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Abstract: Neutrophils are the most abundant immune cell type in the blood and constitute 
the first line of defense against invading pathogens. Despite their important role in many 
diseases, they are challenging to study due to their short life span and the inability to 
cryopreserve or expand them in vitro. Thus, research into neutrophils has to rely on cells 
freshly isolated from peripheral blood of human donors, introducing donor-dependent varia-
tion in the experimental data. To counteract these problems, researchers tried to develop 
adequate cell models, such as cell lines. For those functional studies that cannot rely on cell 
models, a standardization of protocols regarding neutrophil purification and culturing could 
be a solution. In this review, we provide an overview of the most commonly used models for 
neutrophil function (HL-60, PLB-985, NB4, Kasumi-1 and induced pluripotent stem cells). 
In addition, we describe the effects of glucose concentration, pH, oxygen tension and 
temperature on neutrophil function. 
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Introduction
Neutrophils belong to the group of granulocytes, which are members of the innate 
immune system and constitute the most abundant leukocyte subtype circulating in 
blood. Neutrophils develop in the bone marrow from granulocyte-monocyte pro-
genitor cells (GMPs), the same cells that give rise to monocytes, dendritic cells and 
other granulocytes. GMPs originate from hematopoietic stem cells and are com-
mitted to the myeloid lineage.1 The stepwise development of neutrophils from 
GMPs is called granulopoiesis (Figure 1).1 Terminally differentiated neutrophils 
have lost their capacity to proliferate and can therefore not be expanded in culture.

Neutrophils owe their name to their balanced uptake of hematoxylin and eosin, 
which distinguishes them from other granulocytes: eosinophils and basophils.1 

Another distinctive feature of neutrophils is their segmented nucleus and 
a cytoplasm filled with granules. Based on the biosynthesis of the granules during 
the maturation of neutrophils in the bone marrow, the granules can be classified into 
the following three categories: azurophilic (primary) granules, specific (secondary) 
granules and gelatinase (tertiary) granules. Examples of azurophilic granule pro-
teins are myeloperoxidase (MPO), neutrophil elastase (NE) and cathepsin G; 
examples of specific granule proteins are lactoferrin and CD66b; and examples of 
gelatinase granule proteins are matrix metalloproteinase 9 (MMP-9) and CD11b. In 
addition, neutrophils contain secretory vesicles, which are mainly filled with sur-
face receptors, ready to be mobilized to the plasma membrane.2
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All of the granules are crucial for pathogen killing, as 
their contents can either be excreted into the extracellular 
space or fused with phagosomes, facilitating destruction of 
phagocytosed material inside the cell.2 Azurophilic gran-
ules are mostly involved in phagosome formation; specific 
granules are involved in both phagosome formation and 
exocytosis; and gelatinase granules and secretory vesicles 
are mostly involved in exocytosis.3 The action of granules 
is supported by the production of reactive oxygen species 
(ROS), which can also damage pathogens both intracellu-
larly and extracellularly. Another mechanism that neutro-
phils employ to fight infection, is the expulsion of 
neutrophil extracellular traps (NETs): strands of DNA 
mixed with histones and granule proteins, which can 
immobilize and kill pathogens. Finally, neutrophils can 
produce various cytokines, which attract other immune 
cells to the site of inflammation. Together, these mechan-
isms ensure efficient pathogen killing and host defense 
(Figure 2). For a more detailed overview of neutrophil 
function, the reader is referred to Ley et al4.

For a long time, neutrophils were considered to be 
a large pool of identical cells, destined to use their weap-
ons on invading pathogens as fast as possible and quickly 
die afterwards. Now we know, however, that neutrophils 
are not identical but can be classified into different subsets 
based on parameters such as density, function and matura-
tion stage.

Perhaps the clearest distinction can be made between 
immature, mature and activated neutrophils. Immature 
neutrophils mostly reside in the bone marrow but can be 
released into the blood stream under acute inflammatory 

conditions following a process called emergency 
granulopoiesis.5 They can be distinguished from mature 
and aged neutrophils by the presence of a banded nucleus 
and the expression levels of CD16, CD62L and CD10 
(CD16low/CD62Lhigh/CD10−).6,7 The exit of neutrophils 
from the bone marrow is regulated by the balance between 
CXCR2 and CXCR4 signaling. CXCR4 is the receptor for 
CXCL12, a chemokine highly expressed in the bone mar-
row. CXCR2 responds to multiple CXC chemokines, 
including CXCL8, the major neutrophil-attracting chemo-
kine. As neutrophils mature in the bone marrow, they 
gradually lose surface expression of CXCR4 and upregu-
late CXCR2, allowing them to exit the bone marrow into 
the blood stream.8 Mature neutrophils constitute the 
majority of circulating neutrophils in the blood stream, 
and can be distinguished by a clearly segmented nucleus. 
They are CD16high/CD62Lhigh/CD10+.6,7 With time, 
mature neutrophils become aged, acquiring 
a hypersegmented nucleus and a CD16high/CD62Llow/ 
CD10+ phenotype.6,7 Following a circadian rhythm, aged 
neutrophils upregulate CXCR4; this ensures that they can 
home back to the bone marrow, where they undergo apop-
tosis and are degraded by resident macrophages.8,9 Aged 
neutrophils can also be found in tissues, from where they 
can retreat back into the bloodstream in a process called 
reverse transendothelial migration.10

It has been suggested that neutrophils of different 
stages display different functional properties. For example, 
immature neutrophils show an improved intracellular kill-
ing of bacteria compared to mature or hypersegmented 
neutrophils, and aged neutrophils in mice have been 

Figure 1 Granulopoiesis. In the process of granulopoiesis, neutrophils develop stepwise from granulocyte-monocyte progenitor cells (GMPs). Each stage has a unique 
phenotype that is comprised of both morphologic features and cell surface markers. In the first step, the cell transitions into the myeloblast stage. The promyelocyte stage is 
characterized by the appearance of azurophilic granules. Specific granules start to develop at the myelocyte stage, and are fully present at the metamyelocyte stage; this is 
also the point at which the cell loses its proliferative capacity. After the metamyelocyte stage, the cell can be called a neutrophil; it acquires the distinctive banded nucleus and 
develops gelatinase granules and secretory vesicles.2 The arrows indicate the stage of the cell lines that are discussed in this paper.
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shown to be faster in reaching the tissues upon induction 
of acute inflammation.11,12 In addition, CD10− neutrophils 
have been shown to promote T cell proliferation in vitro, 
whereas CD10+ neutrophils suppress it.13 Whether these 
differences in function have any clinical relevance remains 
to be discovered.

