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Abstract

Family X polymerases like DNA polymerase λ (pol λ) are well suited for filling short gaps during 

DNA repair because they simultaneously bind both the 5′ and 3′ ends of short gaps. DNA binding 

and gap filling are well characterized for one nucleotide gaps, but the location of yet-to-be-copied 

template nucleotides in longer gaps is unknown. Here we present crystal structures revealing that 

when bound to a two-nucleotide gap, pol λ scrunches the template strand and binds the additional 

uncopied template base in an extrahelical position within a binding pocket comprised of three 

conserved amino acids. Replacing these amino acids with alanine results in less processive gap 

filling and less efficient NHEJ involving two nucleotide gaps. Thus, akin to scrunching by RNA 

polymerase during transcription initiation, scrunching occurs during gap filling DNA synthesis 

associated with DNA repair.

The DNA polymerases of family X are responsible for small scale DNA synthesis in the 

context of different DNA repair processes1. For instance, the best studied member of this 

family, pol β provides both a gap-filling and a rate-limiting dRP lyase activity to the Base 

Excision Repair (BER) pathway2. Pol λ is also capable of gap-filling3 and contains a dRP 

lyase activity4. However, while evidence exists suggesting its participation in BER 5,6, its 

main physiological role appears to be gap filling during repair of double strand breaks 

through the Non Homologous DNA End Joining (NHEJ) pathway 7,8,9. Like pol λ,the other 
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two human members of the family, terminal deoxynucleotidyl transferase and pol μ, 

participate in double strand break repair1,7,9. Family X enzymes play a role both in the 

NHEJ repair process and in V(D)J recombination, a process that is critical for lymphocyte 

development10.

The availability of structural information for each of the mammalian members of the family 

and in particular the wealth of structural and biochemical data available for pols β and λ 

have resulted in a clear picture of the structural organization and catalytic mechanism of 

family X polymerases1. Important differences exist in the way that pol β and pol λ interact 

with DNA and in the nature of the conformational changes that take place throughout the 

catalytic cycle11. Nevertheless, there are many structural and biochemical similarities 

between both enzymes, including a similar behavior when filling in small gaps. Both 

polymerases processively fill short gaps in which the 5'-end of the gap contains a 5'-

phosphate3,12. This behavior is explained by the presence of a family X polymerase-

specific 8 kDa domain that interacts with the 5'-phosphate group2.

In pols β13, λ11 and μ14, the spatial relationship of the polymerase domain that binds the 

primer-template junction and the 8-kDa domain that binds to the 5′ end of a downstream 

DNA chain is well known for synthesis to fill a single nucleotide gap. Not only are the 

polymerase and 8-kDa domains tethered to each other within the same polypeptide chain, 

structure-function studies of pols β and λ reveal that these two domains also physically 

interact with each other during repair synthesis to fill gaps containing a single template 

base2. However, longer patch BER and NHEJ of certain broken ends involve filling gaps 

longer than a single nucleotide15,16. Consistent with this requirement, biochemical studies 

demonstrate that pol β and pol λ can fill gaps as long as 5 and 6 nucleotides in a processive 

manner, indicating simultaneous DNA binding by both the polymerase and 8 kDa 

domain3,12. Furthermore, recent studies have demonstrated that perturbing 5′ end binding 

by pol μ reduces the efficiency of NHEJ17 and that 5'-phosphate binding is also critical for 

bacterial NHEJ18. Yet, it is not evident from existing structures how simultaneous binding 

to both ends of a DNA gap could be achieved on gaps longer than one nucleotide. We 

decided to investigate how pol λ catalyzes gap-filling synthesis on longer DNA gaps. Here 

we present structural and biochemical evidence suggesting a mechanism by which human 

pol λ is capable of simultaneously engaging the two ends of a DNA gap containing more 

than one nucleotide in a catalytically relevant conformation.

