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ABSTRACT Many clinical assessment protocols of the lower limb rely on the evaluation of functional
movement tests such as the single leg squat (SLS), which are often assessed visually. Visual assessment
is subjective and depends on the experience of the clinician. In this paper, an inertial measurement unit
(IMU)-based method for automated assessment of squat quality is proposed to provide clinicians with a
quantitative measure of SLS performance. A set of three IMUs was used to estimate the joint angles,
velocities, and accelerations of the squatting leg. Statistical time domain features were generated from
these measurements. The most informative features were used for classifier training. A data set of SLS
performed by healthy participants was collected and labeled by three expert clinical raters using two different
labeling criteria: ‘‘observed amount of knee valgus’’ and ‘‘overall risk of injury’’. The results showed that
both flexion at the hip and knee, as well as hip and ankle internal rotation are discriminative features, and
that participants with ‘‘poor’’ squats bend the hip and knee less than those with better squat performance.
Furthermore, improved classification performance is achieved for females by training separate classifiers
stratified by gender. Classification results showed excellent accuracy, 95.7 % for classifying squat quality as
‘‘poor’’ or ‘‘good’’ and 94.6% for differentiating between high and no risk of injury.

INDEX TERMS Human motion analysis, motion assessment protocols, single leg squat, classification,
inertial measurement unit, feature selection.

I. INTRODUCTION
Many clinical assessment protocols rely on functional move-
ment tests, where the patient is asked to perform a tar-
get movement while the clinician observes and assesses
the movement. The single leg squat (SLS) is an example
of a functional movement test, and is commonly used in
rehabilitation, sports medicine and orthopedic settings [1].
Correct performance of the SLS can provide an indication
of knee function and assessment of recovery. An important
component of the rating of the quality of a performed SLS is
the degree of inward movement of the knee, known as medial
knee displacement or dynamic knee valgus (DKV), as shown
in Fig. 1.

DKV correlates with non-contact Anterior Cruciate
Ligament (ACL) injury and patellofemoral pain [2]. The SLS
test helps with early screening of those at higher risk of ACL

rupture, which happens frequently among athletes involved
in high risk sports such as soccer, football, basketball, and
lacrosse [3].

More than 120,000 ACL injuries occur annually, most
during the high school years [3]. Treatment in 90% of
patients includes reconstruction surgery, followed by a reha-
bilitation period [4]. The estimated average annual treatment
cost of ACL rupture in the US is more than 2 billion
dollars [5]. Return to play for professional athletes follow-
ing ACL surgery can take almost one year [6]. More than
50% will not return to their pre injury level of perfor-
mance [4] and between 50% to 100% develop osteoarthri-
tis within 5 to 10 years after surgery. Moreover, the risk
of re-injury increases up to 5 times in those who have
undergone initial surgery [4]. All these statistics high-
light the importance of early screening of individuals at
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FIGURE 1. Left: ‘‘good’’ SLS performance. Right: inward movement of the
knee during ‘‘poor’’ SLS called Dynamic Knee Valgus (DKV).

higher risk, through functional movement tests such as
the SLS.

Current SLS assessment is based on visual observation,
which is subjective and depends on the experience of the
clinician. In addition, since clinicians see a large number of
patients each day, it may be difficult for them to remember
the previous condition of each patient without a quantitative
history for each person.

The purpose of this study is to develop an automated
assessment system for the SLS test. An IMU-based method
is used for joint angle, velocity and acceleration estimation
of the squatting leg. Statistical and time domain features are
generated from these measurements. The most informative
features are selected using a combination of different fea-
ture selection techniques and used as input for supervised
classifier training. A dataset of SLS performed by healthy
participants was collected and labeled by three expert clini-
cal raters. The raters applied two different labeling criteria:
1) the observed amount of DKV that occurred during the
SLS motion and 2) the clinician’s judgement of the partici-
pant’s risk of knee injury based on their SLS performance.
The expert raters rated the DKV item as ‘‘poor’’, ‘‘moder-
ate’’ or ‘‘good’’; and they rated the knee injury risk item as
‘‘moderate to high’’, ‘‘mild’’ and ‘‘none’’. The labeled data
was used to train classifiers for each assessment criterion.
The results showed excellent discrimination between ‘‘good’’
and ‘‘poor’’ SLS, and also between high risk and low risk
participants.

The rest of the paper is organized as follows: Section II
reviews related studies. Section III presents the pro-
posed methodology including pose estimation, segmenta-
tion, feature extraction, feature selection, and classification.
Section IV explains the data collection and labeling proce-
dures. Section V provides the results and finally, section VI
discusses the results and concludes the paper.

II. RELATED WORK
SLS and other functional movement tests such as the double
leg squat and double leg jump have been widely investigated
in clinical and sport medicine studies. The main purpose of
the majority of these studies is to find relationships between
the occurrence of knee valgus during the mobility test and
factors such as age, gender, body mass index, history of
injury, and kinematic or neuromuscular characteristics of
the subjects (usually athletes) [2], [7], [9]–[11]. Studying
these predictors aids in the development of appropriate injury
prevention strategies. For example, if it is found that hip
abductor weakness correlates with poor performance (DKV
occurrence) in SLS, then specific exercises can be prescribed
to improve the strength and function of this muscle group.