Another classification is based on the density of neutro-
phils. During density gradient-based neutrophil purification, 
whole blood is loaded onto a polysaccharide-containing 
solution with a density of 1.077 g/mL (eg, Ficoll). After 
centrifugation, granulocytes and erythrocytes can be found 
under the polysaccharide layer, whereas peripheral blood 
mononuclear cells (PBMC) form a band above it. Research 
has shown that a small percentage of neutrophils end up in 
the PBMC layer and are referred to as low-density neutro-
phils (LDNs), as opposed to the “conventional” normal- 
density neutrophils (NDNs).14 The percentage of LDNs in 
healthy individuals is very low, but in several diseases, 
including systemic lupus erythematosus (SLE) and rheuma-
toid arthritis, the proportion of LDNs is significantly 
increased.15,16 Various findings suggest that the LDNs can 
have different identities. LDNs can be either immature cells 
released from the bone marrow, or they can be mature cells 

that have degranulated; in the latter case, the degranulation 
can have occurred in the blood stream, or it can have 
occurred in tissue, followed by reverse transmigration of 
the neutrophils into the bloodstream.14 Depending on the 
disease context, LDNs can have both pro-inflammatory and 
immunosuppressive functions, although more research is 
needed to understand what determines their functional 
profile.17

In mice, tumor-associated neutrophils have been shown 
to polarize towards an N1 or N2 phenotype.18 N1 neutro-
phils are pro-inflammatory and highly cytotoxic, produ-
cing vast amounts of ROS and activating the adaptive 
immune system. In contrast, N2 neutrophils are immuno-
suppressive and promote tumor growth and metastasis by 
producing angiogenic factors and enzymes that degrade 
extracellular matrix. Tumors can actively recruit neutro-
phils and transform them to the N2 phenotype through the 
production of transforming growth factor β (TGF-β). 
Blocking TGF-β or administering interferon β (IFN-β) 
promotes neutrophil polarization towards N1.18

In addition to pro-tumoral N2 neutrophils, tumor 
growth can also be promoted by myeloid-derived suppres-
sor cells (MDSCs).19 MDSCs are generally categorized, 

Figure 2 Neutrophil functions. To combat infection, neutrophils can execute various functions. Phagocytosis is the uptake of pathogens inside the cell. NETosis is a form of 
cell death in which neutrophils expulse their DNA together with histones and granular proteins (neutrophil extracellular traps). During degranulation, neutrophils release 
enzymes and antibacterial peptides which are normally stored inside granules. During the release of reactive oxygen species, neutrophils convert oxygen to highly reactive 
forms that are capable of damaging pathogens. Finally, neutrophils release cytokines, activating other immune cells and attracting them to the site of infection.
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based upon expression of monocytic or granulocytic mar-
kers, into M-MDSCs and PMN-MDSCs, respectively, but 
are best defined by immune regulatory activity, eg, sup-
pression of the proliferation and activation of cytotoxic 
T lymphocytes.20,21 PMN-MDSCs are typically immature 
and phenotypically very similar to other neutrophils. 
Several MDSC-specific markers have been described, 
including lectin-type oxidized LDL receptor-1 (LOX-1) 
and secreted protein acidic and rich in cysteine 
(SPARC).22,23 MDSCs develop in the bone marrow, but 
can be actively recruited by solid tumors, where they are 
activated and directed against T lymphocytes.21 Various 
ongoing clinical trials employ inhibition of MDSC pro- 
tumorigenic activity to treat cancer.19 Apart from cancer, 
MDSCs are involved in a range of other diseases, includ-
ing infectious diseases and autoimmunity.24–26

Other neutrophil subsets have been proposed, including 
CD177+ (approximately half of peripheral blood neutro-
phils) and OLFM4+ (approximately a quarter of peripheral 
blood neutrophils) cells; however, more research is needed 
to determine their functional properties.17

While neutrophils play an important role in many dis-
eases, including infection, autoimmunity and cancer, they 
pose a challenge for those trying to study them.27–29 The 
average half-life of a neutrophil in the blood stream com-
prises only 6–8 h, and after purification of neutrophils from 
the blood the cells quickly go to apoptosis.30,31 Neutrophils 
do not proliferate, making it impossible to expand them 
in vitro; and cryopreservation of these cells has so far not 
been proven successful.1 Thus, research into neutrophils 
has to rely on cells freshly isolated from peripheral blood 
of human donors. This introduces donor-dependent varia-
tion in the experimental data. To counteract these problems, 
researchers tried to develop adequate neutrophil models, 
such as cell lines. For those functional studies that cannot 
rely on cell models, a standardization of protocols regarding 
neutrophil purification and culturing could be a solution. In 
this review, we provide an overview of the most commonly 
used models for neutrophil research. In addition, we 
describe the effects of glucose concentration, pH, oxygen 
tension and temperature on neutrophil function.

The HL-60 Cell Line as a Model for 
Human Neutrophils
The most commonly used cell line in neutrophil research 
is the HL-60 cell line, derived from a female Caucasian 
patient with acute promyelocytic leukemia.32,33 HL-60 is 

a suspension cell line which does not require growth 
supplements and proliferates relatively fast (doubling 
time 20–45 hours). A big advantage of HL-60 cells is 
that they are permissive to a range of genetic editing 
techniques, including lentiviral transduction, lipofectamine 
transfection, electroporation and nucleofection.34–38 

Importantly, HL-60 cells can be differentiated into neutro-
phil-like cells by treating them with all-trans retinoic acid 
(ATRA), polar-planar compounds (eg, dimethyl sulfoxide 
[DMSO] and dimethylformamide [DMF]), actinomycin 
D or dibutyryl cyclic AMP (dbcAMP).39–43 Other com-
pounds (eg, vitamin D) may lead to differentiation towards 
a more monocytic phenotype.44

Differentiation of HL-60 Cells into 
Granulocytes
The uncontrolled growth and lack of differentiation in HL- 
60 cells is largely dependent on the c-Myc gene.45 c-Myc 
is a transcription factor that controls cell differentiation, 
proliferation and apoptosis. While expression of c-Myc is 
high in all proliferating cells, it is rapidly downregulated 
upon terminal differentiation; not surprisingly, therefore, 
dysregulated c-Myc has been found in many types of 
cancer.46 In HL-60 cells, there is a more than ten-fold 
genomic amplification of c-Myc, which can be present 
both inside the chromosomes and in extrachromosomal 
structures.45,47,48 Interestingly, the extra copies have been 
shown to be more stable in later passages of HL-60 cells, 
correlating with a reduction in doubling time.48 A small 
percentage of the cell population differentiates sponta-
neously into granulocyte-like cells; these spontaneous 
granulocytes have been shown to have less c-Myc DNA 
than their undifferentiated sister cells.49 It is likely, how-
ever, that c-Myc is not the only player in the cancerous 
phenotype of HL-60 cells, as inhibition of c-Myc alone 
reduces proliferation and survival but does not necessarily 
result in granulocytic differentiation.50,51

Compounds most commonly used to differentiate HL- 
60 cells into granulocytes are ATRA and DMSO.39,40 

