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a b s t r a c t

COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics
such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict
the evolution of this epidemic. These analyses propose models for specific geographical areas, specific
countries, or create a global model. The models give us the possibility to predict the virus behavior, it
could be used to make future response plans. This work presents an analysis of COVID-19 spread that
shows a different angle for the whole world, through 6 geographic regions (continents). We propose
to create a relationship between the countries, which are in the same geographical area to predict the
advance of the virus. The countries in the same geographic region have variables with similar values
(quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to
performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions.
Then, we construct a model for these regions using the ARIMA parameters, the population per 1M
people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19
cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between
COVID-19 behavior and population in a region, these results show us the opportunity to create more
models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In December 2019 in Wuhan, China started the pandemic of
OVID-19, commonly known as Coronavirus, which has caused
avoc around the world. World Health organization reported on
une 7 [1], the virus is in 216 Countries, there are 6 750 521
ctive cases, and it has produced 395 779 deaths. For this reason,
cientists around the world have been focused on topics such
etect it [2], prevent it [3], cure it [4], and predict it [5–13]. To
redict the coronavirus different schemes has been applied, for
xample in [11] proposes an approach, which is based Composite
onte Carlo enhanced by deep learning and fuzzy rule induction

o predict the COVID-19, [14] detailed models for forecasting the
ourse of the pandemic, these models demonstrate the utility of
arsimonious models for early-time data. Using the official data
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forecasting, [15] studied the spread of COVID-19, they realized
forward prediction and backward inference of the epidemic. [16]
applied mathematical models and time-series to describe the out-
break among passengers and crew members on Princess Cruises
Ship.

A model using early forecasting from Small Dataset is pro-
posed by [6]. In [5] the authors proposed used ARIMA models
to predict the spread around the world, in specific they use
two models ARIMA (1,2,0) and ARIMA (1,0,4). An ARIMA (1,1,2)
model is selected to fit the predictions in Italy by [8,10] proposed
ARIMA models to predict cases and deaths per 3 countries Italy,
Turkey, and Spain. A ARIMA (2,2,2) model is used by [9] to predict
the spread in India. Models for different regions of Italy are
proposed by [7]. [13] uses (ARIMA) model to analyze two data
sets and predict the daily new confirmed cases for the 7-day
period. In [12], the authors have studied 15 countries (USA, Spain,
Italy, France, Germany, United Kingdom (UK), Turkey, Iran, China,
Russia, Brazil, Canada, Belgium, Netherlands and Switzerland) to
predict the spread of the Coronavirus in these countries.

As we can see, advanced prediction models used ARIMA [17]

to predict the spread of Coronavirus, this is because the ARIMA
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Fig. 1. Example of the available information on ‘‘Our World in Data".
Fig. 2. Block diagram of Building the model.
models give results in terms of its predictive performance. The
models give us the possibility to predict the virus behavior, it
could be used to make future response plans. There are coun-
tries, which have faced the COVID-19 in the same way, (Brazil
and Sweden) but with totally different consequences. The dif-
ferences between these countries are geographical, demographic,
economic, public health, cultural, poverty, among others. These
differences have caused that Brazil has 694,116 cases while Swe-
den has 45,133 cases on June 8. As we can see, Brazil has 15.3
times more cases than Sweden. For this fact, in this work, we
propose to create a relationship between the countries and two
variables more to predict the COVID-19 behavior. These variables
are the geographic region and the total population in the coun-
try. The geographic regions are North America, South America,
Africa, Asia and Europe. The countries in the same geographic
region (continent) different variables with similar values such as
quantifiable data (climate, humidity, natural regions, etc.) and
other non-quantifiable (cultural similarities, similar gastronomy,
among others).

We propose an algorithm to performed and evaluated the
Auto-Regressive Integrated Moving Average (ARIMA) model for
145 countries, which are distributed in 6 geographic regions.
The ARIMA models using the available information until April 25
2020. Next, the information is divided into 2 sets, the first set
is used to create the ARIMA models and the second set is used
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Fig. 3. COVID-19 time series of Canada.
o calculate the RMSE between the real data and predict data.
he First set uses 90% of the data and the second set uses 10% of
he data. Then, the calculated parameters of ARIMA models, the
opulation per 1M people per country, the number of cases per
ountry are used to create polynomial functions, which are able
o predict the ARIMA parameters. These polynomial functions
enerate models for the next geographic regions: North America,
outh America, Africa, Oceania, Asia, and Europe.
The results are evaluated using RMSE. The main contributions

an be summarized as follows:

• We propose an algorithm to calculate the best ARIMA pa-
rameters per country with low RMSE.

