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ABSTRACT

Comprehensive characterization of differentially spliced RNA transcripts with nanopore sequencing is limited by bioinfor-
matics tools that are reliant on existing annotations. We have developed FLAME, a bioinformatics pipeline for alternative
splicing analysis of gene-specific or transcriptome-wide long-read sequencing data. FLAME is a Python-based tool aimed at
providing comprehensible quantification of full-length splice variants, reliable de novo recognition of splice sites and ex-
ons, and representation of consecutive exon connectivity in the form of a weighted adjacency matrix. Notably, this work-
flow circumvents issues related to inadequate reference annotations and allows for incorporation of short-read sequencing
data to improve the confidence of nanopore sequencing reads. In this study, the Epstein-Barr virus long noncoding RNA
RPMS1 was used to demonstrate the utility of the pipeline. RPMS1 is ubiquitously expressed in Epstein-Barr virus associ-
ated cancer and known to undergo ample differential splicing. To fully resolve the RPMS1 spliceome, we combined gene-
specific nanopore sequencing reads from a primary gastric adenocarcinoma and a nasopharyngeal carcinoma cell line with
matched publicly available short-read sequencing data sets. All previously reported splice variants, including putative
ORFs, were detected using FLAME. In addition, 32 novel exons, including two intron retentions and a cassette exon,
were discovered within the RPMS1 gene.
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INTRODUCTION

Differential splicing by means of mutually exclusive exons,
intron retention and alternative acceptor/donor splice sites
brings considerable diversity to a single gene (Mollet et al.
2010). In the human transcriptome, estimations based on
RNA sequencing data suggest that around 95% ofmultiex-
onic genes undergo alternative splicing (Pan et al. 2008).
Human viruses utilizing the host transcription machinery
for gene expression may likewise display substantial alter-
native RNA splicing. For instance, the temporal regulation
of the viral gene expression in human papillomavirus is me-
diated by alternative RNA processing (Johansson and
Schwartz 2013). Also, multiple Epstein-Barr virus (EBV)
genes contain variably included exons and are subjected
to extensive splicing (Farrell 2019).
The advent of short-read RNA sequencing technologies

has provided the means to unbiasedly characterize tran-

scriptomes with unprecedented speed and accuracy
(Tang and Larsson 2017). Nonetheless, comprehension of
exon connectivity at single-molecule level is irreversibly
lostdue to the fragmentationduring library preparation.Al-
though splice-junction reads or paired-end mapping of
coupled reads to consecutive exons allow for efficient
detection of splicing, these approaches fail to account
for the relative abundance of alternatively spliced tran-
scripts at full-length resolution. With the emergence of
long-read sequencing technologies, it is now feasible to re-
veal the full spectrum of differential splicing at single-mol-
ecule level (Garalde et al. 2018). However, the Oxford
Nanopore Technologies long-read sequencing methodol-
ogy is to someextent afflictedby the relatively lowaccuracy
and high incidence of indels, which entails uncertainty in
distinguishing actual splice sites from artifacts (Byrne
et al. 2017; Kovaka et al. 2019; Dohmet al. 2020). Available
bioinformatics tools for long-read splicing analysis that
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combine thestrengthsofnanoporeand short-read sequenc-
ing data, for example, FLAIR, have proven to facilitate
correct alignment and annotation (Tanget al. 2020). Howev-
er, existing tools encounter difficulties in properly handling
a large accumulation of unannotated exon boundaries. In
particular, stringent reliance on a given reference annota-
tion requires laborious efforts to discover cryptic splice sites
and discern extensively overlapping exons.

Here, we describe FLAME (full-length adjacency matrix
and exonenumeration), a novel bioinformatics pipelinede-
signed to generate a comprehensive catalog of RNA splic-
ing, including unannotated splice sites and novel exons at
single-molecule level. To that end, FLAME connects the
dots between long-read and short-read sequencing as
part of reliable de novo recognition of novel splice sites
and exons. The program outputs sorted lists of both anno-
tated and partly unannotated transcript variants. The latter
are further processed to single out genuine exons on the
basis of frequency, adjacent splice site dinucleotides and
short-read support. Altogether, such a complete catalog-
ing of splice variants, provided in aproper format, is condu-
cive to adequately determine the relative frequencies of
particular splicing patterns and uncover novel exons.

In this work, the EBV long noncoding RNA (lncRNA)
RPMS1 was used to demonstrate the application of
FLAME indetail. The tumorigenic natureof EBV ismanifest-
ed in various lymphoid andepithelialmalignancies. Studies
have shown that RPMS1 is the most abundantly expressed
polyadenylated viral RNA in EBV-associated nasopharyn-
geal carcinoma and gastric adenocarcinoma (GAC) (Raab-
Traub et al. 1983; Tang et al. 2013). High expression of
RPMS1 has also been shown in the EBV-positive nasopha-
ryngeal carcinoma cell line C666-1 (Smith et al. 2000). The

RPMS1 gene spans over 22 kb of the EBV genome and the
4kb lncRNARPMS1 contains sevenmainexons (I–VII) along
with two minor cassette exons (Ia and Ib) (Marquitz et al.
2015). Alternative exonswithin RPMS1 have been reported
in low-throughput studies (Yamamoto and Iwatsuki 2012).
Within the introns of RPMS1, 44 microRNAs (miR-BARTs)
are encoded and it has been proposed that the expression
levels of these may be differentially regulated by alternat-
ing the splicing pattern (Edwards et al. 2008). These miR-
BARTs have been observed in all proposed latency types
of EBV-associated neoplasms (Qiu et al. 2011). In addition,
minor circularized BARTs resulting from backsplicing of
particular segments of RPMS1 have been described espe-
cially during reactivation (Toptan et al. 2018; Ungerleider
et al. 2018). Moreover, putativeORFs have been described
in RPMS1; however, the existence of these have remained
controversial (Chen et al. 1999).