Results

Structure of a gap-filling intermediate

The first crystal structure of pol λ captured the polymerase in an inactive binary complex in 

which the enzyme was bound to a two-nucleotide gap, but without a dNTP present19. In this 

structure, the 8 kDa domain was bound to the 5'-phosphate end of the gap, but the 

polymerase active site was not productively engaged at the 3' end of the gap. Although not 

representing a catalytically competent gap filling intermediate, this structure suggested that, 

in the absence of an incoming nucleotide, the polymerase might preferentially bind to the 5'-

end of a gap, a feature that appeared consistent with a role in gap filling.
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In order for the first step of gap-filling to occur, the active site of the polymerase must be 

bound in its catalytic conformation at the 3'-end of the primer. If, as suggested by the 

biochemical data, polymerization occurs while the 8kDa domain is engaging the 5'-

phosphate, it is necessary to invoke a conformational change leading to an intermediate 

where, either through DNA or protein rearrangements, the polymerase active site would 

bind the 3' DNA end in a catalytic conformation while the 8 kDa domain would remain 

bound to the 5'-end of the gap. Because such a conformation is not seen in the 2-nucleotide 

gap binary complex (1RZT), we hypothesized that it could be dependent on dNTP binding. 

Thus, we attempted to determine the structure of a ternary complex of human pol λ bound to 

a 2-nucleotide gap with a correct dNTP bound in a pre-catalytic state. We grew crystals of 

pol λ after mixing the enzyme with a three-nucleotide gap in the presence of ddTTP, with 

the expectation that incorporation of ddTMP would result in a dideoxy-terminated two-

nucleotide gap with ddTTP bound in the polymerase active site (see Methods). We obtained 

crystals that diffracted to a resolution of 1.95Å (Table 1) and we were able to solve the 

structure by molecular replacement (see Methods). The structure (Fig. 1) shows pol λ bound 

to DNA while attempting to incorporate a correct nucleotide opposite the first of the two 

single-stranded nucleotides in the gap. The polymerase binds in a remarkably similar 

manner to what was observed in previous ternary complex structures involving a single 

nucleotide gap11, despite the fact that the gap is one nucleotide longer (rmsd of 0.935 Å for 

316 C-a atoms). All the polymerase active site residues are in conformations 

indistinguishable from those observed in a single-nucleotide gap structure, indicating that 

this structure represents a functional complex. Moreover, the 8 kDa domain is engaged in 

binding the 5'-phosphate, and does so in a similar conformation as is observed when the 

enzyme is in complex with a 1-nucleotide gap. The solution to this apparent paradox is that 

the template strand is scrunched, where one of the template nucleotides in the 2-nucleotide 

gap is extrahelical (Fig. 1), and bound in a manner that results in very little distortion of 

helix geometry (Fig. 1b). The largest difference is in the position of the phosphate 5'- to the 

extrahelical base (Fig. 1b). Importantly, the 3' primer terminus and the 5' phosphate of the 

downstream primer (arrows in Fig. 1b) remain in the same relative positions, and only a 

slight difference is observed in the conformation of the downstream DNA and the 8 kDa. By 

adopting this conformation, Pol λ engages both sides of the gap in the absence of 

functionally relevant protein conformational changes and without changing the relative 

locations of the polymerase and 8 kDa domains. For the latter reason, we refer to this as 

“scrunching”, by analogy to what was previously observed with RNA polymerases20,21,22.

A binding pocket for purines and pyrimidines

Inspection of the structure reveals that the extrahelical nucleotide is bound in a pocket 

formed by the side chains of three amino acids (Fig. 2a,b). When the nucleotide bound in the 

pocket is an adenine, Leu277 and His511 provide hydrophobic contacts with the extrahelical 

base, while Arg514 mainly interacts with the phosphate 3' to that nucleotide. To determine if 

this pocket also accommodates pyrimidines, we crystallized pol λ in complex with a 2-

nucleotide gap and incoming dTTP as before, but altered the template sequence so that 

dCMP is present as the second single-stranded nucleotide in the gap. These crystals 

diffracted to a resolution of 1.95Å (see Table 1 and Methods), and the resulting electron 

density indicates cytosine is indeed bound in the pocket (Fig 2c). Binding is similar to that 
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observed with adenine (Fig. 2b), except that the side chain of Arg514 adopts a different 

conformation that allows it to hydrogen bond with the O2 atom in the cytosine base, while 

Leu277 appears to undergo a slight rearrangement to maximize contact with the smaller 

pyrimidine base. These results suggest that the three residues comprising the binding pocket 

for the extrahelical base share an analogous role for all four bases normally present in DNA, 

and further suggest that the pocket may have a role in stabilizing the scrunched intermediate. 