• The algorithm to calculate the best parameter of ARIMA is
tested with 10% of the original data.

• Our approach is analyzing 145 countries, almost 10 times
more than another proposed scheme.

• The approach starts analyzing particular cases (countries) to
create a general case (geographic region).

• Our approach is able to show a relation between the pre-
diction error and other variables. In this work, a relation
between the prediction error and the population per 1M
people is shown.

The organization of the paper is as follows. Section 2 briefs the
atabases used. Section 3 presents the proposed approach. The
aper ends with the Results, a Discussion section and Conclusion.

. Databases

The time series created in this work using the data of ‘‘Our
orld in Data’’ [18], which is completely open access. They collect

he data from the European Centre for Disease Prevention and
ontrol (ECDC), the WHO, Johns Hopkins, United Nations, World
ank, Global Burden of Disease, Blavatnik School of Government,
tc. They standardized names of countries using ‘‘Our World
n Data’’ [18] standard entity names, they discarded detected
nconsistencies in the original data, detailed documentation for
ach country is available [18]. Multiple time series for a country
re collected, the complete COVID-19 dataset only includes the
ost complete number of people tested, confirmed cases and
eaths. The data on the coronavirus pandemic is updated daily.
‘Our World in Data’’ has 77 charts on COVID-19. Fig. 1 shows
n example of one chart. The data of charts contain information
rom 207 countries. Then, we can explore the statistics on COVID-
9 for the countries in the world. This work uses the available
nformation until May 28. The consulted chart is ‘‘Total and daily
onfirmed COVID-19 cases’’, which is used to create the time
eries per country called ‘‘Total confirmed COVID-19 cases’’. The
ime series start on the day when each country presented the first

ase of COVID-19 and finish on May 28. This fact means the length
of time series are different per each country. For example, the
time series of Canada starts on January 26 (123 days until May
28), Egypt time series starts on February 15 (103 days until May
28), time series of China starts on December 31 (149 days until
May 28), Italy time series starts on January 31 (118 days until
May 28), time series of Australia starts on January 25 (124 days
until May 28), Brazil time series starts on February 26 (92 days
until May 28), etc.

This paper proposes a model per geographic region. The coun-
tries are separated in 6 regions which are North America (13
countries), South America (12 countries), Africa (43 countries),
Asia (40 countries) and Europe (33 countries). To create the mod-
els per region, we use the ‘‘total population in the age groups’’
available in the website of United Nations [19]. The population in
the age groups is added to generate a total population. The values
for each country are shown in the Tables in Appendix A.

3. Proposed approach

The proposed approach consists of two stages ‘‘Building the
model’’ and ‘‘Evaluating the model’’. These stages are applied
6 times, one time per region. We use the time series ‘‘Total
confirmed COVID-19 cases’’. The first stage ‘‘Building the model’’
requires the time series per country, which starts on the day
when each country presented the first case of COVID-19 and it
finishes on April 25. The second stage ‘‘Evaluating the model’’
requires the information of COVID-19 on May 28. Then the fore-
casting between May 12 and May 28 is calculated and compared
with the real values. In the following subsections, the proposed
approach is explained in a general way and using an example. The
example calculates the ‘‘p, D, q’’ values of ARIMA to Canada and
builds the North America model.

3.1. Building the model

Fig. 2 shows a block diagram of this stage, which consists of
the ARIMA and polynomial functions. The inputs of this stage
are time series of the countries per region and Rc, which are
explained in Section 3.1.1 (Arima Stage) and 3.1.2 (Polynomial
Functions), respectively.

3.1.1. ARIMA stage
We use the time series ‘‘Total confirmed COVID-19 cases’’ per

country. Then, we have a time series presented in the following
equations:

y = {yt , tϵT } (1)

T = {T1, T2, T3, . . . , T1+n} (2)

In Eq. (1), y means the total confirmed cases per day presented

in a country. In Eq. (2), T1 means the day when each country
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Fig. 4. Canada time series separated into training and testing time series.
etected the first COVID-19 patient. Then D1+n represents the
number of days elapsed until April 25. For example, Canada de-
tected the first patient on January 26. Then, we can rewrite Eq. (2)
as shown Eq. (3).

