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Abstract

This work clarifies the relation between network circuit (topology) and behaviour (information transmission and
synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies
that are able to transmit a large amount of information, possess a large number of communication channels, and are robust
under large variations of the network coupling configuration. This theoretical approach is general and does not depend on
the particular dynamic of the elements forming the network, since the network topology can be determined by finding a
Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose
eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of
electrically connected chaotic Hindmarsh-Rose neurons.
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Introduction

Given an arbitrary time dependent stimulus that externally

excites an active network formed by systems that have some

intrinsic dynamics (e.g. neurons and oscillators), how much

information from such stimulus can be realized by measuring

the time evolution of one of the elements of the network ?

Determining how and how much information flows along

anatomical brain paths is an important requirement for the

understanding of how animals perceive their environment, learn

and behave [1,2,3].

Even though the approaches of Ref. [1,2,3,4,5,6] have brought

considerable understanding on how and how much information

from a stimulus is transmitted in a neural network, the relation

between network circuits (topology) and information transmission

in a neural as well as an active network is still awaiting a more

quantitative description [7]. And that is the main thrust of the

present manuscript, namely, to present a quantitative way to relate

network topology with information in active networks. Since

information might not always be easy to be measured or quantified

in experiments, we endeavour to clarify the relation between

information and synchronization, a phenomenon which is often

not only possible to observe but also relatively easy to characterize.

We initially proceed along the same line as in Refs. [8,9], and study

the information transfer in autonomous systems. However, instead of

treating the information transfer between dynamical systems

components, we treat the transfer of information per unit time

exchanged between two elements in an autonomous chaotic active

network. Thus, we neglect the complex relation between external

stimulus and the network and show how to calculate an upper bound

value for the mutual information rate (MIR) exchanged between two

elements (a communication channel) in an autonomous network.

Ultimately, we discuss how to extend this formula to non-chaotic

networks suffering the influence of a time-dependent stimulus.

Most of this work is directed to ensure the plausibility and

validity of the proposed formula for the upper bound of MIR (Sec.

Results) and also to study its applications in order to clarify the

relation among network topology, information, and synchroniza-

tion. We do not rely only on results provided by this formula, but

we also calculate the MIR by the methods in Refs. [10,11] and by

symbolic encoding the trajectory of the elements forming the

network and then measuring the mutual information provided by

this discrete sequence of symbols.

To illustrate the power of the proposed formula, we applied it to

study the exchange of information in networks of coupled chaotic

maps (Sec. Methods) and in Hindmarsh-Rose neural networks

bidirectionally electrically coupled (Sec. Results). Our formula can

be used to a larger class of active networks than the ones here

considered. As the networks formed by elements coupled both

electrically and chemically (see Ref. [12]). Still, the studied

network topologies are much simpler than the ones found in the

brain [13,14]. Nevertheless, we do believe our approaches can be

used to better understand how information is transfered in more

realistic networks as the scale-free networks [15], the small-world

networks [16], or power-law networks [17].

The analyses are carried out using quantities that we believe to

be relevant to the treatment of information transmission in active

networks: a communication channel, the channel capacity, and the network

capacity (see definitions in Sec. Methods).

A communication channel represents a pathway through which

information is exchanged. In this work, a communication channel

is considered to be formed by a pair of elements. One element
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represents a transmitter and the other a receiver, where the

information about the transmitter can be measured.

The channel capacity is defined in terms of the proposed upper

bound for the MIR. It measures the local maximal rate of

information that two elements in a given network are able to

exchange, a point-to-point measure of information exchange. As

we shall see, there are two network configurations for which the

value of the upper bound can be considered to be maximal with

respect to the coupling strength.

The network capacity is the maximum of the KS-entropy, for

many possible network configurations with a given number of

elements. It gives the amount of independent information that can be

simultaneously transmitted within the whole network, and naturally

bounds the value of the MIR in the channels, which concerns only

the transmission of information between two elements.

While the channel capacity is bounded and does not depend on

the number of elements forming the network, the network capacity

depends on the number of elements forming the network.

As a direct application of the formula for the upper bound value

of the MIR, we show that an active network can operate with a

large amount of MIR and KS-entropy and at the same time it is

robustly resistant to alterations in the coupling strengths, if the

eigenvalues of the Laplacian matrix satisfy some specified

conditions (Sec. Results). The Laplacian matrix describes the

connections among the elements of the network.

The conditions on the eigenvalues depend on whether the

network is constructed in order to possess communication

channels that are either self-excitable or non-self-excitable (see

definition in Sec. Methods). Active networks that possess non-self-

excitable channels (formed by oscillators as the Rössler, or the

Chua’s circuit) have channels that achieve their capacity whenever

their elements are in complete synchrony. Therefore, if a large

amount of information is desired to be transmitted point-to-point

in a non-self-excitable network, easily synchronizable networks are

required. On the other hand, networks that possess self-excitable

channels (as the ones formed by neurons), achieve simultaneously

its channel and network capacities when there is at least one

unstable mode of oscillation (time-scale) that is out of synchrony.

While non-self-excitable channels permit the exchanging of a

moderate amount of information in a reliable fashion, due to the

low level of desynchronization in the channel, self-excitable

channels permit the exchange of surprisingly large amounts of

information, not necessary reliable, due to the higher level of

desynchronization in the channel.

We do not intend to find the best network topology among all

possible ones. But rather, we aim at finding classes of network

topologies that can not only transmit large amounts of information

but are also robust under alterations in the coupling strengths. We

arrive at two relevant eigenvalues conditions which provide networks

that satisfy all these requirements. Either the network has elements

that remain completely desynchronous for large variations of the

coupling strength, forming the self-excitable channels, or the network

has elements almost completely synchronous, forming the non-self-

excitable channels. In fact, the studied network, a network formed by

electrically connected Hindmarsh-Rose neurons [18], can have

simultaneously self-excitable and non-self-excitable channels.