Zeller et al. [8] investigated the kinematics and muscu-
lar activity of nine men and nine women athletes during
the SLS. According to their results, women exhibited more
knee valgus, which was associated with greater ankle dorsi-
flexion and pronation, less trunk lateral flexion, and greater
hip adduction (Add.), flexion (Flex.), and rotation. Rectus
femoris muscle activation was also greater in women.

Hip and foot contributions to high DKV were investigated
by Bittencourt et al. [9]. They examined 173 athletes during
the SLS and at the landing moment of a double leg jump.
Data was collected in a motion capture studio and the frontal
plane knee projection angle was measured at 60 degrees of
knee flexion and during a static single-leg stance. Four other
measures, including the passive range of motion (ROM) of
the hip internal rotation (IR), the isometric strength of the
dominant-limb hip abductors, the shank-forefoot alignment
and participants’ gender were defined as features to be input
into a classification and regression tree. Their results suggest
that high DKV can be predicted by decreased hip abductor
torque and increased passive ROM of the hip IR for both the
SLS and double leg jump landing.

Padua et al. [2] compared the neuromuscular characteris-
tics of a group of 18 individuals with excessive knee valgus
with a control group of 19 healthy individuals during dou-
ble leg squat performance. Electromyography (EMG) was
used for muscle activation measurement. Individuals were
assigned to either the control or DKV group based on an
evaluation by an expert rater. A correlation between DKV and
increased hip-adductor activation as well as increased coacti-
vation of the gastrocnemius and tibialis anterior muscles was
reported.

In a similar study, Stiffler et al. [10] compared kine-
matic characteristics including ROM and postural alignment
of 97 healthy individuals during the double leg jump, in order
to find differences between those with and without excessive
DKV. Motion labeling was based on the total Landing Error
Scoring System (LESS) [12]. Their results showed associa-
tions between DKV and less ankle dorsiflexion, as well as
higher quadriceps angle (Q-angle).

The relationship between the occurrence of DKV
with age, gender, and body mass index was studied by
Ugalde et al. [11]. They investigated 142 middle and high
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school athletes while performing the SLS and drop jump
tests. They defined knee-hip ratio as the distance between the
knees at maximum flexion divided by the distance between
hips at a quiet stance during the drop-jump test. Their results
showed significantly lower knee-hip ratio for individuals
with DKV during SLS. However, they found no relationship
between DKV and age, gender, or bodymass index during the
SLS test.

The investigations described above have focused on iden-
tifying correlates of DKV. Generally, these studies detect
positive DKV occurrence based on expert clinician observa-
tions or manual measurements extracted from video frames.
Very few studies have tried to develop an algorithm for auto-
mated DKV detection. In one such study, Whelan et al. [13]
classified SLS repetitions of 19 healthy participants into cor-
rect and incorrect categories using a single lumbar-mounted
IMU. They extracted time domain features from accelerom-
eter and gyroscope measurements, the IMU orientation (rep-
resented as roll, pitch, yaw), and accelerometer magnitude.
Using the generated feature vector and labels provided by
an expert, they trained a Random Forest classifier, which
achieved 92.1 % accuracy with repeated random-sample val-
idation. Despite these promising results, they may be dif-
ficult to interpret clinically, as features were defined based
on direct acceleration and gyroscope output signals, whereas
clinical assessment of the SLS includes the visual estimation
and interpretation of kinematic joint parameters, especially
the joint angles. Developing a classifier which works based
on these parameters, therefore, has the advantage of inter-
pretability. Furthermore, Whelan et al., did not perform a
Leave One Subject Out Cross Validation (LOSO-CV); there-
fore, it is not clear how well the classifier would generalize to
subjects unseen during training, which is critical for clinical
applications.

In our pilot study [14], we classified SLS performance as
‘‘poor,’’ ‘‘moderate’’ or ‘‘good’’ based on clinically under-
standable features. In the study, 3 IMUs were attached to the
shank, thigh and low back of 7 healthy volunteers who per-
formed 5 consecutive repetitions of SLS. Using an Extended
Kalman Filter (EKF) based method [15], joint angles, veloc-
ities and accelerations of the ankle, knee, and hip joints
were estimated from the IMU data. Statistical features were
then computed from estimated joint kinematics and feature
selection was applied to find the best predictors of DKV
during SLS. Three classifiers were applied to full dimen-
sional features, the subset of selected features and extracted
features based on Supervised Principal Component Analy-
sis (SPCA). Classification results for both 10 fold cross vali-
dation (10F-CV) and LOSO-CV were reported. The results
showed that the ankle internal rotation angle was the best
predictor of DKV, with classification accuracies of 98% for
2-class (‘‘good’’ versus ‘‘poor’’ squat) classification using
LOSO-CV and 73% for 3- class (‘‘good’’ versus ‘‘moderate’’
versus ‘‘poor’’) classification.