T = {Jan26, Jan27, Jan28, . . . , Apr25} (3)

The Fig. 3 shows the time series of Canada. To compute the
est parameters of ARIMA, the time series is separated into train-
ng time series and testing time series. To train time series is
reated using 90% of the data from the original time series. At
he same time, test time series is created using 10% of the data
rom the original time series. The Fig. 4 shows the example using
ime series of Canada.

Then, we have two time series (Train and Test). The next
equations presented in a formal way these time series.

k = round(n ∗ .9) (4)

Train = {yt , tϵU} (5)

U = {T1, T2, T3, . . . , Tk} (6)

Test = {yt , tϵV } (7)

V = {T1+k, T2+k, T3+k, . . . , T1+n} (8)

In Eq. (4), the k value is calculated, this value is the threshold
to separate the data between Train and Test. Eqs. (5) and (7)
present the Train and the Test time series, respectively. Then,
Algorithm 1 is applied to calculate the best parameters of an
autoregressive integrated moving average (ARIMA).

ARIMA is a statistical analysis, it uses time series data. The
ARIMA predicts future values by examining the differences be-
tween values in the time series. An ARIMA model consists of
3 components Auto regression (AR), Integrated (I), and Moving
average (MA). Each component is a parameter. To represent these
parameters, ARIMA models use a standard notation p, D, and
q. This standard notation indicates the type of ARIMA model
used. Where p means the number of lag observations, D means
the degree of difference, and q means the order of the moving
average, for further details refer to [14,20,21].
In the previous Algorithm, Root Mean Square Error (RMSE)
[22] measures the stability between the original data and forecast
data, RMSE is calculate using Eq. (9).

RMSE =

√n
n∑

(Xi − Si)2 (9)

i=1
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Fig. 5. Comparison between Real data and Forecast Data of Canada.
Table 1
Data of North America.
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per 1M people ARIMA Parameters RMSE average

640.61April 25 May-11 p D q

Belize 0.390 45.269 45.269 0 2 0 2.830E−07
Canada 37.411 1162.546 1824.167 3 2 3 2.611E+02
Cuba 11.333 113.450 155.916 5 1 3 2.128E+01
Dominican Republic 10.739 529.964 953.825 5 0 3 6.851E+01
Grenada 0.112 133.311 186.635 5 1 3 2.452E−01
Guatemala 17.581 24.001 58.720 2 2 5 1.671E+01
Haiti 11.263 6.314 15.961 3 3 1 2.392E+00
Honduras 9.746 59.669 199.099 4 3 1 1.719E+01
Jamaica 2.948 97.259 169.528 5 3 3 7.446E+00
Mexico 127.576 99.835 271.630 2 3 0 1.614E+02
Nicaragua 6.546 1.660 2.415 5 5 3 3.859E−01
Panama 4.246 1237.146 1957.927 3 1 5 2.141E+01
United States 329.065 2690.383 4017.488 4 1 3 7.750E+03
V

R

In our example, the algorithm 1 is applied into Train Canada
ime series. Then, we have p, D, q values, p is 3, D is 2 and q is

4. Fig. 5 shows a comparison between the Real data (Test Time
series) and Forecast Data of Canada.

This process is applied to each country. Appendix A presents
the p, D, q values of the ARIMA model and the RMSE to each
analyzed country.

3.1.2. Polynomial functions
The ARIMA stage calculated the p, D, q values to each coun-

try. In this stage, we use these values, the information of cases
confirmed COVID-19 per million people on April 25, and the
Population per million people (ppMP). Table 1 shows an example
of the obtained values in the previous stage, which are used in
this stage.

This stage calculates the polynomial function for ARIMA pa-
rameters (p, D, q). This fact means, we must calculate 3 polyno-
mial functions, one for each ARIMA Parameter. Then, we create
the Matrixes Vp, VD, Vq, which have the p, D, q values for the
ountries in the region. Rc is a matrix, each one of the elements
f Rc belongs to one country. These elements are calculated per
ountry as follows: the numbers of confirmed COVID-19 cases on
pril 25 multiply per the population (ppMp).

p =

⎡⎢⎢⎣
pC1
pC2
...

⎤⎥⎥⎦ (10)
pCk
VD =

⎡⎢⎢⎣
DC1
DC2
...

DCk

⎤⎥⎥⎦ (11)

q =

⎡⎢⎢⎣
qC1
qC2
...

qCk

⎤⎥⎥⎦ (12)

c =

⎡⎢⎢⎣
RcC1
RcC2

...

RcCk

⎤⎥⎥⎦ (13)

Ck = 1, 2, 3, . . . , Number of countries in the region (14)

In our example k=1, 2, 3, . . . , 13. Then we need to apply the
Algorithm 2 on Vp, VD, Vq.