The functional significance of this pocket is further implied by the fact that the three 

residues comprising the pocket are conserved in all chordate pol λ homologs (Fig. 2d). 

Interestingly, two of the three residues are conserved in human pol μ, while only the charge 

of one of the three residues (Arg514) has been conserved in human pol β, as Lys 280.

A triple mutant polymerase has decreased processivity

To test the functional significance of this template-binding pocket, we replaced the three 

conserved residues that contact the extrahelical nucleotide with alanine. Steady state kinetic 

analysis of single nucleotide gap filling demonstrated that, despite non-conservative 

replacement of three conserved residues, the catalytic efficiency of the purified triple mutant 

pol λ is only 5-fold lower than that of wild type pol λ(Fig. 3a). Moreover, the triple mutant 

enzyme behaves like wild-type pol λ when copying a non-gapped primer-template, in that 

both enzymes are largely distributive when no downstream primer with a 5′ phosphate is 

present (Fig. 3b, lanes 2 and 3). However, the results are different when filling a 5-

nucleotide gap (Fig. 3b, lanes 5 and 6). The total amount of product generated is greater than 

for simple primer extension (e.g., compare product band intensities in lane 3 versus 6), 

suggesting that the triple mutant still benefits from binding the downstream 5'-phosphate. As 

expected, wild type pol λ fills the gap (lane 5) more processively than for simple primer 

extension (lane 2). In contrast, gap filling DNA synthesis by the triple mutant is less 

processive (lane 6) than for wild type pol λ (lane 5), demonstrating that it dissociates from 

the DNA more readily and/or translocates less efficiently than wild type pol λ. When 

termination probabilities were calculated (see Methods) for each position as the gap was 

being filled, wild type and mutant pol λ behaved similarly for the first and second 

incorporations (Fig. 3c, black versus gray bars at +1 and +2). In these instances, the numbers 

of uncopied template bases in the gap are four and three, respectively. However, at the +3 

and +4 positions, the triple mutant enzyme terminated processive synthesis more often than 

did wild type pol λ. At the +4 position, which results from incorporation into a substrate 

where one uncopied base would need to be bound in the pocket, the difference in 

termination probability between the wild type and triple mutant is 5-fold. Thus, the effect of 

the pocket on processivity increases as the gap becomes shorter with the maximum effect 

seen on a two nucleotide gap with one nucleotide stabilized in the pocket.

The binding pocket influences the fidelity of synthesis

The processivity data implies that the binding of an uncopied template base in the pocket 

contributes to the stability of the scrunched intermediate. Lower stability of a scrunched 

intermediate in the triple mutant predicts that it might affect the fidelity of DNA synthesis 

by pol λ, based on the following logic. Wild type pol λ is particularly prone to generate 

single base deletion intermediates during DNA synthesis23. This property is thought to 

reflect its normal biological function, i.e., the ability to participate in NHEJ by filling short 
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gaps formed when two broken ends are aligned with as little as a single correct terminal base 

pair7,23,24. The mechanism for producing single base deletions is thought to involve dNTP-

induced misalignment of the template-strand relative to the primer strand during catalytic 

cycling25. This generates an intermediate with an extrahelical template nucleotide in the 

duplex DNA upstream of the polymerase active site24,26. A wealth of evidence indicates 

that the ability of a polymerase to extend a misaligned intermediate to ultimately yield a 

single base deletion depends on the stability of the misaligned intermediate. Thus, as dNTP 

binding induces scrunching when filling gaps longer than a single nucleotide, the 