In the current study, we extend the proposed approach
to a larger dataset including a similar number of male and

female participants, whose performances are labeled by clin-
ical experts using two different criteria: amount of knee val-
gus and risk of knee injury. Additional data analysis is also
performed based on gender specific datasets and ankle only
features.

III. PROPOSED METHODS
Since raw IMU outputs may not be intuitively interpretable
to clinicians, joint angles, velocities and accelerations were
extracted and used for classification, using an EKF-based
pose estimation method [15].

The time series data of the estimated joint angles are then
segmented into single squats, from which statistical time
domain features are extracted and used for feature selection
and classification.

A. POSE ESTIMATION
A set of three IMUs were employed to track lower body
motion during the squats. An IMU is a compact package
composed of an accelerometer measuring linear acceleration,
a gyroscope measuring angular velocity and a magnetometer
measuring the earth’s magnetic field. The magnetometer is
not usually used in pose estimation, as it is subject to inter-
ference by ferromagnetic objects [16].

Since the IMU data is noisy and can suffer from drift,
similar to [15], a kinematicmodel of the lower legwas applied
to calculate angular velocity and linear acceleration at each
time step to be used for correction of sensor estimates of these
values. The kinematic model was composed of a 3 Degree of
Freedom (DOF) ankle joint, 1 DOF knee joint, and 3 DOF
hip joint, depicted in Fig. 2.

The kinematic model predictions of the angular velocity
and linear acceleration and sensor measurements of these
parameters were then fused by the EKF [15]. The position,
velocity, and acceleration of each DOF are defined as the
states to be estimated by the EKF. A constant acceleration
model was used for the state propagation. For more details
see [15].

B. SEGMENTATION
To extract a single SLS repetition from continuous time
series data, the joint angle trajectories needed to be seg-
mented before feature extraction. For segmentation, a peak
detection method developed by [17] was applied to the
knee flexion angle. Knee flexion was chosen for segmen-
tation because the knee has a large flexion ROM, and its
peaks are easily detectable. A first order Butterworth filter
with cutoff frequency of 0.3 Hz was applied to the knee
joint trajectory prior to segmentation. Note that this fil-
ter is applied only for segmentation and not for the sub-
sequent feature extraction. The midpoints between peaks
were then calculated and used as segmenting points as
depicted in Fig. 3. Fig. 4 shows an example of segmented
joint angles used for feature extraction (without low pass
filtering).

VOLUME 5, 2017 2100213



R. Kianifar et al.: Automated Assessment of Dynamic Knee Valgus and Risk of Knee Injury During the SLS

FIGURE 2. 7 DOF kinematic model of the left leg including the
3 DOF ankle joint, 1 DOF knee joint, and 3 DOF hip joint.

FIGURE 3. Segment points (top arrows) were found by detecting peaks
(bottom arrows) of low pass filtered knee joint angle and computed the
midpoint of the peak to peak distances (horizontal arrows).

C. FEATURE EXTRACTION
Feature extraction is used to transform raw time series
data into a lower dimensional representation of the motion
relevant for prediction of DKV. Various statistical feature
extraction methods have been applied for human activ-
ity recognition [18]. These methods are categorized into
time domain or frequency domain methods. The most com-
mon time domain methods are standard deviation (STD),
mean, variance (VAR), mean absolute deviation (MAD),
interquartile range (IQR), entropy, correlation between axes,
and kurtosis. Common frequency domain methods include
Fourier transform (FT) and discrete cosine transform (DCT).

Due to easier clinical interpretability and better temporal
localization, we applied only time domain feature extraction

FIGURE 4. An example of segmented joint angles without low pass
filtering used for feature extraction.

methods including the root mean square (RMS), STD, VAR,
mean, MAD, skewness, kurtosis, range, minimum, and maxi-
mumof the joint angle, velocity and acceleration of eachDOF
for each segment of the data. Therefore, for each repetition
of the squat, a feature vector of 210 different features was
extracted.

D. FEATURE SELECTION
We do not know which of the defined features better
predicts DKV. Moreover, some features might be redun-
dant or irrelevant, which may degrade the classification
results. Selecting the most appropriate features not only helps
with dimensionality reduction but also suggests the best pre-
dictors of DKV to clinicians.

A large number of feature selection techniques are
available in the literature, usually categorized as filter, wrap-
per or embedded techniques [19]. Filter techniques select rel-
evant features based on statistical tests. Wrapper techniques
use the performance of a predefined learning algorithm as the
selection criterion. In embedded techniques, feature selection
occurs in parallel to model learning, so that feature selection
is embedded within a classification model [19].