Self-excitable networks, namely those that have a majority

number of self-excitable channels, have the topology of a

perturbed star, i.e., they are composed of a central neuron

connected to most of the other outer neurons, and some outer

neurons sparsely connected among themselves. The networks that

have non-self-excitable channels have the topology of a perturbed

fully connected network, i.e., a network whose elements are almost

all-to-all connected. The self-excitable network has thus a topology

which can be considered to be a model for mini-columnar

structure of the mammalian neocortex [19].

In order to find quasi-optimal network topologies, we have used

(Sec. Results) a Monte Carlo evolution technique [20], assuming

equal bidirectional coupling strengths. This evolving technique

simulates the rewiring of a neuron network that maximizes or

minimizes some cost function, in this case a cost function which

produces quasi-optimal networks to transmit information.

Finally, we discuss how to extend these results to networks

formed by elements that are non-chaotic (Sec. Results), and to

non-autonomous networks, that are being perturbed by some

time-dependent stimuli (Sec. Results).

Results

Upper bound for the Mutual Information Rate (MIR) in an
Active Network

In a recent publication [10], we have argued that the mutual

information rate (MIR) between two elements in an active chaotic

network, namely, the amount of information per unit time that can

be realized in one element, k, by measuring another element, l,

regarded as IC, is given by the sum of the conditional Lyapunov

exponents associated with the synchronization manifold (regarded

as lI) minus the positive conditional Lyapunov exponents

associated with the transversal manifold (regarded as lH). So,

IC =lI2lH.

As shown in [11], if one has N = 2 coupled chaotic systems,

which produce at most two positive Lyapunov exponents l1, l2

with l1.l2, then lI = l1 and lH =l2. Denote the trajectory of

the element k in the network by xk. For larger number of elements,

N, the approaches proposed in [10] remain valid whenever the

coordinate transformation XklI = xk+xl (which defines the

synchronization manifold) and XklH = xk2xl (which defines the

transversal manifold) successfully separates the two systems k and l

from the whole network. Such a situation arises in networks of

chaotic maps of the interval connected by a diffusively (also known

as electrically or linear) all-to-all topology, where every element is

connected to all the other elements. These approaches were also

shown to be approximately valid for chaotic networks of oscillators

connected by a diffusively all-to-all topology. The purpose of the

present work is to extend these approaches and ideas to active

networks with arbitrary topologies.

Consider an active network formed by N equal elements, xi

(i = 1,…,N), where every D-dimensional element has a different set

of initial conditions, i.e., x1?x2?…?xN. The network is

described by

_xxi~F xið Þ{s
X

j

GijH xj

� �
ð1Þ

where Gij is the ij element of the coupling matrix. Since we chooseP
j

Gij~0 in order for a synchronization manifold to exist by the

subspace g = x1 = x2 = x3 = … = xN, we can call this matrix the

Laplacian matrix.

The way small perturbations propagate in the network [21] is

described by the i (i = 1,…,N) variational equations of Eqs. (1),

namely writing xi = g+dxi and expanding Eq. (1) in dxi,

d _xxi~ +F xið Þ{s
XN

j~1

GijDH xj

� �" #
dxi ð2Þ

obtained by linearly expanding Eq. (1).

Optimal Network Topologies
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Making xi = j, which can be easily numerically done by setting

the elements with equal initial conditions and taking H(xj) = xj,

Eq. (2) can be made block diagonal resulting in

_jji~ +F xið Þ{sci½ �ji: ð3Þ

where ci are the eigenvalues (positive defined) of the Laplacian

matrix ordered such that ci+1$ci. Note that c1 = 0.

Notice that the network dynamics is described by Eq. (1), which

assumes that every element has different initial conditions and

therefore different trajectories (except when the elements are

completely synchronized). On the other hand, Eq. (3) that provides

the conditional exponents considers that all the initial conditions

are equal. While Eq. (2) provides the set of Lyapunov exponents of

an attractor, Eq. (3) provides the Lyapunov exponents of the

synchronization manifold and its transversal directions. Notice also

that when dealing with linear dynamics, the Lyapunov exponents

[obtained from Eq. (2)] are equal to the conditional exponents

[obtained from Eq. (3)] independently on the initial conditions.

Then, the upper bound of the MIR that can be measured from

an element xk by observing another element xl, i.e. the upper

bound of the MIR in the communication channel ci21 is

I i{1
P ƒ l1{li

�� �� ð4Þ

with iM(2,…,N), and li representing the sum of all the positive
Lyapunov exponents of the equation for the mode ji, in Eq. (3).

So, l1 is the sum of the positive conditional exponents obtained

from the separated variational equations, using the smallest

eigenvalue associated with the exponential divergence between

nearby trajectories around j, the synchronous state, and li (i.1)

are the sum of the positive conditional exponents of one of the

possible desynchronous oscillation modes. Each eigenvalue ci

produces a set of conditional exponents li
m, with m = 1,…,D.

Although Eq. (4) gives the upper bound for the amount of

information between modes of oscillation, for some simple network

geometries, as the ones studied here, we can relate the amount of

information exchanged between two vibrational modes to the

amount of information between two elements of the network, and

therefore, Eq. (4) can be used to calculate an upper bound for the

MIR exchanged between pairs of elements in the network. For

larger and complex networks, this association is non-trivial, and we

rely on the reasonable argument that a pair of elements in an

active network cannot transmit more information than some of the

i21 values of I i{1
P .

The inequality in Eq. (4) can be interpreted in the following

way. The right hand side of Eq. (4) calculates the amount of

information that one could transmit if the whole network were

completely synchronous with the state j, which is only true when

complete synchronization takes place and when all the nodes have

equal dynamics. Typically, we expect that the elements of the

network will not be completely synchronous to j and in realistic

networks, the nodes will not be equal. Thus, the amount of

information provided by the right part of Eq. (4) overestimates the

exact MIR which, due to desynchronization in the network,

should be smaller than the calculated one.

Equation (5) allows one to calculate the MIR between oscillation

modes of larger networks with arbitrary topology rescaling the

MIR curve (I1
P vs. s) obtained from two coupled elements.