RESULTS AND DISCUSSION

Program framework

FLAME is a streamlined amalgamation of four main func-
tions: (i) long-read categorization, (ii) splice variant enu-
meration, (iii) quantification of adjacent exon linkage and
(iv) detection of novel splice sites and exons. These core
functions are constructed of several interconnected sub-
functions as described in Table 1. The general workflow
is summarized in Figure 1 and organized as follows:

i. The initial long-read categorization utility determines
whether the input reads align with the reference an-
notation. Reads are thus categorized as either

TABLE 1. Description of FLAME functions

Core function Subfunction Description

Long-read
categorization

create.ref Reads, filters, and transforms the input annotation reference file into a local variable.
filter Categorizes reads as either annotated or incongruent.
translate Deciphers annotated exon ranges in BED12 format into a numeric nomenclature.

Splice variant
enumeration

quantify Quantifies and collapses identical transcript variants.

Adjacent exon
linkage

empty.adjmtx Creates an empty adjacency matrix.
annotated.adjmtx Creates a weighted adjacency matrix of consecutive exon connectivity.
incongruent.
adjmtx

Creates a weighted adjacency matrix of exon ranges retrieved from the frequency.thresh
function.

Novel splice site
detection

incongruent.
separator

Separates unannotated exon ranges into 5′ and 3′ splice sites.

frequency.site Extracts and transforms unannotated splice sites into frequency ranges in which the
cumulative frequencies are set against gene positions.

frequency.thresh Extracts and returns unannotated splice sites based on a customizable threshold value.
splice.signal Locates unannotated splice sites and searches for adjacent splice site dinucleotides (GU/

AG).
shortread Scans input short-read RNA-seq data to confirm the validity and exact coordinates of

unannotated splice sites.
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annotated or incongruent with respect to any geno-
mic annotation provided in gene transfer format
(GTF). The annotation file is at the outset converted
into a local variable based on filtering of general en-
tries, thereby making the program applicable to
both single- andmultichromosomal organisms. All an-
notatedexon ranges are subsequently translated from
BED12 format into a numeric naming system estab-
lished in the local reference variable. The exonic con-
stituents of each and every annotated read are hence
untangled and represented as a series of exon names.
A read is categorized as incongruent if merely one
exon departs from the local reference annotation file
in terms of exon global start position, global end posi-
tion or length. This three-factor approach (start, end,
and length) entails awareness of overlapping exonic
positions andallows for reads comprising intron reten-
tion events or alternative splice sites within previously
annotated exons to be cataloged separately.

ii. Sequences with identical exon arrangements are col-
lapsed and quantified using the principle of item rec-
ognition. A quantitative description of all fully
annotated patterns of splice variation is consequently
obtained at single-molecule level.

iii. Consecutive exon linkage is presented in the form of
a weighted adjacency matrix. The relative inclusion
rate and sequential arrangement of any given exon
is thus specified. Moreover, any long-range exon cou-
pling that may be derived from artifactual joining of
primers appears clearly.

iv. The program systematically catalogs all exon/intron
boundaries in order to find any novel splice sites
and exons. In brief, the network of subfunctions de-
veloped to facilitate detection of genuine splice sites
and exons is oriented toward three aspects: (i) splice
site usage frequency, (ii) presence of canonical splice
site dinucleotides at the intron–exon junctions and (iii)
incorporation of short-read evidence. These parame-
ters are automatically compiled into one output file
for subsequent manual assessment. Unannotated ex-
ons considered to be authentic can then be added to
the local reference annotation file in order to recover
incongruent reads by running an additional cycle of
the workflow.

FLAME is in its primary implementation intended for
gene specific splicing analysis. However, the program al-
lows for scalability to transcriptome-wide analysis of both
native RNA and cDNA nanopore sequencing data. The
global-wide module (FLAME-GLOW) outputs transcript
variant quantification of well characterized genes. In the
event that a vast proportion of reads aligning to a specific
locus are incongruent with the reference annotation, the
gene/s in question is/are flagged and itemized in a sepa-
rate list for further assessment.

A case study on the splice variation of RPMS1

The EBV lncRNA RPMS1 was used as a case to present the
different features of FLAME. Here, we combined nanopore
long-read sequencing reads and publicly available short-
read data sets of primary tumors and the EBV-positive na-
sopharyngeal carcinoma cell line C666-1 to resolve the
splicing pattern of RPMS1 in transformed epithelial tissue.
Total RNA was isolated from C666-1 and a GAC tumor tis-
sue, in which EBV-RNAwas detected using RT-qPCR (Sup-
plemental Fig. 1). An adapted PCR-cDNA approach
targeting RPMS1 was subsequently used to prepare full-
length libraries for nanopore sequencing. In total,
186,738 and 164,000 raw reads were generated from the
C666-1 and GAC library, respectively, on an Oxford Nano-
pore Technologies MinION device and aligned to the EBV
genome. Filtering based on the global start position of
RPMS1 eventually rendered 153,164 and 131,503 aligned
reads in the C666-1 and GAC data set, respectively.
Inasmuch as PCR amplification and sequencing errors

can overestimate obscure splicing events, a threshold limit
value was set to diminish the number of truncated

FIGURE 1. General organization of the pipeline. The four main func-
tions are marked i–iv. (i) The create.ref function converts annotation
written in GTF into a local variable for downstream use. Aligned
long-reads are subsequently compared against the reference in the fil-
ter function. Transcript variants containing incongruent exons are sin-
gled out and unannotated splice sites are cataloged. (iv) In the
following “novel splice site detection” function, unannotated splice
site coordinates are quantified and set against a given fasta format ref-
erence to scan for adjacent canonical dinucleotides (GU/AG). This
step also allows for optional incorporation of splice-junction reads
from corresponding short-read data to raise the fidelity. Novel exons
that are deemed true upon manual inspection are then added to the
reference variable for repeated cycling through the filter function. (ii)
Transcript variants that are congruent with the reference annotation
are passed on to an enumeration operation, in which the relative
and absolute abundance is determined. (iii) The concluding adjacency
matrix displays large-scale consecutive exon connectivity.