For this study, we applied 18 different feature selection
techniques from all three categories. Matlab packages avail-
able from the Arizona State University [19] repository and
from Pohjalainen et al. [20] were used for implementa-
tion. Wrapper methods included Random Subset Feature
Selection, Sequential Forward Selection, and Sequential
Floating Forward Selection.
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Filter methods were Mutual Information, Statisti-
cal Dependency, Correlation based Feature Selection,
Chi-square, Fast Correlation-Based Filter, Fisher Score,
Gini Index, Information Gain, Kruskal- Wallis, Minimum-
Redundancy-Maximum-Relevance selection, Relief-Feature
selection strategy, and T-test.

From embedded techniques, Sparse Multinomial Logistic
Regression via Bayesian L1 Regularization, Bayesian Logis-
tic Regression, and Least Absolute Shrinkage and Selection
Operator (LASSO) were utilized.

Features ranked among top ten by majority of the methods
are reported as selected features. In addition to subset feature
selection, feature extraction using SPCA was also applied.
Matlab code developed by Barshan et al. [21] was used for
SPCA implementation.

E. CLASSIFICATION
For classification purposes, six different methods were
applied: Support VectorMachine (SVM), LinearMultinomial
Logistic Regression (LMLR), Decision Tree (DT), Naïve
Bayes (NB), K Nearest Neighborhood (KNN), and Random
Forests.

All classification techniques were implemented usingMat-
lab 2016a. The results showed that SVM, KNN, and NB
always outperformed other classifiers for this dataset. There-
fore, classification results are reported for these three classi-
fiers only.

Support Vector Machine (SVM) is a statistical classifica-
tion method which finds the optimal separating hyperplane
by maximizing the margin between data points of the two
classes [22]. SVM is suitable for small datasets and high
dimensional data [23]. Combined with kernels, it can handle
nonlinearly separable problems. However, the result may be
difficult to interpret and there is no standard way for dealing
with multi class problems.

Naïve Bayes is a probabilistic classifier based on Bayes
rule which assumes conditional independence of the fea-
tures [24]. It returns the probability that the input vector
belongs to the target class. Naïve Bayes is a fast and simple
algorithm that is not sensitive to irrelevant features. It can
handle discrete and real data; however, the feature indepen-
dence assumption may not be valid [25].

KNN is an instance-based learning algorithm which
assigns a label to a new data point based on the labels of its k
most similar neighbors in the training set (given a similarity
metric) [26].

IV. EXPERIMENTS
14 participants including 7 males and 7 females with mean
age of 30.8± 5.5, mean height of 173.8± 12 cm, and mean
weight of 70.4 ± 10.4 kg participated in the study. For two
participants, the dominant leg (the leg they would kick a
soccer ball with) was the left; the other participants were
right legged. To be included in the study, subjects had to
be between the ages of 18-65 years, and must not have had
a medical history that restricted participation in a standard

musculoskeletal clinical examination of the lower extremity.
This would include the clinical suspicion of an emergent
health issue, severe neurological compromise, or the presence
of an acute fracture, dislocation or severe knee ligament
instability. Subjects were excluded from the study if they did
not meet any of the above inclusion criteria.

Ethics approval from Institutional Review Board Services
was obtained prior to the start of the study. All participants
signed a consent form prior to the start of data collection.

Given our inclusion criteria, it is possible that some indi-
viduals with active knee pain or discomfort could have
been recruited. Considering we were primarily interested in
analyzing data from individuals without active knee injury,
we identified subjects with active knee pain or discomfort
by having participants fill out the International Knee Doc-
umentation Committee (IKDC) subjective knee evaluation
form [27] for each knee. Data from all 14 subjects were used
in the Inter and Intra-rater Reliability (IRR) analyses, while
only data from knees that scored over 95% on the IKDCwere
included in training and cross validation.

FIGURE 5. Sensor placement during SLS data collection.

A. DATA COLLECTION
Three Yost [28] IMUs were attached to the participants’ low
back at the level of the first sacral vertebra, the anterior thigh
10 cm above the patella aligned with the sagittal plane, and
the flat surface of the shank at the level of the tibial tuberosity
using hypoallergenic tape. Sensor placement locations are
depicted in Fig. 5. Data was communicated to a nearby com-
puter via Bluetooth communication with an average sampling
rate of 90± 10 Hz. Data were interpolated and resampled to
the same rate of 200 Hz before subsequent analysis.

Participants were instructed to take off their shoes and per-
form five continuous cycles of SLS with their toes pointing
forward and arms crossed in front of the body. They were
asked to perform SLSwith both the right and left legs without
moving the foot or lifting the heel. In instances where subjects
lost their balance, their legs contacted each other, or the
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non-weight bearing leg touched the ground, the trial was
deemed unsuccessful and all cycles were repeated.