Denoting s*(N = 2) as the strength value for which the curve for l2

reaches a relevant value, say, its maximum value, then the

coupling strength for which this same maximum is reached for li

in a network composed by N elements is given by

si1 Nð Þ~ 2s
1

N~2ð Þ
ci Nð Þ ð5Þ

where ci(N) represents the ith largest eigenvalue of the N-elements

network. If the network has an all-to-all topology, thus, s*(N = 2)

represents the strength value for which the curve of I1
P reaches a

relevant value, and s*(N) the strength value that this same value

for I i
P is reached.

Notice that symmetries in the connecting network topology

leads to the presence of degenerate eigenvalues ( = equal

eigenvalues) in the Laplacian matrix, which means that there are

less independent channels of communication along which

information flows. Calling Q the number of degenerate eigenvalues

of the Laplacian matrix, Eq. (4) will provide N2Q different values.

As the coupling strength s is varied, the quantities that measure

information change correspondingly. For practical reasons, it is

important that we can link the way these quantities (see Sec.

Methods) change with the way the different types of synchroni-

zation show up in the network. In short, there are three main types

of synchronization observed in our examples (see [11]): burst

phase synchronization (BPS), when at least one pair of neurons are

synchronous in the slow time-scale but desynchronous in the fast

time-scale, phase synchronization (PS), when all pairs of neurons

are phase synchronous, and complete synchronization (CS), when

all pairs of neurons are completely synchronous. The coupling

strength for which these synchronous phenomena appear are

denoted by sBPS, sPS, and sCS (with no superscript index).

Finally, there are a few more relevant coupling strengths, which

characterize each communication channel. First, si
min, for which li

equals the value of l1, with i$2. For svsi
min, the communication

channel ci21 (whose upper rate of information transmission

depends on the two oscillation modes j1 and ji) behaves in a

self-excitable way, i.e., l1,li. For s§si
min, l1$li. Secondly, si*

indicates the coupling strength at which I i{1
P is maximal. Thirdly,

si
CS indicates the coupling strength for which the communication

channel ci21 becomes ‘‘stable’’, i.e., li,0. At s=si* the self-

excitable channel capacity of the channel ci21 is reached and at

s~si
CS, the non-self-excitable channel capacity is reached.

Finally, sC is the coupling for which the network capacity is

reached, and then, when the KS-entropy of the network is

maximal.

The MIR in networks of coupled Hindmarsh-Rose
neurons

We investigate how information is transmitted in self-excitable

networks composed of N bidirectionally coupled Hindmarsh-Rose

neurons [18]:

_xxi~yiz3x2
i {x3

i {zizIizs
X

j

Gij xj

� �
_yyi~1{5x2

i {yi

_zzi~{rziz4r xiz1:6ð Þ

ð6Þ

The parameter r modulates the slow dynamics and is set equal to

0.005, such that each neuron is chaotic. The index i?j assumes

values within the set [1,…,N]. Sk represents the subsystem formed

by the variables (xk, yk, zk) and Sl represents the subsystem formed

by the variables (xl, yl, zl), where k = [1,…,N21] and l = [k+1,…,N].

The Laplacian matrix is symmetric, so Gji = Gij, and sGji is the

Optimal Network Topologies
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strength of the electrical coupling between the neurons, and we

take for Ii the value Ii = 3.25.

In order to simulate the neuron network and to calculate the

Lyapunov exponents through Eq. (2), we use the initial conditions

x = 21.3078+g, y = 27.3218+g, and z = 3.3530+g, where g is an

uniform random number within [0,0.02]. To calculate the

conditional Lyapunov exponents, we use the equal initial

conditions, x = 21.3078, y = 27.3218, and z = 3.3530.

All-to-all coupling. Here, we analyze the case where N

neurons are fully connected to every other neuron. The Laplacian

matrix has N eigenvalues, c1 = 0, and N21 degenerate ones ci = N,

i = 2,…,N. Every pair of neurons exchange an equal amount of

MIR. Although, there are N6(N21)/2 pairs of neurons, there is

actually only one independent channel of communication, i.e., a

perturbation applied at some point of the network should be

equally propagated to all other points in the network. In Fig. 1(A),

we show the MIR, IC, calculated using the approaches in Refs.

[10,11], IP, calculated using the right hand-side of Eq. (4), and IS,

calculated encoding the trajectory between pair of neurons, and

the Kolmogorov-Sinai entropy, HKS, for a network composed by

N = 2 neurons. In (B), we show these same quantities for a network

formed by N = 4 neurons.

While for s>0 and s$sCS, we have that IC>IP>IS, for s>s2*

(when the self-excitable channel capacity is reached) it is clear that

IP should be an upper bound for the MIR, since not only IP.IC

but also IP.IS. Notice the good agreement between IC and IS,

except for s%s2
min, when IS.HKS, which violates Eq. (11).

The star symbol indicates the value of the coupling, sBPS, for

which burst phase synchronization (BPS) appears while the spikes

are highly desynchronous. The appearance of BPS coincides with

the moment where all the quantifiers for the MIR are large, and

close to a coupling strength, sC, for which the network capacity is

reached (when HKS is maximal).

At this point, the network is sufficiently desynchronous to generate

a large amount of entropy, which implies a large li, for i$2. This is an

ideal configuration for the maximization of the MIR. There exists

phase synchrony in the subspace of the slow time-scale z variables

(which is responsible for the bursting-spiking behavior), but there is no

synchrony in the (x,y) subspace. This supports the binding hypothesis,

a fundamental concept of neurobiology [19] which sustains that

neural networks coding the same feature or object are functionally

bounded. It also simultaneously supports the works of [22], which

show that desynchronization seems to play an important role in the

perception of objects as well. Whenever l2 approaches zero, at

s=sCS, there is a drastic reduction in the value of HKS as well as IP,

since the network is in complete synchronization (CS), when all the

variables of one neuron equals the variables of the other neurons.

Therefore, for coupling strengths larger than the one indicated

by the star symbol, and smaller than the one where CS takes place,

there is still one time-scale, the fast time-scale, which is out of

synchrony.

For sws2
min, the only independent communication channel is of

the non-self-excitable type. That means li#l1 (i$2), and as the

coupling strength increases, HKS decreases and IP increases.