ATRA is a derivative of vitamin A, which binds preferen-
tially to the retinoic acid receptor A (RARα).52 Of note, 
vitamin A can be metabolized into both ATRA and 9-cis- 
retinoic acid, both of which have different physiological 
properties. However, older studies describing HL-60 dif-
ferentiation often make no distinction between the two, 
using the more generic term retinoic acid (RA). The 
effects of ATRA on normal adult hematopoiesis seem to 
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differ depending on the context; thus, it can both induce 
and inhibit proliferation and differentiation of neutrophil 
precursors.53 ATRA-induced differentiation mechanisms 
in HL-60 cells can be divided into receptor-dependent 
and receptor-independent effects. Receptor-dependent 
effects are mediated by RARα. RARα is a nuclear recep-
tor, which initiates gene transcription upon ligand 
binding.52 Activation of RARα by ATRA initiates multiple 
signaling pathways, among which the MAPK and the 
PI3K/Akt pathways.54,55 This ultimately results in growth 
arrest and cytoskeletal reorganizations needed for 
differentiation.56 In addition to these receptor-mediated 
effects, ATRA has been shown to block the transcription 
of c-Myc in a receptor-independent fashion.57

The mechanisms by which DMSO induces HL-60 dif-
ferentiation are much less clear. It is known that DMSO 
can induce a transcription elongation block of the c-Myc 
gene and inhibit its splicing upon prolonged exposure.58 In 
addition, DMSO has the capacity to eliminate extrachro-
mosomal structures containing amplified c-Myc gene.59 

Finally, DMSO has been shown to upregulate several 
kinases involved in intracellular signaling pathways, 
including Ras (involved in the MAPK pathway) and pro-
tein kinase C (PKC).60,61

Further in this paper, we will refer to undifferentiated 
HL-60 cells as uHL-60, and to differentiated HL-60 as 
dHL-60, either or not preceded by the specific 

differentiation agent (eg, DMSO-dHL-60). The complete 
overview of functions executed by dHL-60 cells is summar-
ized in Table 1.

HL-60 Cells to Study Chemotaxis
Chemotaxis in Neutrophils – An Overview
Chemotaxis is the directional movement of a cell along 
a chemical gradient. In order to migrate, the cell first 
needs to sense the presence of an inflammatory environ-
ment. While travelling through the blood vessels, neu-
trophils constantly attach and detach from the endothelial 
cell wall, a process called rolling. Rolling is mediated by 
three types of selectins: L-selectin (CD62L, present on 
leukocytes), E-selectin (present on endothelial cells) and 
P-selectin (present on endothelial cells and activated 
platelets). Selectins can bind to various ligands, the 
most studied of which is P-selectin glycoprotein ligand- 
1 (PSGL-1).62 Selectin-mediated interaction between 
neutrophils and endothelial cells is relatively weak, but 
during inflammation, release of various mediators (eg, 
tumor necrosis factor α [TNF-α], interleukin-1 β [IL-1β]) 
upregulates the expression of E-selectin, resulting in 
stronger binding.62 The process of rolling ensures that 
neutrophils can come in contact with chemokines (che-
motactic cytokines), which are captured on glycosami-
noglycans (GAGs) on the surface of endothelial cells.63 

The chemokines then bind to their receptors on the 

Table 1 Functions Which Differentiated HL-60 Cells are Capable of Executing

Function Stimulus Differentiation Agent References

Cell polarization fMLF DMSO, DMF [80,86]
CXCL8 ATRA, DMSO [86]

Chemotaxis fMLF DMSO, dbcAMP [81,86,87]
CXCL8 ATRA, DMSO [86]
LTB4 RA [87]

C5a dbcAMP [88]

ROS production PMA DMSO, ATRA [126,127]
fMLF DMSO [126]
Opsonized zymosan DMSO [127]

NETosis CIs DMSO, ATRA, DMF [134,141–143]
PMA ATRA, DMF [142,143]

Phagocytosis Saccharomyces Cerevisiae RA [146]
Latex beads DMSO, RA [87]

Antibody-coated bacteria DMF [114,115,147]

Complement-coated bacteria DMF [148]

Abbreviations: ATRA, all-trans retinoic acid; C5a, complement component 5a; CIs, calcium ionophores; CXCL8, CXC motif chemokine ligand 8; dbcAMP, dibutyryl cyclic 
AMP; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; fMLF, N-formyl-methionine-leucyl-phenylalanine; LTB4, leukotriene B4; PMA, phorbol 12-myristate 13-acetate; 
RA, retinoic acid; ROS, reactive oxygen species.
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surface of the neutrophils, initiating arrest, firm adhesion 
and transmigration through the endothelial layer.64

Apart from chemokines, three other groups of neutro-
phil chemoattractants have been described: lipid chemoat-
tractants (eg, Leukotriene B4 [LTB4], which binds to 
Leukotriene B4 receptor 1 and 2 [BLT1 and BLT2, respec-
tively]); peptides (eg, N-formyl-Met-Leu-Phe [fMLF], 
which binds to formyl peptide receptors 1 and 2 [FPR1 
and FPR2, respectively]); and complement anaphylatoxins 
(eg, C5a, which binds to C5a receptors 1 and 2 [C5aR1 
and C5aR2, respectively]).65 All chemoattractant receptors 
are G-protein coupled receptors (GPCRs) and converge 
into the same signaling pathways leading to migration.

The GPCR is coupled to a trimeric G-protein bound to 
GDP. Upon ligand binding, the G-protein is activated, 
exchanging the GDP for GTP. This leads to dissociation 
of the G-protein into a Gα and a Gβγ subunit. 
Subsequently, the Gβγ subunit initiates two independent 
intracellular signaling pathways, each of which contributes 
to neutrophil chemotaxis.66 First, the PLC/DAG pathway 
leads to activation of Rap1 and consequent mobilization of 
integrins, which ensure firm adhesion of the neutrophil to 
the endothelial wall.67 Second, the PI3K pathway leads, 
via the generation of PIP3, to the activation of Rac and 
Cdc42, which promote the accumulation of polymerized 
actin (filamentous actin [F-actin]) at the leading edge of 
the cell. The polymerized actin accumulates at the front of 
the cell (leading edge) and pushes the membrane 
forward.67 Meanwhile, at the rear end of the cell (uropod), 
the Rho-activated protein ROCK activates myosin II, 
which binds to the actin filaments and ensures retraction 
of the uropod.68 To cross the endothelial layer (diaped-
esis), the neutrophil needs to either crawl between the cells 
(paracellular route) or go directly through them (transcel-
lular route). In both cases, the neutrophils activate ICAM- 

1 molecules on the surface of the endothelial cells, which 
either induces the formation of intracellular channels 
(employed in the transcellular route) or, together with the 
endothelial molecule VCAM-1, destabilizes VE-cadherin, 
a major component of adherens junctions between the 
endothelial cells.69

Chemoattractant Receptors on dHL-60 Cells
Upon granulocytic differentiation, HL-60 cells have been 
shown to upregulate receptors for fMLF, LTB4, C5a, C3a, 
platelet-activating factor (PAF) and CXC chemokines 
(Table 2).70–77 The levels of CXCR1 and CXCR2 have 
been reported to be relatively low compared to wild-type 
neutrophils.77

Interestingly, a study by Jacobs et al showed that the 
G-protein/receptor complexes for fMLF, LTB4 and C5a on 
DMSO-dHL-60 have a different affinity for GTP binding, 
resulting in different potency of the chemoattractant. The 
authors demonstrate that DMSO-dHL-60 cells preferen-
tially respond to fMLF, less readily to C5a and least read-
ily to LTB4.78