B. DATA LABELLING
The participants’ performance was videotaped during the
tests. Videos were then reviewed by three expert clinicians
with advanced training in a sports sciences fellowship, with
an average of 9 years clinical experience. Raters were asked
to label each squat repetition. The clinical rating criteria were
adapted and modified from [29] and included 2 items: ‘‘Knee
Valgus’’ and ‘‘Rater’s Subjective Overall Knee Injury Risk’’.
We aimed to discriminate between ‘‘good’’ and ‘‘poor’’
squats or screen ‘‘high risk’’ subjects from ‘‘no risk’’ ones
(2-class classification), and to assess if a finer grained assess-
ment is possible by adding a ‘‘moderate’’ grading level
(3-class classification). For this purpose, each criterion was
comprised of a three-level rating scale of ‘‘0,’’ ‘‘1’’ or ‘‘2.’’
For the knee valgus criterion [29], a score of ‘‘0’’ was defined
as no valgus, ‘‘1’’ as moderate knee valgus, and ‘‘2’’ as severe
knee valgus. For the overall knee risk of injury criterion,
a score of ‘‘0’’ was defined when the individual was at no risk
and no intervention was required, a score of ‘‘1’’ was defined
when there was mild/low risk and moderate intervention was
required, and a score of ‘‘2’’ was defined when the individual
was at moderate to high risk and significant intervention
was required. To determine the rating for the ‘‘overall knee
injury risk assessment’’ item, the clinical raters were asked to
base their assessment of the overall whole body motion that
occurred when the subject was performing the SLS, not just
the subject’s knee position.

Participants were asked to perform SLS using their natural
movement. Many individuals in the population who do not
have a knee injury exhibit DKVmovement strategies of vary-
ing severity, DKV is correlated with potential risk of future
injury.

The 14 participants performed 5 SLS repetitions with
both left and right legs resulting in 140 squat repetitions to
be labeled. Three categories were created from the labeled
samples: samples which were unanimous (U) among raters,
samples with a split (S) decision among raters, where two
raters gave the same score and one gave a different score,
and samples for which there was no consensus among raters,
where each rater gave a different score. Labeled data statis-
tics for each of the two criteria are summarized in Table I.
Samples that came from participants who scored less than
95% on the IKDC are referred to as unhealthy in the table
and are excluded during training; these data are used for final
validation only.

For split decision ratings, a final label based on majority
vote amongst the clinician raters was given to the samples.
For feature selection and classification, 4 different datasets
were generated: twowith combinations of both healthy unani-
mous and healthy split decision samples (for the two different
criteria) to be used for 3-class classification; 2-class classi-
fication datasets were generated by removing ‘‘moderate’’
exemplars from the previous sets. Unanimous only datasets

TABLE 1. Labeled data information.

were also generated, however, when split decision samples
were removed, both the dataset size and the number of differ-
ent participants contributing to each label were significantly
reduced. For this reason, only the general datasets includ-
ing both unanimous and split decision examples are used
for analysis. Details of the training datasets are summarized
in Table 2.

TABLE 2. Training dataset details.

C. INTER AND INTRA-RATER RELIABILITY (IRR)
Since we have three raters in this study, the degree of agree-
ment (inter-rater reliability), as well as consistency of the
ratings by each of the raters (intra-rater reliability) have to
be assessed.

IRR assessment was performed using the two-way mixed,
consistency, average-measures ICC test [30]. Calculations
were made using the irr package in R. The resulting ICC
value was 0.80 for the knee valgus criterion and 0.84 for
the risk of injury criterion. This indicates excellent agree-
ment between raters according to CiCChetti guidelines [31].
To assess intra-rater reliability, 15 of the 140 squat samples
were randomly selected and duplicated in the dataset pro-
vided to the raters for labeling. The two-way mixed, consis-
tency, average-measures ICC test was applied to two ratings
provided for the original and duplicated samples by each
rater. Intra-rater reliability results for the three raters were 1,
0.96, and 0.88 suggesting excellent reliability for all raters.
The IRR assessment results suggest that the measurement
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TABLE 3. Feature selection results for 2-class problem and knee valgus
criterion.

TABLE 4. Feature selection results for 2-class problem and injury risk
criterion.

error introduced by individual raters is minimal and that SLS
ratings are suitable for the purpose of classification.

V. RESULTS
A. FEATURE SELECTION
Feature selection was performed together with classification
in leave one out fashion. In each fold, feature selection
was applied only to the training set and the majority of
selected features by 18 methods for the training set was
used for dimensionality reduction of the validation set. The
same method was adopted for SPCA feature generation;
the projection matrix resulting from the training set was
utilized for dimensionality reduction of the validation set.
Tables 3 to 6 show the feature selection results for the two
criteria and for the two different classification problems
(2-class versus 3-class). One of the subjects was excluded
from analysis due to low IKDC score; therefore, the number
of validation subsets are 13 in LOSO cross validation. As can
be seen from Tables 3 – 6, the same key features tend to be
selected for most of the validation subsets. For classification
purposes, subset-specific selected features were used.

The feature selection results for both 2-class and 3-class
problems reveal that hip Flex/IR and knee Flex angles are
the best predictors of the knee valgus or risk of injury, across
folds.

TABLE 5. Feature selection results for 3-class problem and knee valgus
criterion.

TABLE 6. Feature selection results for 3-class problem and injury risk
criterion

TABLE 7. Classification results for 2-class problem and knee valgus
criterion.