Note that the curve for IP shown in Fig. 1(B) can be obtained by

rescaling the curve shown in Fig. 1(A), applying Eq. (5).

Star coupling. We consider N = 4. There is a central neuron,

denoted by S1, bidirectionally connected to the other three (Sk,

k = 2,3,4), but none of the others are connected among themselves.

The eigenvalues of the Laplacian matrix are c1 = 0, c2,3 = 1,

c4 = N.

To treat general types of networks, it is useful to define two

quantities related to the excitability of the communication

channels. The here called non-self-excitable (NSE) robustness

parameter of the channel ci21 (i$2) as Dsi
NSE~sCS{si

min and the

self-excitable (SE) robustness parameter for the communication

channel ci21 as Dsi
SE~si

min (i$2). It is also useful to define a

quantity that measures the distance between the eigenvalues, the

normalized spectral distance (NED) between the two eigenvalues.

Having a large NED between the ith largest and the first largest

eigenvalues (ci2c2)/N, results in a non-self-excitable channel, ci21,

with a large NSE robustness parameter that implies that the

channel preserves its NSE character under large alterations of the

coupling strength. On the other hand, having a large NED

between the largest and the ith largest eigenvalues (cN2ci)/N,

results in a self-excitable channel, ci21, with a large self-excitable

robustness parameter that implies that the channel preserves its SE

character under large alterations of the coupling strength.

So, for the star topology network, not only the NED between cN

and cN21 is large but also between cN and cN22, and therefore,

DsN{1
SE and DsN{2

SE are large. This provides a network whose

channels c1 and c2 have a large MIR for a large coupling strength

alteration. Note that if cN21 is far away from cN that implies that

cN22 is also far away from cN. Thus, a reasonable spectral distance

between cN21 and cN is a ‘‘biological requirement’’ for the proper

function of the network, since even for larger coupling strengths

there will be at least one oscillation mode which is desynchronous,

a configuration that enables perturbation (meaning external

stimuli) to be propagated within the network [23].

The largest eigenvalue is related to an oscillation mode where

all the outer neurons are in synchrony with each other but

desynchronous with the central neuron. So, here it is clear the

association between |l12l4| and the MIR between the central
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I
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I
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H
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0 0.1 0.2
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0
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0.15

0.2

*
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*
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min

Figure 1. The quantities IC (black circles), IP (red squares), IS

(green diamonds), and HKS (blue diamonds), for two (A) and
four (B) coupled neurons, in an all-to-all topology. Notice that
since there are only two different eigenvalues, there is only one channel
of communication whose upper bound for the MIR is given by
IP = |l12l2|. Also, IS and IC represent the mutual information exchanged
between any two pairs of elements in the system. In (A), s2* = 0.092,
sBPS>0.2, s2

min~0:42, sPS = 0.47, and sCS = 0.5. In (B), s2* = 0.046,
sBPS>0.1, s2

min~0:21, sPS = 0.24, and sCS = 0.25. CS indicates the
coupling interval s$sCS for which there exists complete synchroniza-
tion.
doi:10.1371/journal.pone.0003479.g001
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neuron with an outer neuron, since l1 represents the amount of

information of the synchronous trajectories among all the neurons,

while l4 is the amount of information of the desynchronous

trajectories between the central neuron and any outer neuron. The

other eigenvalues (c2,c3) represent directions transverse to the

synchronization manifold in which the outer neurons become

desynchronous with the central neuron in waves wrapping

commensurately around the central neuron [21]. Thus, l2 and

l3 are related to the error in the transmission between two outer

neurons, k and l, with k,l?1. Notice that this network topology has

two independent channels of communication.

Note that the MIR between S1 and an outer neuron (upper

bound represented by I3
P~ l1{l4
�� �� and IS represented by IS (1, k),

in Fig. (2) is larger (smaller) than the MIR between two outer

neurons (upper bound represented by I1
P~ l1{l2
�� �� and IS is

represented by IS (k, l), in Fig. (2), for small coupling (for when the

channel c3 is self-excitable, and s§s4
min). Similar to what happens to

nearest-neighbour networks, the self-excitable and the non-self-

excitable channel capacities of the channel associated with the

transmission of information between closer elements (the channel c3)

are achieved for a smaller value of the coupling strength than the

one necessary to make the channels associated with the transmission

of information between more distant elements (the channel c1) to

achieve its two channel capacities. That property permits this

network, for s%s4
min, to transmits simultaneously reliable informa-

tion using the channel c3 and with a higher rate using the channel c1.

Notice, in Fig. 2, that s21%s4
min%sBPS%sC . So, when the

channel capacity of the channel c1 is reached, also HKS of the

network is maximal, and the network operates with its capacity.

Another point that we want to emphasize in this network is that

while a large NED between cN and cN21 provides a network

whose channel c1 is self-excitable and can transmit information at

a large rate for a large coupling strength interval, a large NED

between c3 and c2 leads to a non-self-excitable channel c3 even for

small values of the coupling amplitudes, and it remains non-self-

excitable for a large variation of the coupling strength. Thus, while

a large NED between the second and the first largest eigenvalues

leads to a network whose channels are predominantly of the self-

excitable types, a large NED between the second largest and the

third largest eigenvalues provide a network whose communication

channels are predominantly of the non-self-excitable types.

Eigenvalues conditions
Finding network topologies and coupling strengths in order to

have a network that operates in a desired fashion is not a trivial

task (see Sec. Methods). An ideal way to proceed would be to

evolve the network topology in order to achieve some desired

behaviour. In this paper, we are interested in maximizing

simultaneously IP, the KS-entropy, and the average ÆIPæ, for a

large range of the coupling strength, characteristics of a quasi-

optimal network. However, evolving a network in order to find a

quasi-optimal one would require the calculation of the MIR in

every communication channel and HKS for every evolution step.

For a typical evolution, which requires 106 evolution steps, such an

approach is impractical.

Based on our previous discussions, however, a quasi-optimal

network topology can be realized by only selecting an appropriate

set of eigenvalues which have some specific NED. Evolving a

network by the method of Sec. Methods using a cost function

which is a function of only the eigenvalues of the Laplacian matrix

is a practical and physible task.