Full-length adjacency matrix and exon enumeration
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transcripts or otherwise artifactual sequences. The thresh-
old limit value was here defined as the minimal number
of supporting reads per transcript variant. We henceforth
only considered transcript variants supported by ≥10
reads, hereinafter referred to as intermediate-confidence
data. All transcripts supported by less than 10 reads were
consequently omitted from further analysis. In addition, a
high-confidence data set with a threshold limit value of
≥100 reads per transcript variant was implemented to
more certainly rule out any technical artifacts. Given these
thresholds, ∼12% and ∼18% of the total reads were
discarded from the intermediate-confidence and high-
confidence data sets, respectively. The parameter op-
timization of threshold limit values is presented in Supple-
mental Figure 2A–F.

To further remove any ambiguity concerning possible
nanopore sequencing artifacts, matched short-read se-
quencing datawas incorporated into the workflow. In total,
publicly available short-read data from 106 EBV-positive
nasopharyngeal carcinomas, 28 EBV-positive GAC tumors
and one C666-1 data set (equivalent to 459,854; 36,290
and 3107 splice junction reads, respectively) was utilized

(Supplemental Table 1). This library of splice-junction reads
hence servedas the frameof reference todetermine theex-
act positions of unannotated exon boundaries discovered
using nanopore sequencing. As illustrated in Figure 2,
the coverage plots obtained from nanopore sequencing
correlated with several noncanonical splice sites in the
corresponding short-read data. Furthermore, based on
the distribution of splice junctions across the RPMS1
gene, it was clear that the current RefSeq annotation
(NC_007605.1) was inadequate. Firstly, the RefSeqannota-
tion lacked exon Ia, Ib, and II. Moreover, the numerous
splice-junction reads detected within exon V and VII indi-
cated a complexpattern of splicing not capturedby current
annotation,which hampers the usefulness of any tool that is
dependent on the provided reference.

It should be noted that a gene-specific PCR approach for
nanopore sequencing does not account for diversity per-
taining to alternative promoter usage and/or alternative
polyadenylation. The extracted splice-junction reads
from the short-read data sets revealed an unannotated
splice site within the intron region upstream of exon
V. Since this splice site does not have any coverage in

FIGURE 2. Alignment of long nanopore sequencing reads and splice junctions in corresponding short-read sequencing data sets. (A) Coverage
plots of nanopore sequencing reads across RPMS1 in C666-1 andGAC. Bars display alignment to constitutive (I–VII) and cassette exons (Ia and Ib),
and numbers below refer to position in the EBV genome. Changes in coverage peaks correspond to splicing. The current RefSeq annotation
(NC_007605.1) does not include exon Ia, Ib, and II, nor the multitude alternative splice sites within exon III, V, and VII. (B) Detection of splice junc-
tion in short-read sequencing data sets. The number in the y-axis corresponds to the frequency of splice-junction reads. The coverage of nano-
pore reads across RPMS1 correlates with the extracted splice-junction positions in complementary short-read sequencing data sets. (NPC)
Nasopharyngeal carcinoma.
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the nanopore sequencing, we could infer that this splice
site represents a 3′ splice site of a previously unknown tran-
scription start site within the RPMS1 gene.
The NC_007605.1 reference annotation proved to be

the limiting factor to describe the bulk of transcript variants
generated by nanopore sequencing. Only 3.31% and
0.17% of the high-confidence reads from the C666-1 and
GAC library, respectively, were fully annotated when the
long-read categorization function was applied using the
reference genome. As expected, however, exon Ia, Ib,
and II were immediately flagged as authentic by the novel
splice site detection function. These exons have previously
been reported and are regarded as established amend-
ments to the reference annotation. Exon Ia, Ib, and II
were therefore added to the local reference variable.
Utilizing this updated reference, FLAME categorized
12.03% of the C666-1 reads and 22 intermediate-confi-
dence transcript variants as annotated. As regards the
high-confidence data set, four transcript variants were
captured, representing 12.92% of the reads. When the
GAC library was used as input, 17 intermediate-confidence
transcript variants were captured, yet only representing
5.23% of the reads. Similarly, 6.24% of the reads, distribu-
ted on six transcript variants, were retrieved in the high-
confidence data set. Altogether, these numbers demon-
strated that the available annotation was insufficient to ac-
count for the overwhelming majority of RPMS1 reads.
A central feature of FLAME is the capability to single out

abundant unannotated splice sites from a large set of
uncharacterized long-reads. The novel splice site detection
function was therefore used to thoroughly sift through the
large number of exon ranges that were incongruent with
the RPMS1 reference annotation. The workflow was set
up so that novel exons had to be supported by ≥10 reads
and flanked by canonical splice site dinucleotides (GU/
AG) in order to be deemed authentic. Moreover, the valid-
ity and exact position of all acceptor and donor sites had to
be reinforced by complementary splice-junction reads
from the short-read data. By using these criteria, FLAME
distinguished 22 novel exons in the C666-1 library and 30
exons in the GAC library. In total, 32 novel elements were
found, out of which 20 were common for both C666-1
and GAC (Fig. 3). All novel exons were ultimately merged
into one reference file, which brought about an almost
complete retrieval rate. Looking at the C666-1 intermedi-
ate-confidence data set, 95.70% of the reads and 245 tran-
script variants were now fully annotated, whereas 99.06%
of the reads and 57 transcript variants were annotated in
the high-confidence data set. With respect to the GAC li-
brary, corresponding numbers in the intermediate-confi-
dence data set were 98.39% and 247 transcript variants,
and 99.86% and 74 transcript variants in the high-confi-
dence data set (Supplemental Table 2).
FLAME proved to be sensitive enough for detection of