B. CLASSIFICATION
Classification results for both 10 fold and LOSO cross-
validations are reported in Tables 7 to 10. Classifiers were
applied to the full dimensional feature set (same features
across all folds), the subset selected feature set and the SPCA
extracted feature set (based on features selected/extracted in
each fold). Classification results for 10F-CV showed that dis-
tinguishing between ‘‘good’’ and ‘‘poor’’ squats is achievable
with a promising accuracy of 96%. For the 3- class problem;
however, the best achieved accuracy was 66%. LOSO-CV
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TABLE 8. Classification results for 2-class problem and risk of injury
criterion.

TABLE 9. Classification results for 3-class problem and knee valgus
criterion.

TABLE 10. Classification results for 3-class problem and risk of injury
criterion.

results were lower, with the best accuracy of 90% for 2-class
and 60% for the 3-class problems. With respect to predicting
the risk of injury, the best achieved accuracy using 10F-CV
was 95% for the 2-class and 72% for the 3-class problem.
Using the LOSO-CV, the best accuracy for 2-class was 76%
and for the 3-class problem was 59%.

C. UNHEALTHY TEST SET
The developed assessment method was trained using healthy
participant data. However, the final system should work
for both healthy subjects as well as subjects with active
injury, whose movement characteristics may be different
from healthy participants. To verify if the developed clas-
sifier for healthy subjects is also suitable for patients and
also to test the performance of the assessment method
on an unseen dataset; the best performing classifiers

in Tables 9 and 10 were applied to the 15 squats that were set
aside due to low IKDC score. 10 of these squats came from a
female subject (including 1 poor and 9 moderate, same labels
for both criteria) and 5 from a male subject (all poor, same
labels for both criteria). The commonly selected features
reported in Tables 5 and 6 were used for dimensionality
reduction of the test set and the performance of the best
performing classifiers on this test set is reported in Table 11.

TABLE 11. Prediction results for unhealthy test set.

The results suggest that poor squats are detectable with
very high accuracy but identifying moderate squats is more
challenging. The SVM classifier using common subset
selected features through LOSO including: Mean, Max, and
Range of hip Flex angle (according to Table 6) can predict
the Risk of Injury better while the SVM classifier using the
subset of features selected through 10F-CV including: Mean,
RMS, Max, and Range of hip Flex angle, and Min of knee
Flex angle can predict the DKV better.

D. ANKLE ONLY FEATURES
In the pilot data analysis [14], we found the ankle IR fea-
tures to be the best predictors of the DKV, which led us to
suggest that it is possible to use only one sensor on the tibia
(saving time and simplifying the test protocol) and still have
good classification accuracy. To confirm this hypothesis with
the larger datasets, we used feature selection on only ankle
extracted features (90 out of 210 features) and found that
ankle IR velocity, angle and acceleration, as well as ankle
Add velocity features are the best predictors in the absence
of hip or knee information. We also repeated the feature
selection and classification using ankle only features using
the leave one out method. The best achieved results using
ankle only features and the percentage of change in accuracy
in comparison to the best reported results using all joints’
features are shown in Tables 12 and 13.

The results from Tables 12 and 13 indicate that there is less
than 5.4% drop in accuracy for risk of injury detection using
only ankle information (one tibia sensor), suggesting that one
sensor can be used to simplify the data collection procedure,
particularly if overall risk of injury is of interest.
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TABLE 12. Best achieved classification results for 10F-CV using ankle
features.

TABLE 13. Best achieved classification results for loso-CV using ankle
features.

E. GENDER SPECIFIC ANALYSIS
We hypothesized that men and women might have differ-
ent biomechanical characteristics and movement strategies
which result in different predictors. To test this hypothe-
sis, we separated the healthy subject data based on gender,
resulting in female only data (60 samples) and male only
data (60 samples). Unhealthy male and female subjects
were set aside. Leave one out feature selection methods
were applied to combined unanimous and split decision
samples of both datasets separately. The results reported
in Tables 14, 15, 16, 17 showed that different features are
selected when the data is segregated by gender.

TABLE 14. Gender specific feature selection results for 2-class problem
and knee valgus criterion.

For the male dataset, the features selected were the hip
and knee flexion features. For females, hip Add/IR and ankle

TABLE 15. Gender specific feature selection results for 2-class problem
and injury risk criterion.

TABLE 16. Gender specific feature selection results for 3-class problem
and knee valgus criterion.

TABLE 17. Gender specific feature selection results for 3-class problem
and injury risk criterion.

IR features were selected. Based on this finding, we also
tested whether male-specific and female-specific classifiers
might work better than a general classifier for both genders.
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The gender-specific classifiers were used for the two data
sets and the best results are compared to the general classifier
(developed in the previous section) in Tables 18 and 19. With
respect to LOSO-CV, due to the small size of the gender-
specific datasets, we performed feature selection using LOSO
(all 10 squats of the test subject were left out during feature
selection) but for classification, we used Leave One Leg
Out (LOLO) (12 validation sets instead of 6). In this way,
the testing subject remained blind to feature selection while
providing sufficient data for the training sets. The best results
of the LOLO gender-specific classifier are compared to the
best accuracy achieved using the same method for all data
in Table 19.