The present section is dedicated to describe the derivation of

this cost function.

We can think of two most relevant sets of eigenvalues which

create quasi-optimal networks, and they are represented in Fig. 3.

Either it is desired eigenvalues that produce a network

predominantly self-excitable [SE, in Fig. 3] or predominantly

non-self-excitable [NSE, in Fig. 3].

In a network whose communication channels are predominant-

ly self-excitable, it is required that the NED (cN2cN21)/N is

maximal and (cN21)/N minimal. Therefore, we want a network for

which the cost function

B1:
cN{cN{1

cN{1

ð7Þ

is maximal.
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Figure 2. MIR between the central neuron and an outer one
(black circles), I1

P, (resp. IS (1, k), in green line), and between two
outer ones (red squares), I3

P, (resp. IS (k, l), in blue line). Blue
diamonds represents the KS-entropy. Other quantities are s4* = 0.181,
s2* = 0.044, s4

min~0:84, s2
min~0:22, s4

CS~0:27, sBPS = 0.265, sPS = 0.92,
and sCS = 1.0. The star indicates the parameter for which BPS first
appears.
doi:10.1371/journal.pone.0003479.g002
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Figure 3. Representation of the eigenvalues sets that produce
quasi-optimal self-excitable (SE) and non-self-excitable active
networks (NSE).
doi:10.1371/journal.pone.0003479.g003
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A network whose eigenvalues maximize B1 has self-excitable

channels for a large variation of the coupling strength. As a

consequence, ÆIPæ as well as HKS is large for s[tsN
min,s2

mins.

In a network whose communication channels are predominant-

ly non-self-excitable, it is required that the NED (c32c2)/N is

maximal and (c2)/N minimal. Therefore, we want a network for

which the cost function

B2:
c3{c2

c2

ð8Þ

is maximal.

A network whose eigenvalues maximize the condition in Eq. (8)

have non-self-excitable channels for a large variation of the

coupling strength. As a consequence, ÆIPæ is large for

s[tsN
min,s3

mins, which is a small coupling range, but since there is

still one oscillation mode that is unstable (the mode j2), HKS is still

large for a large range of the coupling strength svs2
min

� �
. Most of

the channels will transmit information in a reliable way, since the

error in the transmission, provided by li (i$2), of most of the

channels will be zero, once li,0.

Since degenerate eigenvalues produce networks with less

vibrational modes and therefore less independent channels of

communication, we assume in the following the absence of such

degenerate eigenvalues. In addition, we assume that there is a

finite distance between eigenvalues so that the network becomes

robust under rewiring, and therefore, perturbing Gij will not easily

create degenerate eigenvalues.

A network that is completely synchronous and has no unstable

modes does not provide an appropriate environment for the

transmission of information about an external stimulus, because

they prevent the propagation of perturbations. Networks that can

be easily completely synchronized (for small coupling strengths)

requires the minimization of cN2c2, or in terms of the eigenratio,

the minimization of cN/c2. We are not interested in such a case.

To construct network topologies that are good for complete

synchronization, see Refs. [21,24,25,26].

Quasi-optimal topologies for information transmission
Before explaining how we obtain quasi-optimal network

topologies for information transmission, it is important to discuss

the type of topology expected to be found by maximizing either

B1, in Eq. (7) or B2, in Eq. (8). Notice that Laplacians whose

eigenvalues maximize B1 are a perturbed version of the star

topology, and the ones that maximize B2 are a perturbed version

of the all-to-all topology. In addition, in order to have a network

that presents many independent modes of oscillations it is required

that the Laplacian matrix presents as much as possible, a large

number of non-degenerate eigenvalues. That can be arranged by

rewiring (perturbing) networks possessing either the star or the

nearest-neighbour topology, breaking the symmetry.

In order to calculate a Laplacian from a quasi-optimal network,

we propose an approach described in Sec. Methods, based on the

reconstruction of the network by evolving techniques, simulating

the process responsible for the growing or rewiring of real

biological networks, a process which tries to maximize or minimize

some cost function.

In order to better understand how a network evolves (grows) in

accordance with the maximization of the cost functions in Eqs. (7)

and (8), we first find the network configurations with a small

number of elements. To be specific, we choose N = 8 elements. To

show that indeed the calculated network topologies produce active

networks that operate as desired, we calculate the average upper

bound value of the MIR [Eq. (10)] for neural networks described

by Eqs. (6) with the topology obtained by the evolution technique,

and compare with other network topologies. Figure 4 shows ÆIPæ,
the average channel capacity, calculated for networks composed of

8 elements, using one of the many topologies obtained by evolving

the network maximizing B1 (circles, denoted in Fig. by ‘‘evolving

1’’), all-to-all topology (squares), star topology (diamonds), nearest-

neighbor (upper triangle), and maximizing B2 (down triangle,

denoted in Fig. by ‘‘evolving 2’’). The star points to the value of

s2
min, when c1, the most unstable communication channel (a self-

excitable channel), becomes non-self-excitable.

As desired the evolving network 1 has a large upper bound for

the MIR (as measured by ÆIPæ) for a large range of the coupling

strength, since the network has predominantly self-excitable

channels. The channel c1 has a large robustness parameter

Ds2
SE , i.e., it is a self-excitable channel for svs2

min, where

s2
min~2:0. In contrast to the other topologies, in the star, nearest-

neighbour, and all-to-all topologies, Ds2
SE is smaller and Ds2

NSE is

larger. Even though most of the channels in the evolving 2

topology are of the non-self-excitable type, ÆIPæ remains large even

for higher values of the coupling strength. That is due to the

channel c1 which turns into a self-excitable channel only for s.2.