rare splicing events. A novel cassette exon spanning over

57 bp was discovered within the intron between exon VI
and exon VII. This exon, designated exon VIa, was found
tobemutually inclusivewith exonVI andexonVIIa1 andoc-
curred in three intermediate-confidence transcript variants
in the GAC library. Notably, this exon was not detected in
C666-1. Additionally, an intron retention event spanning
over exon III and exon IV (r:III’IV) was observed in two inter-
mediate-confidence transcript variants (corresponding to
0.09% of the reads) in the GAC library. r:III’IV was however
significantly more frequent in the C666-1 library as it
appeared in seven intermediate-confidence transcript var-
iants (1.57% of reads) and three high-confidence transcript
variants (1.50% of reads). In addition, another intron reten-
tion event spanning from exon IIIc to exon IV was observed
in one intermediate-confidence transcript variant (0.02%of
reads) in the C666-1 library. As illustrated in Figure 3, exon
III is divided into two segments in the RefSeq annotation.
Our analysis showed that exon IIIa and exon IIIc were virtu-
ally mutually inclusive and the 3′ end of exon IIIa and the 5′

end of exon IIIc were suboptimal splice sites, as exon III was
found to be fully retained in 64.30% of high-confidence
C666-1 reads and 64.52% of high-confidence GAC reads.
The spectrumofRPMS1 splice variants was largely attrib-

utable to alternative usage of multiple acceptor and donor
splice sites within otherwise constitutive exons (exon III,
exon V, and exon VII). The most common splicing patterns
thus derived from several instances of variable 5′ and 3′

flanks of exons in multiplex combinations. The repertoire
of transcript variants was thereby shifted to shorter tran-
scripts due to splitting of long exons, as illustrated in
Figure 4. Differential usage of fully contained exons; that
is exon skipping, was of minor importance in this respect
(Fig. 5). All alternative splice sites appeared to be relatively
weak in terms of providing inter-exon connectivity as the
canonical boundaries of the exons were with very few ex-
ceptions invariably maintained in the splice junctions be-
tween constitutive exons. Furthermore, there was an
asymmetry in the numbers of novel acceptor and donor
sites with an overweight toward acceptor sites. The relative
strength of all acceptor and donor sites are depicted in
Supplemental Figure 3. The four novel alternative donor
sites within exon V were rarely consecutively connected
to exon VI. Conversely, the seven alternative acceptor sites
were rarely connected to exon IV. When viewed collective-
ly, the alternative splice sites within exon V were used in
33.12% of C666-1 high-confidence reads and 35.50% of
GAC high-confidence reads. Notably, exon Vg was ob-
served to be a major splice site acceptor within both GAC
andC666-1, thereby providing an intrinsically strongdonor
site for consecutive coupling to exon VI. Eight alternative
acceptor sites and four alternative donor sites were detect-
ed within exon VII. These were used in 27.36% of the high-
confidence reads in C666-1. In stark contrast, the alterna-
tive splice siteswereused in68.18%of thehigh-confidence
reads in theGAC library. Among these, VIIa1 in conjunction
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with VIIf2 was most abundant. The spliceome of RPMS1
shows that for example, design of RT-PCR primers for
RNAwithout the detailed knowledgeof the gene transcript
variants may generate amplicons which neglects a large
proportion of the transcripts.

Given the high annotation rate using FLAME (>95%), a
relative quantification of splice variants could be per-
formed with improved precision as the full extent of alter-
native splicing events was considered. The 15 most
abundant splice variants of RPMS1, supported by more
than 1.2% of high-confidence reads in the C666-1 library
and 1% in the GAC library, are delineated in Figure 6.
The 4.2 kb variant of RPMS1 represented the paramount
transcript in C666-1 and constituted 37.7% of high-confi-
dence reads. It is worthwhile to notice, however, that this
splice form only represented 17.5% of the high-confi-

dence reads in GAC. The 15 most prevalent transcript var-
iants, which together constituted 82.49% and 86.64% of
high-confidence annotated reads in GAC and C666-1, re-
spectively, contained 41 unique putativeORFs longer than
five amino acids (Supplemental Table 3). In the trans-
formed epithelial tissues all seven constitutive exons
were represented in all of the 15 most common transcript
variants. In contrast, in the Burkitt’s lymphoma cell line
Daudi, five noncanonical long-range splice junctions
were observed among the 15 most common splice forms
(Supplemental Fig. 4). The divergence of splice variants
of RPMS1 in Daudi from the pattern observed in C666-1
and GAC could be cell type specific and/or related to
the propensity for viral reactivation.

Eight ORFs were only present in either of the epithelial
libraries and the majority of these ORFs constituted less

FIGURE 3. Comprehensive annotation of RPMS1 in transformed epithelial tissue. The upper segment displays the starting reference annotation
of RPMS1 as it is used in FLAME.Departures with respect to the RefSeq reference (addition of exon Ia, Ib, and II) are indicated.Moreover, exon III is
by convention regarded as one constitutive exon, although it is divided into two constituents in the RefSeq reference. Alternative exons discov-
ered by FLAME are displayed in the middle segment. The nomenclature and coordinates of all exons are listed in the attached table. Putative
open reading frames are displayed in the bottom segment. Numbers on the X-axis refer to the global position in the EBV genome.
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than five percent of the annotated reads. The suggested
protein BARF0 (ORF_173) could be encoded from all tran-
scripts in both GAC and C666-1. Previously described pu-
tative ORFs for RPMS1 (protein) and A73, but not RPMS1A
(1.4%), were found to be represented by a large fraction
(60.2% and 54.1%, respectively) of the annotated reads
in GAC. In C666-1, from which most of these ORFs were
discovered, RPMS1, RPMS1A, and A73 were present in
63.8%, 20.4%, and 20.5%, respectively, of the annotated
reads.