TABLE 18. Gender specific classification results for 10F-CV.

TABLE 19. Gender specific Classification Results for LOLO-CV.

Classification results show that for women, in all cases,
the female-specific classifier works as well or better than the
general classifier. For men, however, the male-specific clas-
sifier works no better than the general one using Leave One
Out validation, and is comparable to the general one using
10F validation. This may be due to the fact that similar
features are selected for the male only dataset (mostly flexion
angle features), while a different set of features (IR angle fea-
tures) are selected for the female only dataset. Further, in our
dataset, we observed a larger variability within the squats
performed by male participants compared to the female par-
ticipants, which also may contribute to this finding.

VI. DISCUSSION AND CONCLUSIONS
In this study, we developed an automated assessment method
to evaluate SLS quality. Two criteria were used for labeling by

expert clinician raters: amount of inward knee movement that
occurred during the task (knee valgus) and perceived overall
knee injury risk. SLS data from 14 volunteers were collected
and two data sets were generated for each index: one included
the data with combination of full and partial agreement of all
labeled data and the other by removing the moderate samples
from the later. 18 feature selection methods were applied to
the datasets to find the best predictors of knee valgus and
risk of knee injury. The feature selection results suggested
hip/knee flexion angle features as the main predictors of both
DKV and risk of injury when the samples were not analyzed
separately by gender. Hip and ankle IR features were the
main predictors for DKV and risk of injury for females with
gender-specific analysis.

The unanimous cases represent instances where 100%
agreement between all three clinician raters occurred, and
likely represent cases where the motion characteristics can
be clearly identified. By combining both the unanimous and
split decision cases, it is possible that some inaccuracies of
labelling the cases may have been introduced. However, split
decision cases may also represent borderline cases where a
labelling judgment may be difficult. Considering borderline
cases are likely to occur in the population, it is important
to understand the impact these cases may have on feature
selection and classification results.

The identification of knee Flex features for the determina-
tion of DKV and risk of injury is consistent with previous
investigations that have identified a shallow knee flexion
angle during single leg loading to be correlated with dynamic
knee valgus loading, ACL injury, and patellofemoral pain
syndrome [32]. Knee flexion angles less than 30 degrees
have been shown to cause a large strain force on the ACL
caused by quadriceps contraction, and shallow knee flexion
angles coupled with hip internal rotation may also increase
patellofemoral contact forces [33]–[36].

Analyzing the flexion joint angles of the SLS repeti-
tions revealed that those labeled as ‘‘good’’ tended to have
increased knee and torso flexion during the motion. Previous
research investigating the effect of forward trunk lean on
predicted anterior cruciate ligament (ACL) strains that occur
during the SLS movement indicate that a more moderate
forward trunk lean of approximately 40 degrees can lower
ACL strains and increase muscle activation of the hamstring
muscles that assist in preventing anterior tibial translation and
lower activation of the quadriceps muscles that can increase
anterior tibial translation [37]. It is possible that the torso
flexion observed in the ‘‘good’’ subjects in the present study
may be a result of a movement strategy utilized to minimize
internal knee loads and optimize the co-contraction of the
quadriceps and hamstring musculature. In the present study,
the participants were not instructed to keep their torso upright
during the data collection. The fact that hip flexion angle
features appeared as best predictors of DKV and risk of
injury in the full dataset indicates that other motion behav-
iors are also associated with knee valgus and knee injury
risk, and that different test protocols and instructions can
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lead to different results. SLS test protocols do vary between
studies, with some authors constraining the squat depth,
time duration of the SLS, and upper and lower extremity
position [8], [38], [39]. Since the purpose of the SLS test
is to assess how an individual functions during single leg
loading, which is a foundational movement that is encoun-
tered in everyday life and athletic instances, we chose not
to constrain the rate and depth of the SLS, in attempts to
study the subjects’ own inherent movement preferences while
performing the SLS. Our decision to not implement some of
these constraints may have affected feature selection results,
which has to be considered in the clinical application of the
developed tool.

Three common classification techniques were applied to
the datasets. The LOSO-CV results suggest that discrimi-
nating of ‘‘poor’’ squats from ‘‘good’’ ones is achievable
with promising accuracy of 90%. Changing the problem to
multiclass (adding ‘‘moderate’’ squats) drops the accuracy
by 30%. Screening participants at high risk of injury from
those at no risk can be fulfilled by 75% accuracy and adding
mild risk subjects drops accuracy by 16%.

The achieved performance in the 2-class problem is com-
parable toWhelan et al. [13].We further showed that the clas-
sification generalizes to unseen participants and investigate
3-class classification. UnlikeWhelan et al., joint angle, veloc-
ity, and acceleration features are used, which are clinically
interpretable parameters.