Expression of Adhesion Molecules on HL-60 Cells
The leukocyte-specific CD62L is virtually absent on uHL- 
60 and only appears upon differentiation, although the 
expression levels do not reach those of peripheral blood 
neutrophils.82 By contrast, PSGL-1 is expressed on both 
dHL-60 and uHL-60 cells at similar levels.83 The upregu-
lation of CD62L upon differentiation is reflected in the 
rolling speed of the cells: dHL-60 cells rolled significantly 
faster than uHL-60 cells when placed in a flow chamber 
coated with P-selectin.83 In addition, Sjögren et al reported 
that differentiation of HL-60 cells with DMSO induced the 
surface expression of CD11b, a component of the β2- 
integrin Mac-1 (CD11b/CD18).82 Since dHL-60 cells do 

Table 2 Chemoattractant Receptors Expressed on the Surface of Differentiated HL-60 Cells

Receptor Ligand Differentiation Agenta Reference

BLT LTB4 DMSO, ATRA [73,79]
C3aR C3a dbcAMP [74]

C5aR C5a dbcAMP [70,74]

CXCR1 (low) CXCL6,8 ATRA, DMSO [76]
CXCR2 (low) CXCL1,2,3,5,6,7,8 DMSO [77]

FPR N-formyl peptides (eg fMLF) dbcAMP, DMF, DMSO [70,71,80,81]

PAF receptor PAF DMSO [75]

Note: aCompounds that have been demonstrated to induce receptor expression on HL-60 cells. 
Abbreviations: ATRA, all-trans retinoic acid; BLT, leukotriene B4 receptor; C3a, complement component 3a; C3aR, C3a receptor; C5a, complement component 5a; C5aR, 
C5a receptor; CXCL, CXC motif chemokine ligand; CXCR, CXC chemokine receptor; dbcAMP, dibutyryl cyclic AMP; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; 
fMLF, N-formyl-methionine-leucyl-phenylalanine; FPR, formyl peptide receptor; PAF, platelet-activating factor.
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not have CD11b-containing specific granules, the authors 
suggest that the CD11b must be coming from a different 
intracellular source.84 In addition, the same authors 
showed that while DMSO caused a strong upregulation 
of CD11b and CD62L, the effect of RA was much more 
limited, which was reflected in the reduced migratory 
capacity of RA-dHL-60.82 Finally, the expression of the 
β2-integrin CD11c/CD18 is slightly upregulated by differ-
entiation with DMSO or RA, although the surface protein 
expression remains low.85

Chemotaxis Function in dHL-60 Cells
It has been demonstrated that dHL-60 cells form actin 
filaments, visibly polarize and directionally migrate in 
response to fMLF, LTB4, C5a and CXCL8, indicating 
that pathways downstream of the receptors are mostly 
intact.72,80,86–89 To confirm this, Hauert et al specifically 
verified that the PI3K and Rho pathways in dHL-60 cells 
are identical to those found in peripheral blood 
neutrophils.89 Of note, a reduced response towards fMLF 
has been reported in ATRA-dHL-60.79,86,87,90

Despite the chemotaxis pathways being fully functional 
in dHL-60 cells, most studies report that the average 
response is slightly lower than that of peripheral blood 
neutrophils, probably due to reduced expression levels of 
the receptors.77,80,89

Many studies report the inability of undifferentiated 
HL-60 cells to migrate in response to chemotactic 
stimuli.80,82,89 While this is perfectly explainable by low 
expression of chemoattractant receptors and adhesion 
molecules (vide supra), another study has shown that 
HL-60 synthesize large amounts of actin upon 
differentiation.91 Perhaps the actin content in undifferen-
tiated HL-60 cells is too low for efficient cell polarization 
and movement, contributing to their inability to transmi-
grate. This hypothesis is supported by the findings of 
Prossnitz et al, who transfected uHL-60 cells with FPR 
and observed increased but insufficient actin polymeriza-
tion in response to fMLF stimulation. By contrast, other 
responses to fMLF, such as mobilization of intracellular 
calcium, were intact in this study.92

Transgenic HL-60-Derived Sublines for Chemotaxis 
Studies
Certain limitations of dHL-60 cells (eg, low receptor expres-
sion or affinity) can be overcome by creating transgenic 
sublines. For example, Kikuchi-Ueda et al established an 
HL-60 cell line overexpressing CXCR1.76 When 

differentiated with ATRA, these cells showed a fourfold 
increase in chemotaxis towards CXCL8 as compared to 
conventional dHL-60 cells. Similarly, HL-60 cells overex-
pressing CXCR2 and FPR have been created.77,92 These 
sublines can be useful for studying receptor signaling in 
more detail, or for testing selective receptor inhibitors. For 
example, targeting CXCR2 might alleviate lung injury 
induced by an excessive neutrophil influx.93

Recently, Garner et al created an HL-60-derived cell 
line which expressed green fluorescent protein (GFP)- 
labeled β-actin, the most abundant actin isoform in 
neutrophils.94 When differentiated with DMSO, this 
novel cell line has been shown to migrate towards fMLF 
with an efficiency approaching that of wild-type neutro-
phils, making it an interesting model to study actin 
dynamics during neutrophil chemotaxis.

HL-60 Cells for the Study of Phagocytosis
Phagocytosis in Neutrophils – An Overview
Phagocytosis is a multi-step process that results in the 
engulfment of particles by a cell; to achieve this, distinct 
cellular mechanisms are required. First, the pathogen is 
recognized by a receptor on the surface of the neutrophil. 
This can be either an opsonic or a non-opsonic receptor. 
An example of non-opsonic receptors are C-type lectins, 
such as Dectin-1 (which recognizes β-glucan on fungal 
cells and yeast polysaccharide) and Mincle (which recog-
nizes the trehalose dimycolate [TDM] motif on mycobac-
terial cell walls).95 To recognize opsonized particles, 
neutrophils employ either Fcγ receptors (FcγRs) (eg, 
CD32 or CD16), which bind the constant region of IgG 
antibodies, or complement receptors (eg, CR3 [CD11b/ 
CD18] or CR4 [CD11c/CD18], both of which recognize 
proteolytic fragments of C3b).96,97 Upon binding, the 
receptors initiate intracellular signaling cascades, which 
differ for each receptor but have a similar outcome. 
Activation of small GTPases (eg, Rac2 in case of FcγRs 
or Rho in case of complement receptors) ultimately results 
in actin remodeling, leading to the uptake of the bound 
particle in a phagosome; this can either or not be mediated 
by the formation of pseudopodia.95 In addition, the actin 
remodeling translocates azurophilic and specific granules 
closer to the phagosome. At the same time, an increase in 
intracellular calcium concentration induces the formation 
of pores in the phagosome, allowing fusion between the 
phagosome and the granules to take place.98 This fusion 
leads to exposure of the pathogen to antimicrobial peptides 
(eg, defensins) and proteases (eg, NE); in case of specific 
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granules, this process is dependent on free cytosolic cal-
cium. Finally, the recruitment of the NADPH oxidase 
complex to the phagosome enhances pathogen killing 
through generation of different reactive oxygen species 
(ROS), including hydrogen peroxide and hypochlorous 
acid.99 Priming of neutrophils (eg, with TNF-α) has been 
shown to improve phagocytosis efficiency by increasing 
the number of phagocytic receptors on the plasma mem-
brane and enhancing their affinity towards their ligand, as 
well as stimulating degranulation and superoxide 
production.100