destabilization imparted by the triple mutant may disfavor extension of a misaligned 

intermediate more so than extension of an aligned intermediate, thereby reducing the rate at 

which pol λ generates single base deletions. To test this prediction, we compared the ability 

of wild type and triple mutant pol λ to generate single base deletions during synthesis to fill 

a 6-nucleotide gap containing a LacZ template TTTT run23 (Fig. 3d). As expected based on 

earlier studies23, wild type pol λ is inaccurate (lacZ mutant frequency 620 × 10−4). In 

comparison, the triple mutant is 4-fold more accurate (lacZ mutant frequency 160 × 10−4). 

This is consistent with the idea that the triple mutant destabilizes scrunched intermediates in 

a manner that disfavors extension of misaligned template-primers.

Structural effects of the triple substitution

To further examine the role of the binding pocket for the second nucleotide in the gap, we 

obtained a 3Å crystal structure of the triple mutant using the same substrate used with wild-

type pol λ (Table 1). Four molecules of the triple mutant are present in the asymmetric unit. 

Two of these are in a conformation similar to that observed in the wild-type pol λ structure. 

Scrunching is observed, i.e., the 3'-OH and 5'-PO4 groups maintain a similar distance to 

what is observed in a single-nucleotide gap. However, while the backbone of the template 

strand adopts the same conformation as in the wild type structure, the absence of the binding 

pocket results in an increase in the conformational flexibility of the base of the second 

nucleotide in the gap. The other two molecules in the asymmetric unit are in a conformation 

reminiscent of that observed in the original two-nucleotide structure (1RZT). The incoming 

dNTP is present, but the base is not bound in its usual conformation (see Fig. 4a), i.e., the 

protein is in the inactive conformation. This indicates that correct geometry between the 

incoming nucleotide and the templating base is required to transition to an active, scrunched 

structure, and suggests that the scrunched intermediate is less stable in the triple mutant than 

in wild type pol λ, an interpretation consistent with the biochemical data.

“Scrunching” and NHEJ

The ability of the polymerase to “scrunch” the template strand and conduct processive gap-

filling could be important for NHEJ reactions when the ends to be joined contain gaps 

greater than a single nucleotide. To test this possibility, we performed NHEJ reactions with 

Ku heterodimer, XRCC4, DNA ligase IV and either wild type pol λ or the triple mutant pol 

λ. We used two different linear 280 base pair substrates with overhanging sequences such 

that end alignment results in either a 1-nucleotide or a 2-nucleotide gap (Substrates 1 and 2, 

respectively, Fig. 4b). These gaps must be filled by pol λ before concatemer ligation 

products are generated (e.g., Fig. 4b, compare lanes 2 and 3). Using the substrate that 

requires filling a one-nucleotide gap, and where scrunching would not be necessary 
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(Substrate 1), the triple mutant was slightly more efficient than wild type pol λ at promoting 

end-joining (Fig. 4b, compare lanes 3 and 5). Thus the triple mutant enzyme is fully capable 

of performing one-nucleotide gap filling during NHEJ. In contrast, using a substrate 

requiring filling a two-nucleotide gap (Substrate 2), where the scrunching observed in the 

crystal structure would be relevant, the efficiency of end joining using the triple mutant pol 

λ was 8-fold lower than for wild type pol λ (Fig. 4b, compare lanes 4 and 6). This indicates 

that the pocket that binds the uncopied template base is important for efficient NHEJ when 

end joining requires the filling of a 2-nucleotide gap.