Performance benchmarking using human and viral
data sets

The computational efficiency and robustness of FLAME
was evaluated against FLAIR, a pipeline for nanopore se-
quencing data analysis. Using different data sets, including
both human and viral transcriptomes as well as various li-
brary preparation methods, the performance of FLAME
was compared to FLAIRwith respect to retrieval of annotat-
ed reads, assembling of transcript variants and runtime.
First, the performance of FLAIR was assessed on the

RPMS1 data set presented above (Supplemental Table
4).When FLAIRwas usedwith the RefSeq annotation to an-
alyze the GAC data set, 549 reads (0.42%) were annotated
and 11 full-length transcript variants were assembled on

the basis of these. Despite expansion of the reference
with all alternative exons obtained from the previous
FLAME analysis, FLAIR was only able to annotate 4602
reads (3.50%) and assemble 26 full-length transcripts
(compared with the 109,464 reads and 74 transcript vari-
ants annotated as high-confidence by FLAME). However,
16 out of the 26 alternative transcripts assembled by
FLAIR were lacking both exon V and VI, and six transcripts
weremissing exon III, IV, V, and VI. This significant absence
of otherwise established constitutive exons is notable and
contradicts the coverage plot (Fig. 2). In addition, the in-
tron between exon V and VI was retained in five cases.
None of the transcript variants detected by FLAIR con-
tained the canonical exon I–VII setup (Supplemental Fig.
5). In contrast, using FLAME, all of the high-confidence
transcript variants present in more than 1% of the data
set contained variants of the exon I–VII setup. The compu-
tational performance of FLAIR using the C666-1 data set
was comparable in all material respects, although the re-
trieval rate of annotated reads actually deteriorated
when the reference annotation was expandedwith alterna-
tive exons. The computational processing time for the
analysis of RPMS1 corresponded to 1255.49 CPU seconds
and 52.24 CPU seconds for FLAIR and FLAME, respective-
ly. Thus, FLAMEperformed alternative splicing analysis, in-
cluding novel splice site detection, at 4.16% of the
computational time it required for FLAIR to finish the
analysis.
We next used FLAME-GLOW on a publicly available na-

tive RNA sequencing data set to identify adequately anno-
tated genes for further comparison with FLAIR (Workman
et al. 2019). The threehousekeepinggenesACTB (beta-ac-
tin), B2M (beta-2 microglobulin), and GAPDH (glyceralde-
hyde 3-phosphate dehydrogenase) were found to display
high coverage and an acceptable proportion of annotated
full-length transcripts using FLAME-GLOW. In total, 61%–

73% of the reads mapping to these genes were fully anno-
tated when FLAME-GLOW was applied. Corresponding
numbers obtained from FLAIR were 16%–51% (Supple-
mental Table 5). Notably, for B2M, none of the 7 splice var-
iants assembled by FLAIR contained the complete CDS
(Supplemental Fig. 6). Lastly, FLAME was tested using
data previously analyzed with FLAIR. Mutation of SF3B1
in the context of chronic lymphocytic leukemia has previ-
ously been shown to result in differential usageof one alter-
native 3′ splice site in the ERGIC3 gene (Tang et al. 2020).
This findingwas reproducible using FLAME;moreover, two
additional alternative acceptor splice sites were detected
within ERGIC3 (Supplemental Fig. 7).

Conclusions

Long-read sequencing technologies have opened up the
possibility to analyze the splicing of full-length RNA tran-
scripts in a high-throughput manner. Current tools for

FIGURE 4. Diversity plot of high-confidence data. Each dot repre-
sents a unique transcript variant and the area correlates with the num-
ber of supporting reads expressed as percentage of fully annotated
reads. The 4.2 kb splice form represents 37.7% and 17.5%of the reads
in the C666-1 and GAC library, respectively. Splicing within long ex-
ons pulls the center of density toward shorter transcripts with more ex-
ons. Transcript variants comprising <5 exons (equivalent to 0.26% of
the data) are not shown.
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splicing analysis perform well for genes with an adequate
reference genome, but strict dependence on a given an-
notation file renders the task of retrieving unannotated ex-
ons difficult. We have developed FLAME with the aim to
provide a perspicuous description of the entire spliceome
of any RNA transcript without reliance on existing annota-
tion. To limit any deceiving impact of nanopore sequenc-
ing artifacts and compensate for inadequate reference
annotations, FLAME allows for incorporation of comple-
mentary short-read data to rapidly and reliably define nov-
el exons. FLAME-GLOW is suitable for global-wide
identification of perturbed splicing in a large-scale con-
text. FLAME is written in a single programming language
and designed to rely on as few external packages, software
and tools as possible, making the tool straightforward to
use and almost self-sufficient in its implementation into dif-
ferent computational environments. Many facets of the
program have been designed to allow for modularity,
from the flexibility of implementing the user’s own thresh-
olds values, to the ability to use each individual subfunc-
tion independently with either direct command-line
interaction or through scripting.