The KS-entropies of the 5 active networks whose ÆIPæ are shown

in Fig. 4 are shown in Fig. 5. Typically, the network capacities are

reached for roughly the same coupling strength for which the

maximum of ÆIPæ, is reached. In between the coupling strength for

which the network capacities and the maximal of ÆIPæ are reached,

l3 becomes negative. At this point, also BPS appears in the slow

time-scale, suggesting that this phenomena is the behavioral

signature of a network that is able to transmit not only large
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Figure 4. The average value of the upper bound MIR, ÆIPæ [as
defined in Eq. (10)] for active networks composed of 8
elements using one of the many topologies obtained by
evolving the network maximizing B1 (circles), all-to-all topol-
ogy (squares), star topology (diamonds), nearest-neighbor
(upper triangle), and maximizing B2 (down triangle). The values
of s2

min indicated by the starts are s2
min~0:169 (evolving 1), s2

min~0:05
(all-to-all), s2

min~0:037 (star), s2
min~0:037 (nearest-neighbor), and

s2
min~0:6 (evolving 2). The evolving 1 network has a Laplacian with

relevant eigenvalues c7 = 3.0000, c8 = 6.1004, which produces a cost
function equal to B1 = 1.033. The evolving 2 network has a Laplacian
with relevant eigenvalues c2 = 0.2243 and c3 = 1.4107, which produces a
cost function equal to B2 = 5.2893.
doi:10.1371/journal.pone.0003479.g004
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amounts of information between pairs of elements (high MIR) but

also overall within the network (high HKS).

Note however, that since the evolving networks have a small

number of elements, the cost function cannot reach higher values

and therefore, the networks are not as quasi-optimal as they can

be. For that reason, we proceed now to evolve larger networks,

with N = 32.

Maximization of the cost function B1 leads to the network

connectivity shown in Fig. 6(A) and maximization of the cost

function B2 leads to the network connectivity shown in Fig. 6(B).

In (A), the network has the topology of a perturbed star, a neuron

connected to all the other outer neurons, thus a hub, and each

outer neuron is sparsely connected to other outer neurons. The

arrow points to the hub. In (B),the network has the topology of a

perturbed all-to-all network, where elements are almost all-to-all

connected. Note that there is one element, the neuron S32, which is

only connected to one neuron, the S1. This isolated neuron is

responsible to produce the large spectral gap between the

eigenvalues c3 and c2.

ÆIPæ for the network topology represented in Fig. 6(A) is shown

in Fig. 7 as circles, and ÆIPæ for the network topology represented in

Fig. 6(B) is shown in Fig. 7 as squares. We see that the star

topology, whose connectivity is represented in 6(A), has larger ÆIPæ
for a larger coupling strength than the topology whose connectivity

is represented in 6(B). Other relevant parameters of the network

whose topology is represented in 6(A) are s2
min~0:8468,

s3
min~0:8249, sN

min~0:0278, sCS = 0.9762 and for the topology

represented in 6(B) are s2
min~0:8512, s3

min~0:042, sN
min~0:031,

and sCS = 0.9761.

It is worth to comment that the neocortex is being simulated in

the Blue Brain project, by roughly creating a large network

composed of many small networks possessing the star topology. By

doing that, one tries to recreate the way minicolumnar structures

[19] are connected to minicolumnar structures of the neocortex

[27]. Each minicolumn can be idealized as formed by a pyramidal

neuron (the hub) connected to its interneurons, the outer neurons

in the star topology, which are responsible for the connections

among this minicolumn (small network) to others minicolumn. So,

the used topology to simulate minicolumns is an good topology in

what concerns the transmission of information.

Active networks formed by non-chaotic elements
The purpose of the present work is to describe how information

is transmitted via an active media, a network formed by dynamical

systems. There are three possible asymptotic stable behaviours for

an autonomous dynamical system: chaotic, periodic, or quasi-

periodic. A quasi-periodic behaviour can be usually replaced by

either a chaotic or a periodic one, by an arbitrary perturbation.

For that reason, we neglect such a state and focus the attention on

active channels that are either chaotic or periodic.

Equation (4) is defined for positive exponents. However, such an

equation can also be used to calculate an upper bound for the rate

of mutual information in systems that also possess negative

Lyapunov exponents. Consider first a one-dimensional contracting

system being perturbed by a random stimulus. Further consider

that the stimulus changes the intrinsic dynamics of this system.

This mimics the process under which an active element adapts to

the presence of a stimulus.

Suppose the stimulus, hn, can be described by a discrete binary

random source with equal probabilities of generating ‘0’ or ‘1’.

Whenever hn = 0, the system presents the dynamics xn+1 = xn/2,

otherwise xn+1 = (1+xn)/2. It is easy to see that the only Lyapunov

exponent of this mapping, l1, which is equal to the conditional

exponent, l1, is negative. Negative exponents do not contribute to

the production of information. From Eq. (4) one would arrive at

IP = 0. However, all the information about the stimulus is

contained in the trajectory. If one measures the trajectory xn,

one knows exactly what the stimulus was, either a ‘0’ or a ‘1’. The

amount of information contained in the stimulus is log(2) per

iteration which equals the absolute value of the Lyapunov

exponent, |l1|. In fact, it is easy to show that

IC = IP = |l1| = |l1| = log(2), or if we use the interpretation of

[28], IC = IP = l, where l= |l1| is the positive Lyapunov

exponent of the time-inverse chaotic trajectory, xn+m, xn+m21, …,

x0, which equals the rate of information production of the random

source. So, in this type of active communication channel, one

would consider in Eq. (4) the positive Lyapunov exponents of the

time-inverse trajectory, or the absolute value for the negative

Lyapunov exponent.

Another example was given in [11]. In this reference we have

shown that a chaotic stimulus perturbing an active system with a

space contracting dynamics (a negative Lyapunov exponent) might

produce a fractal set. We assume that one wants to obtain

information about the stimulus by observing the fractal set. The

rate of information retrieved about the stimulus on this fractal set

equals the rate of information produced by the fractal set. This

amount is given by D1|l|, where D1 is the information dimension

of the fractal set and |l| the absolute value of the negative

Lyapunov exponent. In fact, D1|l| is also the rate of information

produced by the stimulus. So, if an active system has a space

contracting dynamics, the channel capacity equals the rate of

information produced by the stimulus. In other words, the amount

of information that the system allows to be transmitted equals the

amount of information produced by the chaotic stimulus.