Phagocytic Receptors on (d)HL-60 Cells
In contrast to chemoattractant receptors, some phagocytic 
receptors are expressed on undifferentiated HL-60 cells, 
albeit at low levels (Table 3). Expression of C1qRp, CR1, 
CR3, CR4 and FcγRII increases upon differentiation, 
although the receptor levels usually do not reach those of 
peripheral blood neutrophils.85,101

Phagocytosis Function in HL-60 Cells
Undifferentiated HL-60 cells have very low phagocytic abil-
ity, if any. uHL-60 were shown not to have cytotoxic activity 
towards opsonized chicken erythrocyte target cells; stimula-
tion with IFN-γ induced some cell killing but this was not 
nearly as effective as compared to peripheral blood 
neutrophils.107 Upon differentiation, HL-60 cells have been 

shown to effectively phagocytose various particles, including 
latex beads, Escherichia coli, opsonized yeast and opsonized 
bacteria.33,87,111–116 Lerm et al investigated the phagocytic 
pathway in more detail by constitutively expressing Cdc42 
in dHL-60 cells. Cdc42 is a small GTPase which has a role 
in actin polymerization; constitutively activated Cdc42 led to 
polarization of the cells in absence of stimulus and induced 
accumulation of actin filaments around phagosomes, pre-
venting their fusion with azurophilic granules.117 Another 
group demonstrated that inhibition of this fusion can be 
employed by Streptococcus pyogenes which can survive 
inside both dHL-60 cells and peripheral blood neutrophils.84

While the pathogen uptake mechanisms in dHL-60 
cells seem to be mostly functional, the intracellular killing 
is much less efficient.112,116,118,119 This could be explained 
by the fact that HL-60 cells lack specific granules and do 
not acquire them upon differentiation.84

HL-60 Cells to Study Neutrophil 
Respiratory Burst
Respiratory Burst in Neutrophils – An Overview
Another weapon in the arsenal of neutrophils is the 
respiratory burst, characterized by high production of 
ROS. These are highly reactive derivatives of oxygen 
molecules, capable of damaging pathogens both inside 
and outside the cell. Central to the ROS production is the 

Table 3 Expression of Phagocytic Receptors on Undifferentiated (uHL-60) and Differentiated (dHL-60) Cells

Receptor Examples of Ligands Expression on uHL-60 Expression on dHL-60 References

C1qRp C1q?a - DMSO: - or + 

RA: -

[101,102]

CR1 (CD35) C1q, C3b, C4b, MBL - DMSO: ++ 

RA: ++

[103–105]

CR3 (CD11b/CD18) iC3b + DMSO: ++ 

RA: ++

[82,101,102,104,106]

CR4 (CD11c/CD18) iC3b - DMSO: + 

RA: +

[85]

FcγRI IgG1, IgG3, IgG4, IgG immune complexes + or ++ DMSO: ++ 

ATRA: ++ 

DMF: ++

[107–109]

FcγRII IgG immune complexes + or ++ RA: ++ [107,108,110]

FcγRIII IgG3, IgG immune complexes - unknown [107,108]

Note: aThe question mark indicates that the affinity of C1qRp for C1q is still under debate. 
Abbreviations: ATRA, all-trans retinoic acid; C1q, complement component 1q; C1qRp, C1q receptor; C3b, complement component 3b; C4b, complement component 4b; 
CR, complement receptor; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; FcγR, Fcγ receptor; IgG, immunoglobulin G; RA, retinoic acid; -, no expression; +, low 
expression; ++, moderate to high expression.
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NADPH oxidase complex, which is called NOX2 in 
neutrophils.120 NOX2 consists of a catalytic core (flavo-
cytochrome b558 or cyt b558) and a number of proteins 
which are required for its activation. Cyt b558 resides in the 
membrane surrounding the cell or the specific granules, 
and consists of the p22phox (α subunit) and the gp91phox (β 
subunit). p40phox, p47phox and p67phox together form 
a complex that is located in the cytosol under resting 
conditions. Upon activation of the neutrophil, p47phox is 
phosphorylated at multiple sites by protein kinases, such 
as PKC, p38 MAPK or p21-activated kinase (PAK).121 

This leads to the translocation of the p40phox/p47phox/ 
p67phox complex to the membrane, where it associates 
with cyt b558 to form a NOX2 complex. Additional bind-
ing of the small GTPase Rac1 improves the binding 
between the NOX2 components necessary for 
activation.120 The NADPH oxidase can then produce 
superoxide anions (O2

−) by transferring electrons from 
the cytosolic NADPH to oxygen molecules on the other 
side of the membrane. The superoxide dismutates into 
hydrogen peroxide (H2O2), after which the enzyme MPO 
converts it to other oxygen species, such as hypochlorous 
acid.122 MPO is produced in large quantities at the pro-
myelocytic stage of neutrophil development, upon which it 
is stored in azurophilic granules until neutrophil activa-
tion; in terminally differentiated cells, MPO mRNA is 
usually not detectable.123

Respiratory Burst in dHL-60 Cells
Undifferentiated HL-60 cells have been shown to 
express both a functional NADPH oxidase and MPO, 
and thus to be capable of ROS production; however, 
the expression of gp91phox, p47phox and p67phox RNA 
was found to be considerably higher in dHL-60 
cells.123,124 Interestingly, the generation of ROS has 
been found to be critically important for the survival of 
the cells, as the addition of antioxidants significantly 
reduced their viability.125 Stimulation of uHL-60 cells 
with compounds that normally induce ROS production 
(eg, phorbol 12-myristate 13-acetate [PMA], a direct 
activator of PKC) did not trigger an increased ROS 
production by uHL-60 cells.125,126 In contrast, dHL-60 
cells responded to PMA and fMLF stimulation with 
a prompt peak in ROS production, accompanied by 
a decrease in mRNA expression of MPO.126 The super-
oxide production by DMSO-dHL-60 cells in response to 
PMA and opsonized zymosan was comparable to that of 
peripheral blood neutrophils, but the total amount of 

radicals was lower in dHL-60 cells, possibly indicating 
a reduced function of proteins downstream of the NOX2 
complex, or an increased activity of anti-oxidative 
enzymes.127 Of note, several studies reported that 
ATRA-dHL-60 produce a less powerful respiratory 
burst in response to fMLF as compared to DMSO-dHL 
-60.79,90 This is consistent with the observation that 
ATRA only induces the expression of fMLF receptors 
with a low ligand affinity.79

Several studies used RNA interference for better char-
acterization of pathways involved in the respiratory burst. 
Thus, depletion of PKCβ in dHL-60 cells resulted in 
decreased translocation of p47phox to the plasma membrane 
and subsequent reduction in superoxide production, 
whereas inhibition of PKCδ reduced superoxide production 
without affecting p47phox location.128,129 In addition, dHL- 
60 were shown to be sensitive to priming with TNF-α.130