Here, we have analyzed the complex splice variation of
the viral lncRNA RPMS1 and unveil a wealth of previously
unknown splicing events. FLAME was compared with
FLAIR and was shown to be 24 times faster and 24 times
more efficient at processing the data. In this study, we
only considered transcript variants supported by at least
ten (intermediate-confidence) or a hundred (high-confi-
dence) reads to minimize the number of false positive var-
iants, while simultaneously reporting representative

splicing patterns from the plethora of variants. Depending
on sequencing quality/depth and purpose of the study, the
threshold limit value can be adjusted to accommodate for
the specific setting. Currently, no known molecular func-
tion has been attributed to RPMS1. Whether functional
RNA domains exist within the RPMS1 RNA remains to be
seen, but our study has now added additional possibilities
for exploring alternative secondary RNA structures. More-
over, with a comprehensive list of putative ORFs it would
be possible to confirm or rule out the protein coding ability
of RPMS1 by unbiased approaches, for example, mass
spectrometry. In summary, FLAME is a universal tool for ac-
curate identification of novel exons andprovides a compre-
hensive overview of the spliceome.

MATERIALS AND METHODS

Design and implementation of the pipeline

The FLAME software is available on https://github.com/
marabouboy/FLAME.

Creating a reference

The create.ref function converts the input reference annotation
from GTF into a list format. Certain entries are filtered out from
the input reference file based on the following exclusion criteria:
(a) the feature is classified as anything else but exon as feature
type; (b) the feature does not contain the specific name of the tar-
geted gene within transcript_id, gene_id or gene_name; (c) the
feature is classified as a microRNA. These criteria allow for the in-
put to be an entire chromosome or genome. The resulting list

FIGURE 5. Weighted adjacencymatrices outlining the overall patterns of consecutive exon connectivity in all long-read sequences. Vertical shift-
ing within a column represents alternative acceptor sites for a given donor site, whereas horizontal shifting within a row represents alternative
donor sites for a given acceptor site. Long-range exon connectivity possibly resulting from artifactual joining of primers appears in the top left
corner.
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contains five features: (i) exon name based on start position, (ii)
chromosome, (iii) exon global start position, (iv) exon global
end position, and (v) exon length.

Long-read categorization

All irrelevant data is discarded in order to maximize the process-
ing speed in the filter function. Temporarily saved relevant data

includes: (a) BED12 start, which is the global start position; (b)
BED12 blockCount, which is the number of exons in the read;
(c) BED12 blockStarts, which is a comma-separated list of each
exon start position relative to the long-read; and (d) BED12
blockSizes, which is a comma-separated list of each exon length.
The following cross-referencing of input long-reads relies on
three key principles. (i) Input long-read exon and corresponding
annotated exon must be concordant with respect to global start

FIGURE 6. Themost abundant transcript variants of RPMS1. The 15most prevalent splice forms of RPMS1, representing all variants supported by
≥1.2% of high-confidence reads in the C666-1 library and 1% in the GAC library, are illustrated. Quantification of the relative abundance is ex-
pressed as the percentage of annotated high-confidence reads. Numbers on the X-axis refer to the global position in the EBV genome.
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position, exon length, and global end position. (ii) A variance
function accounts for sequencing errors, base calling errors and
insertion-deletion events. The default number of nucleotide vari-
ance is 20; however, this is customizable to fit different data sets
including microexons. (iii) If any exon within a long-read does not
find a matching annotated reference exon, the entire sequence is
classified as incongruent. Conversely, the sequence is filtered into
the annotated data set if all exons within the long-read find
matching annotated reference exons. The translate function is
crucial for efficient representation, storage and transfer of data.
In this function, annotated reads are deciphered from read range
format into predefined exon designations. This is to avoid the la-
borious process of scrutinizing the sizable set of information in
BED format. Incongruent exons will remain untranslated as global
read range.

Data representation of annotated reads

The quantify function collapses full-length exon permutations and
quantifies the abundance of different transcript variants. This
function relies on simple item detection and counting. If the in-
putted combination of exons exists in an array, the attached score
of this particular isoform is raised by an increment of one. If the
inputted combination of exons does not exist, the isoform is add-
ed to the array with an attached score of one. The annotated.
adjmtx function displays the consecutive exon connectivity in a
quantitative manner. The first exon specifies the i-dimension co-
ordinate, while the preceding exon specifies the j-dimension
coordinate.

Novel splice site and exon detection

The incongruent.separator function splits exon ranges into two
separate splice sites. The splice sites will remain split when
used in further analysis steps until the incongruent.adjmtx func-
tion is put into practice. The frequency.site function quantifies un-
annotated splice sites in an array data structure. A variance
smoothing operator merges possible novel splice site positions
that differ in ±m nucleotides (default = 2). The array data structure
exists as raw data but could prove overwhelming. Therefore, a
customizable threshold can be implemented via the frequency.
thresh function. Consequently, only nucleotide positions that
are represented by a certain percentage (default >1%) will be re-
turned. The value of each potential splice site that surpasses the
threshold is displayed in absolute numbers and percentage of in-
congruent reads.

The splice.signal function strengthens the validity of splice sites
that exceed the threshold percentage. If a genomic reference file
is presented, the potential novel splice sites are located and their
neighboring nucleotides are processed with a range of ±3 nt. If
any of the nucleotides within this seven nucleotide window,
with the potential novel splice site signal being centered, contains
the splice site dinucleotides (GU/AG), it is flagged.

The shortread function is dependent on the presence of a
short-read sequencing file in either bam or sam format. The
CIGAR string is processed so as to register the number of splice
events. Once the cigar string registers the number of splice oper-
ators (N), it calculates the exact position of the splice site, and
saves the position as a list variable. Once all the short-read se-
quences are processed and have been saved and quantified in

the storage variable, said storage variable is cross-referenced
with the list of splice site positions that passed the frequency anal-
ysis ( frequency.thresh) percentage threshold.