The role of a time-dependent stimulus in an active
network

The most general way of modelling the action of an arbitrary

stimulus perturbing an active network is by stimulating it using

uncorrelated white noise. Let us assume that we have a large

network with all the channels operating in non-self-excitable

fashion. We also assume that all the transversal eigenmodes of
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oscillations except one are stable, and therefore do not suffer the

influence of the noise. Let us also assume that the noise is acting

only on one structurally stable ( = far from bifurcation points)

element, Sk. To calculate the upper bound of the MIR between the

element Sk and another element Sl in the network, we assume that

the action of the noise does not alter the value of l1. Then, the

noise on the element Sk is propagated along the vibrational mode

associated with the one unstable transversal direction, whose

conditional exponent is l2. As a consequence, the action of the

noise might only increase l2, while not affecting the negativeness

of all the other exponents (lm, m.2), associated with stable

transversal modes of oscillation. That means that the channels

responsible for transmitting large amounts of information

(associated with lm, with m large) will not be affected. So, for

such types of noises, Eq. (4) of the autonomous network is an upper

bound for the non-autonomous network.

Consider now a situation where the noise acts equally on all the

elements of an active network. The mapping

xnz1~2xn{r x2
nzy2

n

� �
{2s yn{xnð Þ,

ynz1~2yn{r x2
nzy2

n

� �
{2s xn{ynð Þ,

ð9Þ

was proposed as a way to understand such a case. In this mapping,

we consider r$0 and xn, ynM[0,1], which can be accomplished by

applying the mod(1) operation.

Note that the term r x2
nzy2

n

� �
that enters equally in all the maps

has statistical properties of an uniformly distributed random noise.

Calculating IP for r= 0 (the noise-free map) we arrive at IP>2s,

for small s, while the true MIR IC>2(s2r). These results are

confirmed by exact numerical calculation of the Lyapunov

Figure 6. A point in this figure in the coordinate k6l means that the elements Sk and Sl are connected with equal couplings in a
bidirectional fashion. In (A), a 32 elements network, constructed by maximizing the cost function B1 in Eq. (7) and in (B), 32 elements network,
constructed by maximizing the cost function B2 in Eq. (8). In (A), the network has the topology of a perturbed star, a hub of neurons connected to all
the other neurons, where each outer neuron is sparsely connected to other neurons. The arrow points to the hub. In (B),the network has the topology
of a perturbed all-to-all network, where elements are almost all-to-all connected. Note that there is one element, the neuron S32, which is only
connected to one neuron, the S1. This isolated neuron is responsible to produce the large spectral gap between the eigenvalues c3 and c2. In (A), the
relevant eigenvalues are c31 = 4.97272, c32 = 32, which produce a cost function equal to B1 = 5.43478. In (B), the relevant eigenvalues are c2 = 0.99761,
c3 = 27.09788, which produce a cost function equal to B2 = 26.1628.
doi:10.1371/journal.pone.0003479.g006
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exponents of Eq. (9) as well as the calculation of the conditional

exponents of the variational equations. So, this example suggests

that Eq. (4) calculated for an autonomous non-perturbed network

gives the upper bound for the mutual information rate in a non-

autonomous network.

Discussion

We have shown how to relate in an active network the rate of

information that can be transmitted from one point to another,

regarded as mutual information rate (MIR), the synchronization

level among elements, and the connecting topology of the network.

By active network, we mean a network formed by elements that

have some intrinsic dynamics and can be described by classical

dynamical systems, such as chaotic oscillators, neurons, phase

oscillators, and so on.

Our main concern is to suggest how to construct a quasi-

optimal network. A network that simultaneously transmits

information at a large rate, is robust under couplings alterations,

and further, it possesses a large number of independent channels of

communication, pathways along which information travels.

We find that there is not the best topology but many that can be

classified in two classes. Self-excitable [maximizing Eq. (7)] or non-

self-excitable [maximizing Eq. (8)] (see definition of self-excitability

in Sec. Methods). Self-excitable networks have communication

channels that transmit information in a higher rate for a large

range of the coupling strength. Most of the oscillation modes in

these networks are unstable, and therefore, information is mainly

propagated in a desynchronous environment. Non-self-excitable

networks have communication channels that transmit information

in a higher rate for a small range of the coupling strength,

however, they have channels that transmit reliable information in

a moderate rate for large range of coupling strengths. Most of the

oscillation modes in these networks are stable, and therefore,

information is mainly propagated in a synchronous environment, a

highly reliable environment for information transmission.

One of the main results of our work, the Eq. (4), which relates

synchronization, topology and information in active networks, can

only be used in networks composed of nodes that have equal

dynamics. We have reasons to believe that if the nodes have non

equal dynamics, Eq. (4) provides an upper bound for the value of

the mutual information rate that modes in the network exchange.

That was shown in Ref. [11] for two linear coupled maps. Another

reason is given in the following. When the nodes are not

completely synchronous, networks of nodes with equal dynamics

but randomly coupled (as the networks in [12]) in Ref. [12]), are

good models of networks with nodes that have different dynamics.

We have found that these random networks with nodes electrically

connected usually become more non-self-excitable than the

networks with nodes being connected with equal bidirectional

couplings. As a consequence, both the network capacity and the

channel capacities become smaller. It remains still to be verified if

that is so for networks whose nodes are connected with chemical

synapses. As shown in Ref. [12], chemical couplings make the

network to become highly excited. As a consequence, it might be

that as the nodes are made non-equal, the network gains a self-

excitable character, resulting in an increase of the information

capacities. In such a case, Eq. (4) would provide a lower bound for

the mutual information rate of networks with nodes that have non

equal dynamics.

If brain-networks somehow grow in order to maximize the

amount of information transmission, simultaneously remaining

very robust under coupling alterations, the minimal topology that

small neural networks must have should be similar to the one in

Fig. 6(A), i.e., a network with a star topology, presenting a central

element, a hub, very well connected to other outer elements,

which are sparsely connected.

Methods

Self-excitability
In Ref. [11] self-excitability was defined in the following way.