The Algorithm 2 creates the vectors t and d. The vector t starts
in 1 and finishes in the maximum value of Rc. The vector d has the
information of the ARIMA parameters. Then, we need to calculate
a polynomial p(t) of degree n, that is the best fit for the data in
the vector d, as shown Eq. (15).

p t = p tn + p tn−1
+ p tn−2

+ · · · + p t + p (15)
( ) 1 2 3 n n+1
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⎛⎜⎜⎝
tn1 tn1 . . . 1
tn1 tn1 . . . 1
...

...
. . .

...

tn1 tn1 . . . 1

⎞⎟⎟⎠
⎛⎜⎜⎝

p1
p2
...

pn+1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
d1
d2
...

dm

⎞⎟⎟⎠
n is degree of polynomial

(16)

To solve Eq. (15), we present the problem as shown the
q. (16). Then, t is used to form Vandermonde matrix [15] V
ith n+1 columns and m rows. Where m is the length of d. After
o solve the Eq. (16), we find the values of P1, P2,. . . , Pn+1. To
alculate the best values of Pn, we propose the Algorithm 3.

At the beginning of the Algorithms 2–3, we can take one of
he ARIMA parameters, this fact means that the Algorithms 2 and
must be applicate 3 times, one time per ARIMA parameter.
fter the Algorithms 2 and 3 are applied the values to North
merica model are: 14 is degree of polynomial to parameter p,

15 is degree of polynomial to parameter D, and 47 is degree of
polynomial to parameter q. The Eq. (18) shows an example of
he polynomial created for ARIMA parameter D. Fig. 6 shows the
olynomial functions for ARIMA parameters.

NAd (t) = p1t15 + p2t14 + p3t13 + p4t12 + p5t11

+ p6t10 + p7t9 + p8t8 + p9t7 + p10t6

+ p11t5 + p12t4 + p13t3 + p14t2 + p15t

+ p (17)
16
The next Eqs. (18)–(20) show the polynomial functions for
orth America, the polynomials of all regions are available in
ppendix B.
North America

NAp (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 14
(18)

pNAd (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 15
(19)

pNAq (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 47
(20)

3.2. Evaluating the model

The Fig. 7 shows the block diagram of the Evaluating model
stage. This stage has 3 inputs Ec, time series of the country until
May 11, and days to predict. Ec has the value of Total confirmed
COVID-19 cases multiply per the population for the country to
be evaluated in the region. In this evaluation, we use the data
on May 11 and the polynomial functions creates in the previous
stage. The Algorithm 4 is used to calculate the ARIMA parameters.

We apply the Algorithm 4 using the values of Canada on May
11 and the functions PNap(t), PNad(t), and PNaq(t) Eqs. (18)-(20).
Canada belongs to North America, so we use the functions of
North America to calculate the ARIMA parameters. To calculate
another country, we must use the functions which belong to the
region of the country.

After we applied the Algorithm 4, the Canada ARIMA param-
eters are p=3, D=2, q=3. The next step is the prediction using
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Fig. 6. Polynomial Functions for North America Model.
the Algorithm 5. The Canada results using the model of North
America are shown in Figs. 8–9.

The Eq. (9) is applied to calculate the RMSE between the fore-
cast values and real values. Fig. 8 shows a comparison between
the real and forecast signals and Fig. 9 shows the forecast of
Canada with confidence interval of 95%.
4. Results

This section presents the results for each region analyzed.
Table 2 shows the average RMSE per region. In the table, the
RMSE is calculated between the forecast and the real values.
Fig. 10 presents a comparison using RMSE and the forecast for one
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c
(

Fig. 7. Block Diagram of Evaluating the model.
Fig. 8. Comparison between Real Data and Forecast Data.
ountry per each region in the following way: (a) North America,
b) South America, (c) Africa, (d) Oceania, (e) Asia, and (f) Europe.
5. Discussion

The Appendix A presents the results per country before to
create the geographic models. These results belong to each coun-
try in the different regions. As we mention in Section 3.1.1, the
time series are separated into modeling (90% of the signal) and
testing (10% of the signal). Below, we will discuss each region in
particular.

North America region has 13 countries; this region presents
a RMSE average of 640.61. The RMSE average of this region is
the most bigger between the regions. This fact appears, because
the United States presents the most bigger RMSE between the
145 countries (7749.99), this country has the largest number of
population in the region (329.06 ppMp). On the other hand, Belize
presents the lowest RMSE. The United States has almost 96 times
the population of Belize (0.39 ppMp).