Finally, the reader is referred to an excellent paper by 
Seitz et al for a comparison of methods best suited to 
detect the respiratory burst in dHL-60 cells.131

HL-60 Cells to Study Neutrophil 
Extracellular Traps
NETosis – An Overview
NETosis, ie, cell death featuring expulsion of neutrophil 
extracellular traps (NETs), is a defense mechanism in 
which the neutrophil releases its DNA as decondensed 
chromatin mixed with histones and granule proteins. 
Currently, there is still much debate on the origin of the 
expulsed DNA (ie, nuclear or mitochondrial) as well as 
whether the cell releasing a NET necessarily dies (suicidal 
NETosis) or remains viable and capable of exerting other 
functions in antimicrobial defense (vital NETosis).132 

However, most studies agree that there are three central 
players in the process of NETosis: ROS, NE and protein 
arginase deiminase 4 (PAD4). ROS are produced upon 
assembly and activation of the NOX2 complex; during 
NETosis, they cause damage to the nuclear and granular 
membranes, allowing contact between nuclear and cyto-
plasmic content. NE and granular proteases, empowered 
by MPO, cleave histones to facilitate chromatin deconden-
sation. PAD4 is a calcium-dependent enzyme which pro-
motes chromatin decondensation by citrullinating the 
histones, thereby altering their charge and weakening 
their interaction with DNA.133 The extended decondensa-
tion of chromatin leads to the rupture of the plasma 
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membrane and the release of NETs into the extracellular 
space.134

Both physiological and artificial stimuli have been 
demonstrated to induce NETosis. Physiological stimuli 
include the bacterial lipopolysaccharide (LPS), CXCL8 
and monosodium urate (MSU) crystals.135,136 Two of the 
artificial stimuli commonly used in NETosis research, are 
PMA and calcium ionophores (CIs).137 PMA is a molecule 
that freely crosses the plasma membrane and directly 
activates PKC which on its turn promotes NOX2 
activation.138 CIs are a group of molecules which trigger 
calcium release into the cytoplasm from the endoplasmic 
reticulum stores.139

NETosis in dHL-60 Cells
The first study into NET formation by HL-60 cells was 
performed in 2008 by Neeli et al, who demonstrated 
histone citrullination in ATRA-dHL-60 cells stimulated 
with a wide range of stimuli (eg, CIs, TNF-α, fMLF, 
LPS). The histone citrullination was completely indepen-
dent of apoptosis, as no caspase activation was detected; 
vice versa, apoptosis-inducing compounds did not induce 
citrullination of histones. A comparison between dHL-60 
and peripheral blood neutrophils showed that the extent 
and timespan of the histone citrullination were very simi-
lar between the two, but that dHL-60 cells were only 
triggered by much higher concentrations of the 
stimuli.140 The data of Neeli et al were complemented 
by a later study, which showed that the expression of 
PAD4 increased upon differentiation of HL-60 cells 
with DMSO, and that stimulation with a CI led to expul-
sion of NETs.141 HL-60 cells deficient in PAD4 showed 
a delay in DNA decondensation and largely failed to 
expulse NETs due to defects in plasma membrane 
rupture.134 Interestingly, NETs produced by dHL-60 
cells in response to PMA and a CI had a different mor-
phology from those produced by peripheral blood neutro-
phils: the strands of DNA were much shorter and 
remained close to the cells.142 Another study found that 
both DMSO- and ATRA-dHL-60 cells were capable of 
producing NETs in response to Staphylococcus aureus, 
albeit much less efficient than peripheral blood 
neutrophils.119

An extensive study by Manda-Handzlik et al compared 
the NET-forming capacity of HL-60 cells after differentia-
tion with various compounds (DMSO, ATRA, DMF). 
Surprisingly, the results indicated differences between the 
differentiation agents: ATRA-dHL-60 cells only released 

NETs in response to PMA; DMSO-dHL-60 cells only in 
response to a CI, and DMF-dHL-60 cells in response to 
both.142 However, these data have been contradicted by 
other studies, which demonstrated that ATRA-dHL-60 
cells can also react to CIs and DMSO-dHL-60 cells also 
to PMA.143,144

Importantly, Takishita et al found that the DNA 
expulsed by dHL-60 cells was genomic rather than mito-
chondrial, as removal of mitochondrial DNA had no effect 
on PMA-induced NET release.143

HL-60 Cells to Study Immunosuppressive 
Function of Neutrophils
Recently, Zhang et al described the generation of MDSC- 
like neutrophils from HL-60 cells.145 To this end, the cells 
were differentiated with DMSO and treated with 
a combination of granulocyte-monocyte colony- 
stimulating factor (GM-CSF) and IL-6. The resulting 
cells suppressed cytokine production and apoptosis of 
T lymphocytes. In addition, MDSC-like dHL-60 cells 
had a gene expression signature that was very similar to 
that of natural MDSC cells. This is a promising model for 
studying neutrophil immunosuppressive function, eg, in 
cancer and autoimmunity research.

Cell Lines Less Commonly Used as 
Neutrophil Model
PLB-985 Cell Line
PLB-985 cells were introduced in 1987 as a novel cell 
line; however, later research revealed PLB-985 to be 
a subline of HL-60, having nearly identical DNA and 
very similar gene expression.149–151

NB4 Cell Line
NB4 is a cell line originally established in 1991 from 
a female patient with relapsed acute promyelocytic leuke-
mia. It is cultured in RPMI-1640 medium with serum 
supplementation, but without any other additives.152 The 
cell line has mainly attracted attention as a model to study 
cell differentiation in leukemia, but NB4 cells treated with 
ATRA display many features of terminally differentiated 
neutrophils and are therefore perfectly suitable for study-
ing neutrophil function as well.152,153 In contrast to HL-60 
cells, NB4 cells express a fusion protein that is formed 
between the retinoid receptor RARα and the tumor- 
suppressor protein promyelocytic leukemia (PML).154 

This fusion protein, PML-RARα, binds to transcriptional 
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targets of ATRA but does not initiate transcription. 
Addition of substantial amounts of ATRA displaces the 
fusion protein from the DNA and allows normal transcrip-
tion of ATRA target genes.155 Differentiated NB4 cells are 
capable of producing ROS and possess functional azuro-
philic granules but do not contain specific or gelatinase 
granules; while the presence of both lactoferrin and MMP- 
9 has been demonstrated, they are not contained in 
granules.153,156–158 A study by Barber et al compared the 
changes in expression of CD markers between NB4 and 
HL-60 cells upon ATRA differentiation (Table 4).159 The 
authors suggest that the difference in marker expression 
can be explained by the actions of PML-RARα in NB4 
cells, whose function may differ from wildtype RARα 
even after ATRA binding.