An active network formed by N elements, is said to be self-

excitable if HKS (N, s).HKS (N, s = 0), which means that the KS-

entropy of the network increases as the coupling strength is

increased. Thus, for non self-excitable systems, an increase in the

coupling strength among the elements forming the network leads

to a decrease in the KS-entropy of the network.

Here, we adopt also a more flexible definition, in terms of the

properties of each communication channel. We define that a

communication channel ci behaves in a self-excitable fashion if

li.l1. It behaves in a non-self-excitable fashion if li#l1.

Mutual Information Rate (MIR), channel capacity, and
network capacity

In this work, the rate with which information is exchanged

between two elements of the network is calculated by different

ways. Using the approaches of Refs. [10,11], we can have an

estimate of the real value of the MIR, and we refer to this estimate

as IC. Whenever we use Eq. (4) to calculate the upper bound for

the MIR, we will refer to it as IP. Finally, whenever we calculate

the MIR through the symbolic encoding of the trajectory, we refer

to it as IS.

We define the channel capacity of a communication channel

formed by two oscillation modes depending on whether the

channel behaves in a self-excitable fashion or not. So, for the

studied network, every communication channel possess two

channel capacities, the self-excitable capacity and the non-self-

excitable one. A channel ci operates with its self-excitable capacity

when I i
P is maximal, what happens at the parameter s(i+1)*. It

operates with its non-self-excitable capacity when li+1 = 0.

We also define the channel capacity in an average sense. In that

case, the averaged channel capacity is given by the maximal value

of the average value

SIPT~
XN

i~2

1

N{1
l1{li
�� ��, ð10Þ

The network capacity of a network composed of N elements, CN(N),

is defined to be the maximum value of the Kolmogorov-Sinai (KS)

entropy, HKS, of the network. For chaotic networks, the KS-

entropy, as shown by Pesin [29], is the sum of all the positive

Lyapunov exponents. Notice that if I denotes the MIR then

IƒHKS ð11Þ

As shown in Ref. [11] and from the many examples treated

here, CN(N)/N, and so, the network capacity grows linearly with

the number of elements in an active network.

Understanding Eq. (4): Positiveness of the MIR for self-
excitable channels in the (non-linear) HR network

To show that indeed I i
P should be positive in case of a self-

excitable channel in the HR network, one can imagine that in
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Eq. (1) the coupling strength is arbitrarily small and that N = 2. At

this situation, the Lyapunov exponent spectra obtained from

Eq. (2) are a first-order perturbative version of the conditional

exponents, and they appear organized by their strengths. One

arrives at l1>l2 and l2>l1, which means that the largest

Lyapunov exponent equals the transversal conditional exponent

and the second largest Lyapunov exponent equals the conditional

exponent associated with the synchronous manifold. Using similar

arguments to the ones in Refs. [10,11,30], we have that the MIR is

given by the largest Lyapunov exponent minus the second largest,

and therefore, IC = l12l2, which can be put in terms of

conditional exponents as IP#l22l1, or as represented in Eq. (4),

IP#|l12l2|.

Understanding Eq. (4): The inequality in Eq. (4)
To explain the reason of the inequality in Eq. (4), consider the

following two coupled maps:

xnz1~2xn{rx2
nz2ss yn{xnð Þ,

ynz1~2yn{ry2
nz2ss xn{ynð Þ,

ð12Þ

with s = 1 and xn, ynM[0,1]. For this mapping, the MIR can be

written in terms of the Lyapunov Exponents [11,31]. For two

coupled systems, the MIR can be exactly calculated by

IC = l12l2, since lI = l1 and lH = l2, assuming that both l1

and l2 are positive. Calculating the conditional exponents

numerically, we can show that IP$IC, and thus IP is an upper

bound for the MIR. For more details on this inequality, see [12]

Evolutionary construction of a network
In our simulations, we have evolved networks of equal

bidirectional couplings [32]. That means that the Laplacian in

Eq. (1) is a symmetric matrix of dimension N with integer entries

{0,1} for the off diagonal elements, and the diagonal elements

equal to {
P

j

Gij , with i?j.

Finding the network topologies which maximize B in Eq. (7) is

impractical even for moderately large N. Figuring out by ‘‘brute

force’’ which Laplacian produces the desired eigenvalue spectra

would require the inspection of a number of 2N N{1ð Þ=2

N!
configurations.

To overcome this difficulty, Ref. [20] proposed an evolutionary

procedure in order to reconstruct the network in order to maximize

some cost function. Their procedure has two main steps regarded as

mutation and selection. The mutation steps correspond to a random

modification of the pattern of connections. The selection steps consist

in accepting or rejecting the mutated network, in accordance with the

criterion of maximization of the cost function B, in Eq. (7).

We consider a random initial network configuration, with N

elements, which produce an initial Laplacian G0, whose

eigenvalues produce a value B0 for the cost function. We take at

random one element of this network and delete all links connected

to it. In the following, we choose randomly a new degree k to this

element and connect this element (in a bidirectional way) to k

other elements randomly chosen. This procedure generates a new

network that possesses the Laplacian G9, whose eigenvalues

produce a value B9. To decide if this mutation is accepted or not,

we calculate De = B92B0. If De.0, the new network whose

Laplacian is G9 is accepted. If, on the other hand, De,0, we still

accept the new mutation, but with a probability p(De) = exp(2De/
T). If a mutation is accepted then the network whose Laplacian is

G0 is replaced by the network whose Laplacian is G9.

The parameter T is a kind of ‘‘temperature’’ which controls the

level of noise responsible for the mutations. It controls whether the

evolution process converges or not. Usually, for high temperatures

one expects the evolution never to converge, since new mutations

that maximizes B are often not accepted. In our simulations, we

have used T>0.0005.

These steps are applied iteratively up to the point when

|De| = 0 for about 10,000 steps, being that we consider an

evolution time of the order of 1,000,000 steps. That means that the

evolution process has converged after the elapse of some time to an

equilibrium state. If for more than one network topology |De| = 0

for about 10,000 steps, we choose the network that has the larger

B value.

This constraint avoids the task of finding the best network

topology. However, we consider that a reasonably low number of

mutations would recreate what usually happens in real networks.
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