Relevance of scrunching to longer gaps

The difference in termination by wild type and triple mutant pol λ seen at the +3 position as 

a 5-nucleotide gap is filled (Fig. 3b/c), and the fact that the triple mutant is more accurate 

than wild type pol λ during synthesis to fill a 6-nucleotide gap (Fig. 3d) both suggest that the 

binding pocket for the second template nucleotide in the gap may also be relevant to filling 

gaps of at least three nucleotides. For this reason, efforts were made to obtain crystal 

structures involving 3-, 4- and 5-nucleotide gaps. These attempts all failed. This prompted 

three modeling studies using the scrunched dA structure (Fig. 1) as an initial template. In 

one case, one dAMP was added 5' to the scrunched nucleotide. In another case, the dAMP 

was added 3' to the scrunched nucleotide. In the final case, two adenines were added 5' of 

the scrunched nucleotide. We then performed simulations (see Methods) on each of these 

models to investigate the position of the nucleotides in the gap throughout the simulation. In 

all cases, the simulations indicated that the nucleotide immediately 5' to the templating 

nucleotide is preferentially bound in the scrunching pocket, and that additional nucleotides 

5' to this one could indeed be accommodated by the polymerase (Fig. 5). These models are 

consistent with the idea that pol ⌊ can accommodate additional uncopied template 

nucleotides while maintaining a conformation similar to that observed in the crystal 

structures. The models further suggest that, when given multiple choices, the scrunching 

pocket is more likely to accommodate the nucleotide immediately adjacent to the templating 

nucleotide.

Discussion

First proposed by Ikeda and Richardson22 as a mechanism by which T7 RNA polymerase 

initiates transcription, DNA scrunching was first captured structurally by Cheetham and 

Steitz20, and was more recently demonstrated for T727 and E. coli RNA polymerase21. 

Scrunching appears to be a general mechanism for initiation of transcription, presumably 

allowing the polymerase to proceed with RNA synthesis without needing to dissociate from 

the initiation site. We show here that scrunching of the DNA template also appears to be 

used by DNA polymerase λ during DNA synthesis associated with DNA repair that fills 

gaps longer than one nucleotide. This scrunching is accompanied by repositioning of the 

uncopied template base to an extrahelical position, where it binds within a pocket comprised 

of three conserved amino acids. This pocket appears to contribute to processive gap filling 

that may help to prevent premature release of repair intermediates that are potentially toxic 

and/or mutagenic. The identification of this binding pocket for the second template 

nucleotide in the gap brings to three the number of DNA substrate binding pockets observed 
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in Pol λ, the other pockets being for the nascent base pair and the phosphate at the 5′ end of 

the gap (Fig. 6). From the currently available structures, a picture of gap filling emerges 

(Fig. 6 and Supplementary Video) wherein correct dNTP binding induces a number of 

conformational changes in the polymerase and the DNA, most especially in the template 

strand. These changes result in assembly the binding pockets for the nascent base pair and 

the second nucleotide in the gap. Apparently it is this remarkable degree of specialization 

that enables Pol λ to fulfill its biological roles in filling short gaps during DNA repair.

Methods

Protein expression and crystallization

We purified proteins as described19. Oligos T12A (5'-CGGCAAATACTG), T12C (5’-

CGGCCAATACTG), P (5'-CAGTA) and D (5'-GCCG) were from Oligos Etc. ddTTP was 

from GE. We crystallized pol λ with T12A/T12C, P, D and ddTTP. Incorporation of ddTTP 

generates a dideoxyterminated two-nucleotide gap. We grew crystals at 4°C in a solution 

containing 10%(v/v) 2-propanol, 0.2 M sodium citrate and 100 mM sodium cacodylate, pH 

5.5 (Pol λ + T12A), 2 M sodium formate (Pol λ + T12C) or 5% (v/v) 2-propanol, 25 mM 

ammonium acetate, 15 mM magnesium acetate and 100 mM cacodylic acid pH 6.5 (Pol λ 

L277A, R511A, H514A + T12A).

Data collection, processing and refinement

We collected data (T12A and T12C) at −178°C with a Saturn92 CCD detector and 

MicroMax-007HF (Rigaku) generator equipped with Varimax HF mirrors, and for the 

mutant at the SER-CAT 22-ID beamline at the APS, ANL. We processed all data using 

HKL200028.

Pol λ + T12A—We created a search model from PDB entry 2bcq24. We performed 

molecular replacement using MOLREP29, refined the solution with CNS30 and built the 

model using O31. Residues 289–294 and 313–328 are disordered, as can be judged from the 

high B-factors in those regions. The quality of the model was assessed using Molprobity32 

(100% allowed, 97.48% favored).