Kasumi-1 Cell Line
Kasumi-1 is a cell line established in 1991 from a male 
pediatric patient with acute myeloblastic leukemia. 
Kasumi-1 cells proliferate with a doubling time of 40–45 
hours, but require the presence of stimulatory cytokines 
(eg, granulocyte colony-stimulating factor [G-CSF], IL-6) 
in the culture medium.160 Whereas Kasumi-1 have mostly 
been of interest for leukemia rather than neutrophil 
research, recently Schoenherr et al found that silencing 
of the RUNX1-ETO oncogene induced features of neutro-
phil differentiation, including reduced proliferation and 

higher expression of NE and cathepsin G, markers of 
azurophilic granules.161 As Kasumi-1 cells are in a very 
early stage of myeloid differentiation, this model might 
provide research opportunities for studying (early) neutro-
phil development.

Induced Pluripotent Stem Cells as 
a Model for Human Neutrophils
Another emerging alternative for peripheral blood neutro-
phils is the use of induced pluripotent stem cells (iPSCs). 
iPSCs can be derived from any somatic cell by “erasing” 
its differentiation memory and thus reverting it to 
a pluripotent state. This can be done by the addition of 
several transcription factors crucial for maintaining the 
pluripotent phenotype.162 A commonly used combination 
of transcription factors is OCT4, SOX2, KLF4 and 
c-MYC. These factors can be added to terminally differ-
entiated cells, eg, through plasmid transfection or retro-
viral transduction.162 Other reprogramming factors are 
used less often, and are described in detail by Xiao et al163.

Upon their generation, iPSCs can be expanded and/or 
cryopreserved.164 Subsequently, the pluripotent stem cells 
can be differentiated into a whole range of cell types, 
including hematopoietic cells and specifically 
neutrophils.165,166 Differentiation is performed by cultur-
ing the iPSCs in the presence of a combination of specific 
growth factors and cytokines, including stem cell factor 
(SCF), IL-6 and G-CSF. A detailed protocol for neutro-
philic differentiation of iPSCs has been described by 
Sweeney et al.167 A simpler method for the generation of 
iPSC-derived neutrophils has been proposed by Lachmann 
et al in 2015; this protocol relies on the addition of only 
two cytokines: IL-3 and G-CSF.168 However, neutrophils 
obtained with this method have been shown to be less fully 
differentiated and less capable of ROS production and 
bacterial killing.168,169

The use of iPSCs has both advantages and disadvan-
tages compared to other models for human neutrophils. 
One obvious advantage is the close resemblance of iPSC- 
derived neutrophils to neutrophils found in peripheral 
blood, as shown by the presence of all neutrophil-specific 
granules. In addition, ROS production, phagocytic activity 
and chemotaxis capacity of iPSCs are very similar to that 
of peripheral blood neutrophils.166 Another advantage is 
the possibility to create disease-specific cell lines by gen-
erating iPSCs from patients with different mutations. This 
has been elegantly illustrated by Brault et al, who 

Table 4 Changes in Expression of CD Markers on HL-60 and NB4 
Cells Upon ATRA Differentiationa, as Described by Barber et al159

Marker HL-60 NB4 Marker HL-60 NB4

CD9 - ↓ CD45 ↑ -
CD11a - ↑ CD45RO ↑ ↓
CD11b ↑ ↑ CD53 ↑ ↑
CD11c ↑ ↑ CD54 ↑ ↑
CD13 - ↓ CD64 ↑ ↑
CD14 - ↑ CD65 - ↑
CD29 ↓ ↓ CD66c ↑ ↑
CD31 - ↓ CD95 ↓ -

CD32 - ↑ CD117 ↓ -

CD36 ↑ - CD126 - ↑
CD38 ↑ ↓ CD138 - ↑
CD43 ↑ ↓ TCRα/β - ↑
CD44 ↓ ↓

Notes: aThe table only contains markers that were detectable on undifferentiated 
cells. A change is defined as an increase or reduction of two-fold or more. 
Abbreviations: CD, cluster of differentiation; TCR, T cell receptor; -, no change in 
expression; ↑, expression increased after differentiation; ↓, expression reduced 
after differentiation.
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established iPSC cell lines from patients with chronic 
granulomatous disease (CGD), a genetic disorder charac-
terized by dysfunctional neutrophils which are unable to 
produce ROS.170

Disadvantages associated with the use of iPSCs for 
neutrophil research are mostly practical. The generation 
of iPSC-derived neutrophils takes at least a month even if 
the iPSCs themselves are already available.167 In addition, 
the process is expensive due to the large amounts of 
cytokines required for the differentiation. Therefore, 
extra care is advised when planning the experiments.

Neutrophil Function in vitro – Effect 
of Environmental Factors
Glucose Concentration
Neutrophils can only be kept alive within a short time frame, 
but different buffer solutions are suitable, ranging from 
phosphate-buffered saline (PBS) to glucose-supplemented 
culturing media, such as RPMI-1640 (glucose concentration 
11.1 mM) or DMEM (glucose concentration 5.6 or 25 
mM).171,172 For comparison, the fasting blood glucose levels 
in healthy individuals range from 3.5 to 5.5 mM.173 Studies 
addressing the effect of glucose on neutrophil function have 
shown that pre-incubation of neutrophils in medium contain-
ing more than 5 mM glucose led to reduced chemotaxis, 
phagocytosis and bactericidal capacity.174,175 Above 11.1 
mM, there was also a reduction in respiratory burst, actin 
polymerization and neutrophil adhesiveness.174,176,177 

Menegazzo et al reported that at 25 mM, glucose promoted 
the formation of NETs; however, this was contradicted by the 
group of Joshi et al, who stated that high glucose actually 
impaired NET formation.178,179

Of note, reduced chemotaxis and ROS production were 
also reported when neutrophils were pre-incubated in glu-
cose-free medium, indicating that there is an optimal glu-
cose concentration at which neutrophil function is 
maximal.175,180 Interestingly, glucose had no effect on 
neutrophil viability.174,180

pH
In healthy individuals, the pH of blood lies between 7.35 
and 7.45, but at sites of inflammation, the pH often drops 
to 7.0 or lower.181,182 Low pH can greatly influence the 
function of neutrophils. In a more acidic environment, 
neutrophils will produce less ROS and release fewer 
NETs.183–186 Neutrophil chemotaxis is optimal around 
pH 7.2–7.5 and is inhibited by pH values outside that 

range.187,188 In addition, pH values under 7.2 have been 
shown to inhibit phagocytosis.189 In contrast, other neu-
trophil functions, such as release of specific granules and 
adhesion to endothelium, can be promoted in an acidic 
environment.189,190 In addition, Geffner et al observed an 
increased cytotoxic capacity of neutrophils under low pH, 
despite earlier reports of an inhibited respiratory burst in 
acidic conditions.191 The authors hypothesize that while 
the production of some ROS species is inhibited, the 
production of others may be increased, contributing to 
neutrophil cytotoxicity; however, more research is needed 
to test this hypothesis.

