

that NB performed the best dataset 2, with DT yielding the least but still considered

reasonable.

The performance of the algorithms used in terms of accuracy, sensitivity, specificity and the

Matthews’ Correlation Coefficient are shown in Table 8. Although the sample of genes eventu-

ally analysed was relatively small in both datasets, both specificity and sensitivity varied consid-

erably, from 75% to 100%. In dataset 1, the equivalent figures for K-NN and DT were better,

with both methods achieving 100% sensitivity and 91.7% specificity. In contrast, SVM per-

formed poorly, with a sensitivity rate of 75% and an 83.3% level of specificity. In dataset 2, the

figure of NB was the best with 100% sensitivity and specificity.

In summary, the proposed model of the two stage multifilter outperforms other previously

reported models in prediction accuracy and the numbers of genes selected within parentheses,

evidenced in Table 9, for example, for dataset 1, it is 94.0% for 22 gens; for dataset 2, it is 100%

for 35 gens. F-Score–Majority Voting [8] is doing very well with 95 gens to achieve 97%

accuracy.

An issue that might be investigated in the future, is the impact of different parameters on

various algorithms’ level of classification performance. Also, the same method can be applied

with other machine learning algorithms and can be extended to include other genetic datasets.

Table 6. Confusion matrix of the present study for the evaluation of dataset 1.

Confusion Matrix SVM NB DT K-NN

Positive 3 1 3 1 4 0 4 0

Negative 2 10 1 11 1 11 1 11

TPR 0.813 0.875 0.938 0.938

FPR 0.229 0.208 0.021 0.021

https://doi.org/10.1371/journal.pone.0249094.t006

Table 7. Confusion matrix of the present study for the evaluation of dataset 2.

Confusion Matrix SVM NB DT K-NN

Positive 18 0 18 0 18 0 18 0

Negative 1 17 0 18 2 16 1 17

TPR 0.972 1 0.944 0.972

FPR 0.028 0 0.056 0.028

https://doi.org/10.1371/journal.pone.0249094.t007
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Fig 6. ROC curve of the present study for dataset 1.

https://doi.org/10.1371/journal.pone.0249094.g006

Fig 7. ROC curve of the present study for dataset 2.

https://doi.org/10.1371/journal.pone.0249094.g007

Table 8. Performance evaluation assessment for the experiment results.

Classifier Dataset 1 Dataset 2

Accuracy Sensitivity Specificity MCC Accuracy Sensitivity Specificity MCC

SVM 81.25 0.75 0.833 0.545 97.2 1 0.944 0.945

NB 87.50 0.75 0.917 0.667 100 1 1 1

DT 93.75 1 0.917 0.856 94.4 1 0.889 0.894

K-NN 93.75 1 0.917 0.856 97.2 1 0.944 0.945

https://doi.org/10.1371/journal.pone.0249094.t008
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8. Conclusions and future work

The present study has proposed a two-stage hybrid multifilter data mining approach to feature

selection, which has been shown to improve the diagnosis of colon cancer. The key improve-

ment provided by the proposed approach was better classification of genes and accuracy of

diagnosis. This was achieved through a decrease in the number of features considered in the

analysis.

8.1. Achievements of the research

The proposed two-stage model delivered the following improvements:

Stage 1: The number of features used in the analysis was reduced by nearly 99% for both data-

sets included in this study, as compared with the sample population used at the beginning

of the analysis. This was achieved through initially using the (IG+GA) selection approach.

Stage 2: During this stage, the approach reduced the number of genes used in the analysis to

22 for dataset 1 from an initial sample size of 2,000, and to 35 for dataset 2 from the initial

sample size 6597. Furthermore, the amount of ‘noise’ in the data was lessened and genes

having little or no relevance were eliminated. The approach also yielded enhanced levels of

accuracy and displayed greater efficiency. The greatest classification accuracy was achieved

by the K-NN and DT algorithms (at 94%) for dataset 1 and by NB algorithm (100%) for

dataset 2.

The key outcome of the study is that the implementation of a feature selection procedure

prior to the application of a classification algorithm provides more accurate predictions and

diagnoses. The use of a hybrid multifilter process substantially reduced the number of features

included in the dataset.

8.2. Future research

There are number of challenges for the further research to take on. Currently, we are going to

focus on the investigations into:

Table 9. Comparison of the proposed method with others reported in the literature using each dataset.

Method Accuracy (%)

Dataset 1

(FSBRR+MI)—K-NN [24] 91.90

(mRMR+PSO)—SVM [46] 90.32 (10)

(PSO+GA)—SVM [48] 91.90 (18)

(mRMR+GA)—SVM [52] 85.48 (40)

Filter (F-Score+IG)—Wrapper (SBE) + SVM [51] 87.50

(mRMR+GA)–SVM [50] 85.48

(PSO+GA)–DT [48] 85.50

(IG +GA)–GP [57] 85.48

(PCA) + GA–ANN [58] 83.33

Our Proposed Model 94.0 (22)

Dataset 2

F-Score–Majority Voting [8] 97.22 (95)

Gain Ratio/ Chi-square + ensemble DT [80] 97.22

Our Proposed Model 100 (35)

https://doi.org/10.1371/journal.pone.0249094.t009
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1. the identifications of new variables in colon cancers.

2. the impact of different parameters on various algorithms’ level of classification

performance.

3. ML methods for other complex genetic datasets in colon cancer case.
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