The incongruent.adjmtx is the key function in the translation of
novel splice sites into entire novel exons. The splice sites, gener-
ated from the frequency.site, frequency.thresh, splice.signal, and
shortread functions can be used to generate a weighted adjacen-
cy matrix. The reads classified as incongruent are then processed
to single out the exons that did not match the reference. These
exons have their global start position interpreted as their column
position and their global end position interpreted as their row po-
sition for which that position has its weight increased by an incre-
ment of one in the weighted adjacency matrix. This is done for
each incongruent exon with the end result producing a table
where the most frequent exon ranges have the highest weight.
Manual determination of true novel exon or novel splice site is re-
quired as contextual information such as experiment design can-
not be accessed through the input data. Throughout this work the
frequency.thresh function was configured with a value of 1, mean-
ing that only unannotated splice sites accounting for more than
1% of the incongruent reads were returned. Consequently, rare
unannotated splicing events could be concealed from discovery.
This problem was however circumvented by continuously updat-
ing the reference as part of iteratively cycling through the pipe-
line. Based on our experience it is sufficient with 3 to 4 cycles to
reach saturation.

FLAME-GLOW

The transcriptome-wide module is a wrapper of already existing
functions within the FLAME function library, with the addition of
a single function segment. Briefly, FLAME-GLOW starts by ex-
tracting the name of each gene in the input reference file, and cre-
ating a database in Python list format. The pipeline then iterates
through every gene name, initially applying three functions: cre-
ate.ref, segment and filter. As explained previously, the create.
ref creates a reference in list format for the current gene iteration.
The main goal of the segment function is to extract the reads that
are within the vicinity of the current gene iteration, with respect to
the genomic position. The goal of this function is to optimize the
program so as not needing to repeatedly process irrelevant reads,
for example, reads that are located on a different genomic section
from the current gene iteration. The filter function is then applied
with the segmented reads as input and the create.ref output as
reference. The function filter works in the exact same manner as
previously described. However, post-filter, the ratio of reads clas-
sified as annotated compared to the total number of reads is cal-
culated. Depending on a threshold, customizable with a default
threshold of 25%, the gene iteration is processed differently. If
the gene has an annotation ratio above the threshold, the reads
are processed through the translate and quantify functions.
However, if the gene falls below the threshold, it would be
flagged as being worthy of a secondary analysis, recommended
to be analyzed by the gene specific FLAME module. The reason
for this threshold filtering is due to the assumption that if a gene is
annotated well enough, the only interesting data would be the
isoform quantification of the current gene iteration. Conversely,
if a gene is not well annotated enough, the need for translating
and quantifying the isoforms are superfluous as too many reads
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cannot be classified and quantified with the existing reference
and would require a more in-depth analysis.

Cells

The nasopharyngeal carcinoma cell line C666-1 and the Burkitt’s
lymphoma cell line Daudi were grown in RPMI-1640 medium
(Gibco) supplemented with 10% fetal calf serum and cultured at
37°C with 5% CO2. Total RNAwas extracted using TRIzol reagent
(Life Technologies) according to the supplier’s instructions. The
eluate was subjected to DNase treatment (TURBO DNA-free Kit
[Thermo Fisher Scientific]) and then stored at −80°C.

Patient samples

The gastric resection material was collected within a translational
collaboration named “Immunological biomarkers for gastric can-
cer” (ethical approval number 2010/176-10). Samples were col-
lected between June 2011 and July 2012 at Hospital Escuela Dr.
Roberto Calderón Gutierrez (GHERCG), in Managua, Nicaragua
(Thorell et al. 2017). During the study period, 15 patients were en-
rolled and biopsies from eleven patients were obtained. Punch bi-
opsies were taken immediately after the resection and thereafter
placed in RNA later and instantly snap-frozen. RNA was extracted
with TissueLyser disruption using the RNeasy Mini Kit (Qiagen).
Five tumors were randomly selected and tested for EBV using
RT-qPCR targeting RPMS1 (Fwd: 5′-GATGTTTTGCGCCTGGA
AGTTG; Rev: 5′-TCTCCTCGGACATCCAGTGTC) and EBER-1
(Fwd: 5′-ACGCTGCCCTAGAGGTTTTG; Rev: 5′-AGACGGCAGA
AAGCAGAGTC). GAPDH (Fwd: 5′-TCTCTGCTCCTCCTGTTC
GA; Rev: 5′-GCCCAATACGACCAAATCC) served as an internal
control.

Long-read sequencing

First strand cDNA synthesis was primed with an oligonucleotide
targeting the sequence immediately upstream of the poly(A) sig-
nal (5′-TTGCATGTCTCACACCATGG). Approximately 2.5 µg of
total RNA was incubated at 65°C for 5 min together with 20
pmol primer and 1 mM dNTP mix (Thermo Scientific), and there-
after instantaneously chilled on ice. The final reaction mixture was
assembled in a total volume of 20 µL by adding 4 µL 5× RT Buffer
(Thermo Scientific), 1 µL Maxima H Minus Reverse Transcriptase
(Thermo Scientific) and 0.5 µL RNase OUT (Life Technologies),
and incubated for 30 min at 55°C, 5 min at 85°C and then
held at 4°C.

Full-length transcripts of RPMS1 were selected by PCR amplifi-
cation using Q5 High-Fidelity 2× Master Mix (New England
Biolabs) according to the manufacturer’s protocol. A 2 µL-portion
of the RT reaction mixture was carried into a total reaction volume
of 25 µL and the following reaction was incubated at 98°C for
1 min prior to 18 cycles of [98°C for 10 sec, 66°C 15 sec, 72°C
for 4min], followed by a final extension at 72°C for 5min and hold-
ing indefinitely at 4°C. For the RNA originating from the Daudi
cells, the PCR was extended with 17 additional cycles. Resulting
amplicons were purified by incubation with 0.8× Agencourt
AMPure XP beads (Beckman Coulter), followed by two washes
with 200 µL of 75% ethanol and resuspension in 25 µL nucle-