Pol λ + T12C—We performed molecular replacement using the solved structure of Pol λ + 

T12A using MOLREP29 and refinement using O31 and CNS30. The T12C structure also 

showed disorder in residues 289–294 and 313–328. The quality of the model was assessed 

using Molprobity32 (99.70% allowed, 97.20% favored).

Pol λ L277A, R511A, H514A + T12A—We performed molecular replacement using the 

solved structure of Pol λ + T12A with MOLREP29. We used O31 and Coot33 for model 

building and CNS30 for refinement. Regions 246–251, 464–471 and 535–547 showed 

disorder. The quality of the model was assessed using Molprobity32 (99.00% allowed, 

90.60% favored).
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Steady-state analysis of nucleotide incorporation

We prepared the substrate by hybridizing 32P-5'-end-labeled P17 

(GTACGACTGAGCAGTAT) with DP14 (5'P-GCCGGACGACGGTG) and T1g 

(CTCCGTCGTCCGGCAATACTGCTCAGTCGTAC). Reactions (10 µl) contained 50 mM 

Tris, pH 7.5, 1mM dithiothreitol, 4% glycerol, 0.1 mg·ml−1 BSA, 2.5 mM MgCl2, 200 nM 

DNA, and 1.5 nM full length wt or 3 nM full length triple mutant pol λ. Reactions were 

initiated by adding dTTP (0.1, 0.2, 0.5, 1, 2, 5, 10, 15 or 20 µM) and incubated at 37°C for 

2.5 or 3 minutes (wt or triple mutant, respectively). Products were resolved by PAGE and 

quantified by autoradiography. The data were fit to the Michaelis-Menten equation using 

nonlinear regression.

Processivity

We constructed a Pol λ triple mutant with Quikchange (Stratagene). Measurements were 

carried out as previously described34. 32P 5'-labeled P (5'-GTACGACTGAGCAGTAT) 

was hybridized to T (5'-CTCCGTCGTCCGGCACGTAATACTGCTCAGTCGTAC), or to 

T and DT (5'-GCCGGACGACGGTG). Reactions (20 µl) contained 50 mM Tris-HCl, pH 

7.5, 1 mM DTT, 4% (v/v) glycerol, 0.1 mg·ml−1 BSA, 10 mM MgCl2, 200nM of the DNA 

duplex and 2nM or 7 nM wt or triple mutant pol λ, respectively, were initiated by adding 

dNTPs (100 µM), incubated at 37°C and stopped at 1, 2, 3 and 4 minutes. We quantified 

product bands and calculated the probability of terminating processive synthesis. The DNA 

to enzyme ratios used prevent synthesis on previously used substrates: termination 

probabilities did not change with reaction time35.

Short-gap reversion assay

The substrate has been described36 and encodes a colorless M13 plaque phenotype. 

Frameshift mutations that restore the reading frame result in blue plaques. Reaction mixtures 

(20 µl) contained 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol, 2 µg of 

BSA, 4 % glycerol, 1.6 nM DNA, 50 µM dNTPs, 400 units of T4 DNA ligase and 100 nM 

wt or 50 nM triple mutant Pol λ. Following 1 h incubation at 37°C, reactions were 

terminated and products separated on an agarose gel, electroeluted, introduced into E. coli 

MC1061 and plated. We scored revertants and total plaques.

NHEJ assay

We incubated 25 nM Ku, 10 nM XRCC4-LigaseIV, and 10 nM full length pol λ polymerase 

with 5 nM DNA substrate (generated as in7) in a reaction buffer with 33 mM Tris-HCl (pH 

7.5), 1mM DTT, 150 mM KCl, 200 ng BSA, 3% glycerol, 0.1 mM EDTA, 12.5% (w/v) 

polyethylene glycol (MW > 8000kDa), 1 µM dNTPs, 5 mM MgCl2 and 1 µg supercoiled 

plasmid DNA (Litmus38; New England Biolabs, Ipswich, MA). Reactions were stopped 

after 3 (Sub. 1) or 15 minutes (Sub. 2) at 37°C, deproteinized, analyzed by non-denaturing 

5% PAGE, and quantified by densitometry (Imagequant v 5.1; GE biosciences).