Europe region consists of 33 countries. In this experiment, the
countries, which present a ppMp major than 45 ppMp presents
biggest RMSE. Spain presents an RMSE of 1892.33 with a 46.73
ppMp, Italy has 60.55 ppMp and presents an RMSE of 566.88,
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Table 2
Average of RMSE results.
Region Average of RMSE between

original and forecast signal in
training stage

Average of RMSE between
original and forecast signal
from May 12 to May 27

North America 640.61 3.6051e+04
South America 104.78 2.0828e+04
Africa 13.80 1.4913e+03
Oceania 6.79 161.2570
Asia 89.46 3.52964e+03
Europe 218.59 2.88212e+04
aAverage 144.81 1.2723e+04

aThe average is calculated using the 145 countries.
Fig. 9. Forecasting of Canada.

nited Kingdom presents an RMSE of 728.13 with a 467.53 ppMp,
ermany has 83.51 ppMp and presents an RMSE of 1075.02, and
ussia presents an RMSE of 958.44 with a 145.87 ppMp. The
MSE average of this is 218.59.
Brazil presents a RMSE of 591, this country has the largest

umber of population in the region (211.04 ppMp). In contrast,
araguay presents the lowest RMSE. Brazil has almost 30 times
he population of Paraguay (7.05 ppMp). These countries belong
o South America region, the RMSE average of this region is
04.78.
Asia region consists of 40 countries. In this region, Turkey

resents the most bigger RMSE (696.35) with a population (83.43
pMp). China and India have a ppMp major to one thousand, but
he RMSE are 117.88 and 250.83, respectively. On the other hand,
emen with a population less than 30 ppMp has a RMSE close to
ero.
Egypt presents a RMSE of 84.08, this country has 110.38 ppMp.

n contrast, Namibia presents a RMSE close to zero. Egypt has
lmost 41 times the population of Namibia (2.49 ppMp). These
ountries belong to Africa region, the RMSE average of this region
s 13.8.

Oceania region consists of 4 countries. In this region, Australia
resents the most bigger RMSE (24.76) with a population (25.20
pMp). The lower RMSE is presented by Fiji with a population
ess than 1 ppMp.

For the regions North America, South America, Oceania, and
urope, there is a relation between the major ppMp and the error
n the prediction. The RMSE of Africa is minor to 15, even though
Table 3
Comparison between [10] and this work.
Country RMSE

[10] This work

Italy 1150.31 566.88
Turkey 138.35 1892.33
Spain 379.89 696.35
Average a556.183 b144.81

aUsing 3 countries.
bUsing 145 countries.

it has countries with 200 ppMp. This fact could be means a rela-
tion between the virus spread and the climate for example. For
the region Asia the average RMSE is minor to 90, this area was the
first area infected by COVID-19 so there are more available data
in this area. Thus, we have more data to calculate the Forecast.

Table 3 shows a comparison between [10] and this work
before to create the geographic models. As shown Table 3 this
approach has better RMSE to forecast the virus in Italy, on the
contrary [10] has better RMSE to predict the virus in Turkey and
Spain. At first, it seems that their proposal is better than ours,
but when the RMSE averages are compared, we can see that our
proposal has a lower RMSE than them, besides we are analyzing
145 countries while they only analyze 3.

Fig. 8 presents the results per one country in each region.
In Fig. 8(a–f), we can see an upward trend in the number of
cases, with the exception of the American States, which marks
a decrease in the number of cases. Let us remember that from
the beginning, the American States had the highest RMSE among
all countries. When the geographic models are created, these
models are used to predict new cases in a country. The results are
shown in Table 2. The forecast is made 17 days after the models
are calculated, we take this decision to have a real difference
between the cases on April 25 and May 11 as shown the tables
in Appendix A. As expected, the RMSE error grew because, the
prediction is making 17 days after the models were created and
we calculate 15 days of prediction cases. In these time interval,
the actions as quarantine control, stay at home campaign, social
distance taken by governments significantly affect the prediction.
If the lector wants current predictions, the information needs to
be updated and repeat the building the model stage.