Oxygen Levels
Atmospheric oxygen tension equals 21 kPa, but in the 
circulation this value drops to 5–13 kPa.192 In tissues, 
especially during inflammation, hypoxia can occur as the 
oxygen tension can drop below 2.5 kPa.192 Examples of 
factors that contribute to this low oxygen tension are high 
oxygen consumption by neutrophils (fueling the respira-
tory burst) and depletion of oxygen by the invading 
pathogen.193,194 Thus, in the human body, neutrophils 
often exert their function under hypoxia. This is important 
to realize, since most experiments on human neutrophils 
are routinely performed under atmospheric oxygen pres-
sure, and the results of these experiments may not neces-
sarily reflect the situation in vivo.

Hypoxia has two major effects on neutrophil function. 
Firstly, the low availability of oxygen molecules restricts 
the production of reactive oxygen species.195–200 

Depending on the extent of hypoxia, this can have an 
inhibitory effect on the formation of NETs and bactericidal 
activity.201–203 Vice versa, exposing neutrophils to hyper-
oxia leads to increased respiratory burst.204

Secondly, hypoxia significantly delays neutrophil apop-
tosis, a feature which is dependent on Hypoxia-Inducible 
Factor 1α (HIF-1α).195–200 HIF-1α forms a heterodimer 
with HIF-1β, constituting the transcription factor HIF-1.205 

Under normoxic conditions, the proline residues of the HIF- 
1α protein are hydroxylated by prolyl hydroxylases.206 This 
modification promotes the interaction of HIF-1α with the von 
Hippel-Lindau tumor-suppressor protein (VHL), inducing 
ubiquitylation and consequent proteasomal degradation of 
HIF-1α.207 As prolyl hydroxylases require the presence of 
oxygen as a co-factor, their function is inhibited under 
hypoxic conditions, resulting in the preservation of HIF- 
1α.208 HIF-1α can then migrate to the nucleus, associate 
with HIF-1β and initiate the transcription of genes involved 
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in various processes, including glycolysis, angiogenesis and 
cell migration.209–211 It has been suggested that HIF-1α 
inhibits neutrophil apoptosis by upregulating NF-κB signal-
ing, which can stimulate the transcription of anti-apoptotic 
factors.199,212

In addition to these two hypoxia-driven effects, a few 
studies have shown that low oxygen tension stimulates 
degranulation, which was found to be independent of de 
novo protein synthesis.202,213

Most studies found no effect of hypoxia on the expression 
of surface receptors, including receptors for CXCL8, fMLF 
and GM-CSF, and very little effect on the release of inflam-
matory mediators, such as CXCL8, vascular-endothelial 
growth factor (VEGF), IL-17 and IL-6.195,203,214–217 In addi-
tion, separate studies have suggested that hypoxia might 
promote phagocytosis and render neutrophils less responsive 
to glucocorticoids and inflammatory mediators such as TNF- 
α and CXCL8, the latter being linked to dysfunction of the 
PLC/DAG signaling pathway downstream of the GPCR 
receptor.215,218,219 As the PLC/DAG pathway is involved in 
the activation of integrins (vide supra), it is not surprising that 
some studies report an inhibitory effect of hypoxia on the 
upregulation of CD11b/CD18 and neutrophil 
migration.220,221 Another study reports no difference in che-
motaxis between neutrophils under normoxic and hypoxic 
conditions.203

Temperature
While normal body temperature is around 37°C, purifica-
tion of neutrophils from peripheral blood is commonly done 
at room temperature. It is highly advisable not to perform 

functional tests at room temperature, as neutrophil phago-
cytosis, bacterial killing, chemotaxis, adhesion and ROS 
production are all significantly decreased at room tempera-
ture as compared to 37°C.184,187,222–227 In addition, it has 
been demonstrated that several receptors and proton chan-
nels have a reduced activity at room temperature.228–231 

Reassuringly, re-warming the cells to 37°C after incubating 
them at room temperature or even at 4°C has been shown to 
restore neutrophil functionality.227,232

At inflammatory sites, the temperature can be higher than 
37°C; therefore, the functionality of neutrophils at higher 
temperatures might also be of interest.233 The majority of 
studies show that neutrophils are in general less responsive to 
activating stimuli at temperatures above 41°C.222–224,234

Concluding Remarks
Neutrophils are an essential part of the innate immune 
system, and since 1979 several granulocytic cell lines 

Table 5 Advantages and Limitations of Different Cell Models for Neutrophil Research

Cell Model Advantages Limitations

HL-60 - Most commonly used, many protocols available 

- Suitable for genetic editing 
- NETosis described 

- Easy to culture 

- Immunosuppressive differentiation described

- Differentiation mechanism 

not entirely clear 
- Bacterial killing inefficient 

- No specific/gelatinase granules

PLB-985* Same as HL-60 Same as HL-60

NB4 - Clear differentiation mechanism 

- Easy to culture

- No specific/gelatinase granules 

- Few protocols available

Kasumi-1 - Suitable for studying early neutrophil differentiation - Few protocols available 

- Expensive to culture

Induced pluripotent stem cells - Closely resembling wildtype neutrophils 

- Patient-specific cell lines can be created

- Expensive to culture 

- Protocol time-consuming

Note: *Subline of HL-60 cells.

Table 6 Effect of Environmental Factors on Neutrophil Function

Neutrophil 
Function

High 
Glucose

Low 
pH

Hypoxia Low 
Temperature

Chemotaxis ↓ ↓ – ↓
Phagocytosis ↓ ↓ ↑ ↓
ROS production ↓ ↓/↑ ↓ ↓
NETosis ↓/↑ ↓ ↓ ?

Bacterial killing ↓ ↑ ↓ ↓
Degranulation ? ↑ ↑ ?
Survival – ? ↑ ?

Abbreviations: ROS, reactive oxygen species; ↑, function enhanced by environ-
mental factor; ↓, function inhibited by environmental factor; -, no change in func-
tion; ?, change in function unknown; ↓/↑, contradictory results reported.
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have been established and characterized. Especially the 
HL-60 cell line has received attention over the past dec-
ades. While many functional assays have been performed 
with differentiated HL-60 cells, no consensus has so far 
been reached on which differentiation agent produces cells 
that are phenotypically and functionally closest to neutro-
phils. Perhaps future research will shed more light on this, 
as well as provide a more thorough comparison between 
HL-60 and other granulocytic cell lines. Of course, cell 
lines provide an alternative for the isolation of fresh neu-
trophils from blood and can be easily transfected, but 
cannot completely replace those cells. Novel findings 
will always have to be confirmed in final experiments 
with the primary cells. A summary of the advantages and 
limitations of different cell lines is displayed in Table 5.

Induced pluripotent cell lines provide another alterna-
tive for the use of donor neutrophils. Although lengthy and 
expensive for now, the procedure for creating iPSC- 
derived neutrophils will hopefully become simpler in the 
future, allowing for a model highly resembling human 
neutrophils from peripheral blood.

Environmental factors, such as temperature, pH and oxy-
gen and glucose levels, have proven to have a strong influence 
on the function of neutrophils isolated from the blood. 
Variations in these factors are not only important for laboratory 
work, but are also found in physiological conditions, eg, dur-
ing inflammation. Table 6 summarizes the effect of changes in 
environment on neutrophil function. Depending on the context 
of the research, these factors can be adjusted to create an 
environment as close to the human body as possible.
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