Molecular dynamics

We created three models using SYBYL 8.0 (Tripos Inc.), modifying the crystal structure by 

adding extra nucleotides prior to the scrunched nucleotide; (i) two adenine nucleotides (4-
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gap) (ii) one adenine nucleotide (3-gap) (iii) one adenine nucleotide with sugar-phosphate 

backbones switched between the scrunched and added nucleotides (3-gap). The structures 

were energy minimized in vacuum using AMBER. We used the Amber.ff03 force field37 

for amino acid residues and Parmbsc038 under the AMBER force field for nucleic acids. 

Prior to equilibration, we subjected the systems to several stages of minimization and 

relaxation under constant volume. 100ps belly dynamics runs on water molecules were used 

to relax their initial positions while keeping the protein and nucleotides frozen, followed by 

an energy minimization run, and a low temperature NPT (constant temperature/constant 

volume) run. After a complete energy minimization (10,000 conjugate gradient steps), and a 

step-wise heating procedure at constant volume (from 0 to 300K in 200ps), we carried out 

constant volume-constant temperature (NVT) equilibration runs for four nanoseconds at 

300K for each system. We calculated final trajectories at 300K under NPT for about 11ns. 

All final MD runs were carried out with time steps of 1.0fs and the particle mesh Ewald 

method39 was used to treat long range electrostatics in all simulations. The PMEMD 

module of the Amber10 molecular dynamics package40 was used for all energy 

minimizations and MD trajectory calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of Pol λ bound to a two-nucleotide gap. a. Overview of the structure. The DNA 

polymerase was crystallized in a pre-catalytic state, prior to incorporation of the incoming 

dTTP (magenta). The primer (P) and downstream primer (D) strands (green) are bound in 

the same conformation as in a single-nucleotide gap. The template strand (red) contains an 

extrahelical single-stranded nucleotide (yellow surface). b. Overlay of the DNA strands in 

the one- and two-nucleotide gap structures. The only difference between the conformation of 

the template strand in the one-nucleotide (yellow) and the two-nucleotide (red) structure is 

the presence of the extrahelical nucleotide. The 3'-end of the primer (blue arrow) and the 5'-

phosphate end of the downstream primer (orange arrow) are in similar positions in both 

complexes.
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Figure 2. 
Binding pocket for the scrunched nucleotide. a. Binding pocket for the scrunched nucleotide. 

The extrahelical nucleotide (yellow surface) is shown, together with the following and 

preceding template residues (red), the 5' residue in the downstream primer (green), the 

incoming dTTP (magenta), and the residues that form the binding pocket, His511 (orange 

surface), Leu277 (green surface) and Arg514 (blue). b/c. Detail of the binding pocket for the 

scrunched nucleotide. A simulated annealing Fo-Fc omit density map is shown, contoured at 

3σ. The binding pocket adopts a similar conformation whether the base of the scrunched 
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nucleotide is adenine (B) or cytosine (C). d. The scrunching pocket residues are conserved 

in pol λ from animal cells. Human (Hs) pol λ sequence is aligned with sequences of pol λ 

from: rhesus monkey, Macaca mulatta (Mcm); cattle, Bos taurus (Bt); horse, Equus caballus 

(Eqc); dog, Canis lupus familiaris (Clf); rat, Rattus norvegicus (Rn); mouse, Mus musculus 

(Mum); red jungle fowl, Gallus gallus (Gg); western clawed frog, Xenopus (Silurana) 

tropicalis (Xst); zebrafish, Danio rerio (Dr); and sequences of human pols μ and β. Invariant 

residues have black background. The residues of the scrunching pocket are presented in red 

and the red numbers correspond to the numbering of residues in the human sequence. 