6. Conclusion

We can conclude that the algorithm to model and evaluate the
ARIMA models is able to develop models, which have low RMSE.
On the other hand, this work shows a way to model the COVID
spread started in particular cases to generate a general case. We
can conclude, this work contributes to researchers working in
COVID-19 prediction. It shows there is a relation between the
virus spread and the different variables present in the countries,
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Fig. 10. An example of results per region. RMSE and Forecast (a) North America, (B) South America, (c) Africa, (d) Oceania, (e) Asia and (f) Europe.
hich belong to the same geographic region. Interestingly, we
an find a show relation between the population in a country and
MSE error in a prediction. In future challenges of the proposed
work different variables could be analyzed, for example, the date
when the first coronavirus case is detected in the country, humid-
ity, temperature, among other variables. Other kinds of clusters
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Fig. 10. (continued).
Table A.1
Data of the countries separated by geographical regions.
North America
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per million people ARIMA parameters RMSE average

640.61April 25 May-11 p D q

Belize 0.390351 45.269 45.269 0 2 0 0.000000283
Canada 37.411038 1162.546 1824.167 3 2 3 261.0992307
Cuba 11.333484 113.45 155.916 5 1 3 21.28255446
Dominican Republic 10.738957 529.964 953.825 5 0 3 68.51095035
Grenada 0.112002 133.311 186.635 5 1 3 0.245202091
Guatemala 17.581476 24.001 58.72 2 2 5 16.71287027
Haiti 11.263079 6.314 15.961 3 3 1 2.392474128
Honduras 9.746115 59.669 199.099 4 3 1 17.1948204
Jamaica 2.948277 97.259 169.528 5 3 3 7.44624079
Mexico 127.575529 99.835 271.63 2 3 0 161.3544175
Nicaragua 6.545503 1.66 2.415 5 5 3 0.385861038
Panama 4.24644 1237.146 1957.927 3 1 5 21.41200047
United States 329.064917 2690.383 4017.488 4 1 3 7749.995645

South America
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per million people ARIMA parameters RMSE average

104.78April 25 May-11 p D q

Suriname 0.581363 17.046 17.046 2 2 0 2.42E−09
Uruguay 3.461731 162.074 203.528 1 2 4 0.536253127
Guyana 0.782775 92.809 132.221 5 0 1 0.945527112
Paraguay 7.044639 31.265 99.965 4 3 1 3.977159335
Venezuela 28.515829 11.183 14.559 4 2 4 7.768192986
Bolivia 11.513102 69.134 218.966 5 5 4 13.19241251
Chile 18.952035 643.747 1510.027 5 3 4 31.85255857
Argentina 44.780675 75.737 127.8 2 1 2 34.307185
Colombia 50.339443 95.926 217.421 1 2 0 42.19486859
Ecuador 17.373657 633.847 1675.39 3 4 4 206.1259375
Peru 32.510462 656.56 2041.348 4 2 1 325.2189929
Brazil 211.049519 249.319 765.428 4 2 1 591.2483357

(continued on next page)
could be applied like cultural behavior, religious behavior, hy-
giene habits, feeding habits, among others. The approach is able
to make current predictions, just the information needs to be
updated.
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T
able A.1 (continued).
Africa
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per million people ARIMA parameters RMSE average