ase-free water. The remaining DNA concentration was measured
with Qubit Fluorometer (Qubit DNA HS Assay Kit).
Subsequent end-prep with NEBNext Ultra II End repair/dA-tail-

ing Module (E7546), Agencourt AMPure XP bead binding and
Oxford Nanopore Technologies adapter ligation with NEB
Blunt/TA Ligase Master Mix (M0367) was performed following
the Direct cDNA Sequencing (SQK-DCS109) protocol version
DCS_9090_v109_revJ_14Aug2019. The adapted and tethered li-
brary was enriched using 0.4× Agencourt AMPure XP beads
washed with 2×200 µL Adapter bead binding buffer, and finally
eluted in 14 µL Elution buffer (Oxford Nanopore Technologies).
The two libraries were separately loaded on FLO-MIN106D R9

flow cells according to the manufacturer’s specifications. The se-
quencing was performed on a MinION Mk1B device (MIN-101B)
and operated through MinKNOW release 19.12.5. Raw data was
base called using Guppy (3.6.1 +249406c) configured with the
high accuracy model (dna_r9.4.1_450bps_hac, default settings).

Data processing

Long-read awareRNAalignerminimap2 (https://doi.org/10.1093/
bioinformatics/bty191, v2.17-r941) was used tomap the sequenc-
es with parameters using the SPLICE preset of options and param-
eters while also specifying the exclusion of secondary alignment
(Li 2018). The NCBI RefSeq for EBV was used as the reference
for the alignment for both samples. The generated SAM-files
were sorted, indexed and compressed into the binary form using
the samtools toolkit (https://doi.org/10.1093/bioinformatics/
btp352, v1.10) (Li et al. 2009). The generated bam-files were fil-
tered so as to remove reads categorized as supplemental and/or
secondary reads. Further filtering on the bam-files were per-
formed so as to require the inclusion of RPMS1 exon 1. An addi-
tional filtering step was performed on the Daudi long-read data
set as the raw sequencing reads contained a large proportion of
primer related artifacts. This filtering step required the read to
have a minimum read length of 1000 nt, which resulted in the fil-
tering of 83.98% of the original 884,827 Daudi reads. These filter-
ing steps were done through an in-house bash-script. The filtered
bam-files were then converted into BED12 format using the bed-
tools toolkit (https://doi.org/10.1093/bioinformatics/btq033,
v2.26.0) (Quinlan and Hall 2010). These two BED12-files were
then used as input for FLAME.
The C666-1, nasopharyngeal carcinoma and GAC bulk RNA-

seq sampleswere retrieved fromEMBL-ENA (ENAstudyaccession
number PRJNA501807 [Edwards et al. 2008] and PRJNA397538
[Zhang et al. 2017]) and TCGA (samples that were classified as
STAD and EBV positive [Cancer Genome Atlas Research Network
2014]), respectively. The data sets were then preprocessed by
Prinseq (https://doi.org/10.1093/bioinformatics/btr026, Version
0.20.3) and TrimGalore (https://github.com/FelixKrueger/
TrimGalore, Version 0.4.4) (Schmieder and Edwards 2011). The
data sets were then aligned using STAR using the human HG38
(GRCh38) in fasta, the human annotation file in GTF format, the
NCBI RefSeq EBV reference genome (NC_007605.1) in fasta for-
mat and the NCBI EBV annotation file in GTF format as reference.
Specific parameters for all tools are available upon request.
FLAIRwas used according to the developers’ instructions, using

standard parameters for both the GAC and the C666-1 long-read
RNA-seq, with each respective aforementioned short-read bulk

Full-length adjacency matrix and exon enumeration

www.rnajournal.org 1137

https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1093/bioinformatics/btr026
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore


RNA-seq pairing. FLAME was used with standard parameters for
both the GAC and the C666-1 long-read RNA. The variance win-
dow was set at 20 nt both upstream and downstream, and the
novel splice site detection had a frequency threshold of more
than 1 percent of the incongruent long-read sequences. The com-
parison between FLAIR and FLAME was performed in the same
system (Asus Vivobook S403F notebook with an Intel Core i7-
8586U 1.80GHz quad core processor capable of up to 4.6 GHz
of processing and 16 GB of memory).

Two data sets generated by Tang et al. (2020) (BioProject study
accession number PRJNA369585), for which samples marked
as Promethion WT 1 (SRR11142440) and Promethion MT
3 (SRR11142446) were used to represent the SF3B1 wild type
and SF3B1 mutant, respectively. These two data sets were ex-
tracted and then aligned usingMinimap2 using the SPLICE preset
parameter while also specifying the exclusion of secondary align-
ment. The NCBI RefSeq fasta-file for the human genome
(GRCh38) was used as the reference genome for the alignment
of these data sets. The generated bam-files were filtered to re-
move reads categorized as supplementary and/or secondary
reads as well as needing to be aligned within the genomic posi-
tion of the ERGIC3 gene region (±1000 nt upstream/down-
stream). The filtered bam-files were then converted into BED12
format using the bedtools toolkit (v2.26.0). These two BED12-files
were then used as input for the gene specific FLAME module.

We downloaded full native RNA long-read sequencing data
generated by Workman et al. (2019) sequenced using ONT
Nanopore MinION and base called using Guppy v4.2.2. This
data was available from their Amazon Web Services storage serv-
ers using thebashwget function. Thedata setwas then alignedus-
ing Minimap2 using the SPLICE preset parameter while also
specifying the exclusion of secondary alignment. The NCBI
RefSeq fasta-file for the human genome (GRCh38) was used as
the reference genome for the alignment of this data set. Reads
classified as secondary or supplementary reads were filtered out.
The resulting bam-file was subsequently converted into BED12
format using the bedtools toolkit (v2.26.0). This file was used as in-
put for the FLAME-GLOWmodule with standard parameters.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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