Conserved residues have gray background.
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Figure 3. 
a. Steady state kinetic analysis of nucleotide incorporation. Reactions were performed as 

described in Materials and Methods. b. Gap-filling activity assay. The wild type and the 

triple alanine mutant polymerases have comparable activity when polymerizing on either an 

open template/primer (T/P) or a 5 nucleotide gap substrate (Note that relative to the wt 

enzyme, the triple mutant generated more total products, consistent with the fact that more 

enzyme was present in the reaction). However, only the wt polymerase fills in the 5 

nucleotide gap processively. c. The bands in the right two lanes of panel a were quantified 

Garcia-Diaz et al. Page 15

Nat Struct Mol Biol. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and termination probabilities were calculated after each incorporation during synthesis to fill 

the 5-nucleotide gap. d. Single-nucleotide-deletion fidelity of the pol λ triple mutant. The 

genetic assay used for measuring single-nucleotide deletions is described in the Methods 

section.
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Figure 4. 
a. Scrunching in the triple alanine mutant. Aberrant nucleotide binding in the triple mutant 

structure. In two of the molecules in the asymmetric unit the nucleotide is only partly bound. 

As a consequence the polymerase has not adopted a pre-catalytic conformation and is only 

engaging the 5' end of the gap. A simulated annealing Fo-Fc omit density map is shown, 

contoured at 3σ. b. NHEJ reaction. 280 bp linear fragments were used as substrates that, 

after aligning partially complementary termini, require fill-in of one (Sub. 1) or two (Sub. 2) 

nucleotide gaps before ligation can occur. Ku, XRCC4-ligase IV, and polymerase were 

included as noted in reactions for 3 minutes (Substrate 1) or 15 minutes (Substrate 2).
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Figure 5. 
Final conformation of the template strand after molecular dynamics simulations with a 4-

nucleotide gap substrate. The single-stranded nucleotides in the gap are shown with their 

van der Waals surfaces colored. The distance between the C3′ atom of the primer terminal 

nucleotide and the C5' atom of the 5'-nucleotide of the downstream primer (red arrows) is 

kept almost constant (29.8 Å versus 28.3 Å for a single nucleotide gap) despite the presence 

of two additional template nucleotides.
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Figure 6. 
Scrunching during gap-filling. A simplified model of the steps during gap-filling by pol λ is 

shown. Each of the steps corresponds to a crystallized intermediate. The DNA polymerase is 

represented as a yellow surface, and each of the three DNA binding sites (I, II and III) are 

represented. The PDB code corresponding to each intermediate is indicated above each 

panel11,19. An animated reconstruction of the reaction pathway can be found in the 

Supplementary Materials.
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Table 1

Data collection and refinement statistics

3HWT 3HW8 3HX0

Data collection

Space group P212121 P212121 C2221

Cell dimensions

   a, b, c (Å) 56.023, 63.328, 137.850 56.249, 68.386, 137.108 124.179, 131.912, 280.412

   α, β, γ (°) 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 90.00

Resolution (Å) 50-1.95 50-1.95 50-3

Rsym 8.9 (39.9) 9.2 (52.2) 10.7 (74.5)

I / σI 10.3 (2.9) 17.5 (2.9) 9.4 (2.6)

Completeness (%) 96.0 (91.2) 97.2 (89.5) 99.9 (99.5)

Redundancy 4.1 (2.8) 6.1(3.7) 9.3 (8.3)

Refinement

Resolution (Å) 1.95 1.95 3

No. reflections 70757 38282 44203

Rwork / Rfree 22.8/26.1 21.2/23.3 22.3/26.8

No. atoms 3243 3321 11994

   Protein 2410 2509 10027

   Ligand/ion 480 486 1932

   Water 350 331 35

B-factors

   Protein 43.2 41.4 88.9

   Ligand/ion 34.2 29.3 84.7

   Water 48.9 42.7 64.3

R.m.s. deviations

   Bond lengths (Å) 0.003 0.005 0.003

   Bond angles (°) 1.09 1.0 0.8

*
Values in parentheses are for highest-resolution shell.
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