13.80April 25 May-11 p D q

Namibia 2.494524 6.297 6.297 4 2 0 3.38E−09
Mauritania 4.525698 1.505 1.721 1 2 0 1.88E−08
Seychelles 0.097741 111.857 111.857 0 3 0 0.00000302
South Sudan 11.062114 0.447 13.936 3 4 0 0.231695815
Angola 31.825299 0.761 1.369 2 0 1 0.272840126
Madagascar 26.969306 4.406 6.175 0 0 0 0.5
Botswana 2.303703 9.355 9.78 3 0 3 0.561333394
Mauritius 1.26967 260.268 261.054 5 2 0 0.577046983
Togo 8.082359 10.871 21.018 2 1 1 0.597788103
Central African Republic 4.745179 3.934 37.062 2 3 4 0.690491146
Zimbabwe 14.645473 1.951 2.422 4 1 4 0.920238223
Eritrea 3.497117 10.997 10.997 4 0 3 1.098426352
Benin 11.801151 4.784 26.313 1 1 5 1.123599466
Chad 15.946882 2.435 19.603 2 2 3 1.486804327
Libya 6.777453 8.878 9.314 5 1 0 1.802690408
Zambia 17.861034 4.569 14.524 4 1 5 2.264558145
Ethiopia 112.078727 1.018 2.079 3 0 3 2.448214102
Burundi 11.530577 1.009 1.598 1 4 4 2.535566664
Cape Verde 0.549936 158.277 442.456 4 2 2 2.574723428
Burkina Faso 20.321383 29.947 35.927 3 0 5 2.824155601
Uganda 44.269587 1.64 2.645 5 2 5 2.97488775
Sierra Leone 7.813207 10.28 38.486 3 3 1 3.214739643
Liberia 4.937374 23.133 39.346 4 1 5 3.84699105
Niger 23.310719 28.133 33.916 4 2 2 3.917381572
Sudan 42.813237 3.968 31.084 2 2 4 4.558386235
Mali 19.658023 16.049 34.764 3 2 2 5.436959696
Kenya 52.573967 6.249 12.497 5 2 2 5.646461767
Mozambique 30.366043 2.08 2.911 5 3 5 6.014669312
Malawi 18.628749 1.725 2.927 1 4 3 6.1920973
Tunisia 11.694721 78.013 87.32 1 0 0 8.775869024
Gabon 2.172578 77.278 296.981 4 3 2 11.10807476
Nigeria 200.963603 5.312 21.34 5 4 0 12.60385557
Somalia 15.442906 20.638 66.318 2 1 4 14.76084313
Senegal 16.296362 32.549 102.067 5 3 3 26.08610014
Djibouti 0.973557 1011.132 1224.694 1 1 3 26.43208425
Cameroon 25.876387 52.852 97.153 1 2 2 30.35431279
Algeria 43.053054 71.31 130.51 2 0 3 30.43462472
Equatorial Guinea 1.355982 151.106 312.904 1 2 1 41.34353663
Ghana 30.417858 41.161 137.193 5 2 2 47.53364114
Guinea 12.771246 72.643 163.408 3 5 0 59.82419028
South Africa 58.558267 71.153 168.862 3 3 5 65.82375285
Morocco 36.471766 101.814 164.262 1 1 0 70.07161038
Egypt 100.388076 39.987 91.856 5 1 3 84.08557986

Oceania
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per million people ARIMA parameters RMSE average

6.79April 25 May-11 p D q

Fiji 0.889955 20.079 20.079 0 2 0 0.000000105
Papua New Guinea 8.776119 0.894 0.894 3 2 2 0.321552716
New Zealand 4.783062 231.635 237.857 3 3 0 2.092622312
Australia 25.2032 262.237 272.197 1 3 1 24.7684965

Asia
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per million people ARIMA parameters RMSE average

89.46April 25 May-11 p D q

Yemen 29.161922 0.034 1.71 1 2 1 8.46E−16
Laos 7.169456 2.611 2.611 0 2 0 0.000000474
Brunei 0.433296 315.441 322.298 5 1 1 0.201374663
Mongolia 3.225166 10.981 12.812 5 3 2 0.42737412
Bhutan 0.763094 9.072 11.664 0 5 3 0.854706352
Vietnam 96.462108 2.774 2.959 0 0 0 0.894427191
Syria 17.070132 2.4 2.686 1 2 3 1.2290986
Kyrgyzstan 6.415851 101.928 155.728 4 3 1 1.764150638
Myanmar 54.045422 2.647 3.308 4 1 3 1.810985483
Jordan 10.101697 43.222 52.925 5 2 0 1.976423483
Lebanon 6.855709 101.971 123.802 3 0 2 3.248815136
Nepal 28.608715 1.682 4.119 3 2 4 4.05357834
Georgia 3.996762 111.301 159.181 0 1 4 4.895198267
Maldives 0.530957 236.799 1544.746 5 4 1 5.924589657
Cyprus 1.198574 917.914 1025.232 4 0 4 6.066194022
Azerbaijan 10.047719 157.015 248.442 4 0 5 11.83730777

(continued on next page)
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Table A.1 (continued).
Thailand 69.625581 40.888 43.195 3 0 0 12.58960875
Iraq 39.309789 42.464 68.792 1 3 3 15.52536699
Uzbekistan 32.981715 54.856 72.246 5 1 3 18.9777337
Armenia 2.957728 565.936 1118.035 0 3 4 19.92595139
SriLanka 21.323734 19.614 40.302 3 2 4 20.83410943
Malaysia 31.949789 175.833 205.648 2 1 5 27.80701783
Kuwait 4.207077 612.097 2034.392 0 2 2 44.83279931
Oman 4.974992 350.525 665.606 2 0 2 48.21943289
Iran 82.913893 1050.017 1281.096 5 3 0 50.19983585
Afghanistan 38.041757 34.705 113.08 5 2 0 75.99268382
Bangladesh 163.046173 28.472 88.998 5 3 0 79.01328851
Qatar 2.832071 2958.98 7816.568 1 2 0 97.6076415
Bahrain 1.641164 1479.799 2903.767 1 2 2 99.73990182
Philippines 108.116622 65.632 98.502 4 0 0 103.1445092
Indonesia 270.625567 30.019 51.301 5 1 5 110.4601355
Israel 8.519373 1739.695 1903.636 0 2 4 113.630396
China 1433.783692 58.291 58.368 5 0 0 117.8792989
United Arab Emirates 9.770526 938.385 1839.966 5 5 0 188.3682723
Saudi Arabia 34.268529 433.793 1121.622 3 3 2 226.4705085
India 1366.417756 17.758 48.661 5 2 3 250.833
Pakistan 216.565317 54.053 140.073 4 3 4 266.1868764
Japan 126.860299 101.932 124.909 1 1 2 399.4484529
Singapore 5.804343 1910.657 3988.826 1 2 2 449.3506577
Turkey 83.429607 1243.931 1644.042 5 3 3 696.3506539