To our knowledge, the present study is the first to investi-
gate an automated SLS 3-class classification, which would be
beneficial for clinicians, as this would allow a determination
of not just the presence or absence of DKV and overall knee
injury risk, but it would also provide an assessment of the
severity of these parameters. This stratification could assist
clinicians in developing interventions that could be tailored
to an individual’s severity level of DKV and knee injury risk.
Our study is also unique in that we developed a classifier
for the identification of overall knee injury risk based on the
SLS movement test. The successful performance of a SLS
requires the precise coordination and control of movement
about multiple joints (the trunk, hip, knees and ankles) while
simultaneously maintaining balance over a small base of sup-
port. Considering variables other than DKV, such as lateral
trunk position [32] and control of the non-squatting leg [39],
has been shown to influence knee loading during the SLS,
we had expert clinical raters judge the entire composite SLS
movement to rate individuals on knee injury risk.

The classification results for the unhealthy test set showed
promising accuracy of 100% and 88.88% for the unseen sub-
jects in the 3-class setting. However, this test sample is very
small, confirmation of these results with a larger population
of injured participants is needed.

One trade off to performing 3-class classification was a
decrease in classification accuracy compared to the 2-class
classifier. A possible contribution to this decrease may be
due to potential labelling errors in clinician ratings of border-
line cases. While the inter-rater reliability for the raters was

excellent (ICC = 0.80 for DKV and 0.84 for knee injury
risk), this process was not perfect. Improvements in labelling
accuracy could be achieved by involving more clinician raters
in the process of determining consensus ratings. In addition,
future work could investigate the possible use of a clinical
endpoint, such as sustaining a knee injury, as a label. This
could be accomplished by conducting a prospective injury
surveillance studywhere researchers can performSLS assess-
ments at an initial time point (e.g. pre-season) and track
subjects over a time period (e.g. over the course of a season)
to determine who sustains a knee injury.

Our exploration into a 3-class classification for SLS perfor-
mance yielded accuracy rates of 66.4% for DKV, and 71.8%
for knee injury risk, respectively. Our work provides initial
evidence that merits future investigations that refine methods
for 3-class SLS classification. Furthermore, we intend that
this IMU assessment tool will be used as a quantitative aid to
assist health care practitioners, and not to completely replace
a clinician. Therefore, while the accuracy for 3-class classifi-
cation was not as robust as 2-class, the classification will be
used in conjunction with the joint kinematics provided by the
IMU system, and other clinical information, such as patient
history and physical examination findings.

A limitation of the present study includes the small sample
size comprised of healthy individuals with no current knee
injury. Previous work has suggested that the severity of DKV
is more prevalent in samples with knee pathology compared
to healthy control subjects [7], [32], [40], [41]. Since the
prevalence of pathology in a study sample can influence the
accuracy of an assessment tool [42], it is possible that larger
clinical samples that have a greater prevalence of moderate
to severe DKV and a smaller prevalence of borderline mild
DKV cases, may improve classification compared to studying
healthy individuals with no history of knee pain. Further
clinical evaluation is warranted to determine the classifier’s
performance in symptomatic samples.

The results of gender specific classifiers suggest that
developing separate classifiers improves classification results
for females and strengthens our hypothesis about differ-
ent biomechanical characteristics or movement strategies in
males and females. Previous literature investigating gender
differences in the SLS movement test has identified that
females perform the SLS with more ‘‘valgus collapse’’ which
involves more pelvic rotation, hip internal rotation, femoral
adduction, knee external rotation and abduction, and ankle
pronation compared to males [8], [32], [38], [43]. Females
also perform the SLS with less trunk, hip and knee flexion
compared to their gender counterparts [8], [32], [38]. As a
result of these gender differences, it is not surprising that our
gender-specific classifiers for females primarily involved hip
and ankle IR/add. features, and the male classifier primarily
involved hip and knee flexion features.

The development of an automated SLS knee assess-
ment system has many clinical applications. Current clinical
assessment of the SLS involves clinicians visually observing
patients conducting the movement and qualitatively rating
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performance utilizing clinical rating tools [43]–[47]. While
qualitative rating is common place, subjective evaluations are
not always accurate, and assessor error can impact test valid-
ity and reliability [48], [49]. Moreover, qualitative assess-
ment tends to rely primarily on the visual estimation of joint
range of motion and limb position, and often neglects the
assessment of higher order kinematics (such as velocity and
acceleration), since it is difficult for clinicians to assess these
parameters without instrumentation. An automated instru-
mented SLS assessment system can improve the accuracy of
SLS clinical assessments, and can provide objective results
that can be tracked and monitored over time to guide reha-
bilitation and determine an individual’s response to an inter-
vention. Such a system can also be used to perform large
population screenings to identify individuals with DKV and
those at risk of knee injury.

In conclusion, a method for the automated assessment
of DKV and overall knee injury risk during SLS perfor-
mance is reported. Classification performance for 2-class and
3-class classifiers are reported with 2-class performing better
than 3-class classification. When gender-specific classifiers
were created, overall performance of female subjects was
improved. An automated SLS assessment system could be
used to aid clinicians in screening individuals for DKV,
knee injury risk and track recovery during the rehabilitation
process.
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