Europe
Country Population per million

people (ppMp)
Total confirmed COVID-19 cases per million people ARIMA parameters RMSE average

218.59April 25 May-11 p D q

Montenegro 0.627988 507.912 515.873 2 2 0 0.988109524
Malta 0.440377 1012.368 1123.344 5 3 0 3.539156254
Latvia 1.90674 415.65 497.826 5 1 4 3.594220963
Iceland 0.339037 5242.491 5277.656 3 2 5 5.129808852
Croatia 4.130299 489.371 532.73 1 0 5 7.425098776
Estonia 1.325649 1209.915 1310.93 4 0 5 10.28679943
Hungary 9.68468 252.889 339.946 3 1 5 13.10475646
Norway 5.378859 1366.477 1493.938 5 2 1 14.35761421
Slovakia 5.457012 249.101 266.867 4 2 1 15.43096651
Albania 2.880913 235.597 301.619 5 2 4 15.44541938
Lithuania 2.759631 517.946 543.292 1 0 5 15.54234467
Luxembourg 0.61573 5902.782 6207.906 1 2 4 18.86761887
Bulgaria 7.000117 170.974 282.797 5 3 3 26.9764822
Slovenia 2.078654 660.435 700.841 4 2 5 29.45549614
Czech Republic 10.689213 679.15 758.522 5 1 4 32.36197356
Austria 8.955108 1673.033 1752.865 4 1 4 41.48747638
Serbia 8.772228 1099.698 1486.348 3 2 2 43.17539749
Finland 5.532159 793.218 1076.034 0 3 2 46.3725334
Denmark 5.771877 1417.423 1800.524 2 1 1 50.60316184
Sweden 10.036391 1739.433 2606.327 3 2 5 87.03004062
Romania 19.364558 541.489 798.537 4 2 5 102.4828358
Poland 37.887771 287.793 422.653 5 1 4 105.4066726
Portugal 10.226178 2282.207 2704.893 4 1 5 108.4530628
Ukraine 43.993643 185.783 348.289 2 5 2 159.7185476
Ireland 4.882498 3682.615 4657.139 1 4 2 172.2604087
Belgium 11.539326 3821.783 4580.048 5 2 0 207.3927744
Belarus 9.452409 928.426 2431.18 5 2 5 268.7103234
Netherlands 17.097123 2132.201 2487.734 5 0 0 387.229697
Italy 60.550092 3191.997 3623.278 4 3 3 566.8847446
United Kingdom 67.530161 2113.307 3228.692 2 1 0 728.1254615
Russia 145.87226 470.225 1436.864 5 5 1 958.4432358
Germany 83.517046 1819.418 2023.956 4 1 0 1075.024974
Spain 46.736782 4454.496 4871.587 0 1 0 1892.331932
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ppendix A

See Table A.1.
Appendix B

North America
pNAp (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 14

pNAd (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 15
pNAq (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 47

South America
pSAp (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 23

pSAd (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 23
pSAq (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 47

Africa
pAfp (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 47

p t = p tn + p tn−1
+ p tn−2

+ · · · + p t + p ; n = 47
Afd ( ) 1 2 3 n n+1
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R

pAfq (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 47
Oceania
pOp (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 47

pOd (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 47
pOq (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 47

Asia
pAsp (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 14

pAsd (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 40
pAsq (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 50

Europe
pEp (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 12

pEd (t) = p1tn + p2tn−1
+ p3tn−2

+ · · · + pnt + pn+1; n = 50
pEq (t) = p1tn + p2tn−1

+ p3tn−2
+ · · · + pnt + pn+1; n = 50
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