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1. Introduction

Inductive and deductive approaches have attracted a long-

standing philosophic interest, starting from Plato (everything
may be extracted from inborn ideas) and Aristotle, and contin-

ued with Galileo Galilei, David Hume, Immanuel Kant, Karl
Popper, and Thomas Kuhn, to cite just a few names.

To develop a given field in scientific research, both deduc-
tive and inductive approaches may be used. Deductive reason-

ing is a “top-down” approach aimed at testing an initially

postulated hypothesis and then trying to find experimental
evidence to support or disprove it. In contrast, inductive rea-

soning is a “bottom-up” approach based on learning from ob-
servations; explanatory hypotheses are eventually formulated

towards the end of the process. An inductive approach usually
starts with a set of observations, looks for patterns in the data,

and then moves from data to theory, from the specific to the

general.
The computer age has had an enormous impact on chemical

research and given rise to a new field, which was initially
named computer chemistry. Now hundreds of molecular-mod-

eling programs that adopt different investigational approaches
are available in different areas of chemistry. For example, from
left to right in Figure 1, quantum chemistry, which mainly con-

siders problems related to quantum phenomena; theoretical
chemistry, traditionally associated with the formulation of new
theories and/or approximations; computational chemistry,
a branch of theoretical chemistry in which the objective is to

build a mathematical model to calculate molecular properties
(e.g. energy, dipole moments, vibrational frequencies); and

chemoinformatics, which uses computational and chemomet-

ric software to investigate different chemical and biological
problems. Although chemometric competence is sought in in-

dustry and applied R&D fields, chemometrics, probably due to
its highly empirical character, is still not very popular among

organic chemists. The term chemometrics was proposed in
1974 by Bruce Kovalski (Seattle, USA) and Svante Wold (Ume,,

Sweden) and since then several successful chemometric appli-

cations have been reported in pharmaceutical, food, and ana-
lytical chemistry. In European scientific societies, such as the

Societ/ Chimica Italiana and the Royal Society of Chemistry,
the interdisciplinary chemometrics group refers to the Analyti-

cal Chemistry Division and is mainly focused on analytical
problems.

In the field of ionic liquids (ILs), theory-driven modeling ap-

proaches aimed at the best fit for all available data by using

a unique, and often nonlinear, model have been widely adopt-
ed to develop quantitative structure–property relationship

(QSPR) models. In this context, we propose chemoinformatic
and chemometric data-driven procedures that lead to QSPR

soft models with local validity that are able to predict relevant

physicochemical properties of ILs, such as viscosity, density, de-

composition temperature, and conductivity. These models,

which use readily available and easily interpretable VolSurf +

descriptors, represent an unexploited opportunity for experi-

mentalists to model and predict the physicochemical proper-
ties of ILs in industrial R&D design.

Figure 1. Hard and soft modeling application fields.
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In an elegant paper that included considerations of the psy-
chology and personality types of the scientists, Martens[1]

noted the gap between the mathematics–statistics culture,
which focuses on formal accuracy, and other sciences, which

produce an enormous amount of good raw data that are often
treated by using limited and uninformed mathematics and sta-

tistics. He states that “chemometrics has a lot to learn from
other disciplines, mathematics and statistics … but on the

other hand chemometrics has a lot to give to other disciplines”

and hopes for a culture that favors warm-hearted cooperation
rather than competition. In the same paper, he noted that in

the past 40 years science has witnessed a big data explosion
paralleled by increased computer capacity with respect to stor-

age space, memory, and CPU power, but unfortunately we are
often overwhelmed by this. In this context, Martens stated that
chemometrics, in contrast with “black box” approaches, devel-

oped a pragmatic scientific culture that attempts to approach
the real world by letting the data talk to us but at the same
time trying to interpret the results in the light of prior chemical
knowledge and the laws of physics.

The reason for chemometrics not being applied in organic
chemistry has, in our opinion, somewhat paralleled the lack of

focus by many Universities on education in physical organic

chemistry in the past two decades. This has led organic chem-

ists to delegate these studies to theoreticians (whose aim is to
provide a unique model of high complexity able to fit all the

data) and to statisticians (whose cultural background empha-
sizes the importance of high correlation and predictivity, ex-

pressed as R2 and Q2 values, respectively, which in cases such
as biological and physical measurements on ionic liquids (ILs)

are difficult to achieve), both believed to be more suited to
the job. The field of ILs, low-melting-point salts formed from

an organic cation and an inorganic or organic anion, covers

a huge experimental space that is difficult to explore; multi-
variate approaches that lead to soft models with local validity

might be useful for their application potential. For this reason,
herein we propose the adoption of chemoinformatic and che-

mometric approaches to model and predict the physicochemi-
cal properties for some ILs (Scheme 1), with the aim of provid-
ing new opportunities to complement available theory-driven

models in the field.

2. Results and Discussion

2.1. General Survey of IL Modeling Approaches

The increasing number of industrial applications of ILs requires

knowledge of their toxicological and environmental properties

Scheme 1. Structures of IL cations and anions.
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to comply with the European Union rules on the Registration,
Evaluation, Authorization, and Restriction of Chemicals

(REACH).[2] This has prompted the primary interest in collecting
information on the properties and hazards of ILs by using relia-

ble and representative toxicity tests. Available studies address-
ing specific toxicity “sensors” in different biological systems

have been reported in the UFT-Merck Ionic Liquids Biological
Effects Database,[3] which unfortunately is no longer open
access and, even when it was, only provided single toxicity

tests for different and in some cases numerically limited num-
bers of ILs. Indeed, papers that report experimental determina-
tions of both the toxicity and the physicochemical properties
of ILs can cover only a very limited portion of the huge poten-
tial experimental space, which is estimated to include over one
million ILs with different cation and anion combinations.

In this context, the adoption of multivariate approaches has

helped to simplify the overall toxicity picture. A multivariate in-
sight into the IL toxicity database recently dealt with four main

groups of toxicity : aquatic toxicity, toxicity towards fungi and
bacteria, cytotoxicity towards the IPC-81 rat cell line, and ace-

tylcholinesterase enzyme (AChE) inhibition.[4] Although several
hundreds of ILs were reported in the above database, only

104 aquatic toxicity scores and 87 bacterial and fungi toxicity

scores could be derived by performing principal components
analysis (PCA) on a matrix that reported experimental data.[4]

IL structural features can be related to toxicity and physical
properties by using quantitative structure–property relation-

ships (QSPR). QSPR models need 1) good descriptors, 2) good
statistical correlation tools, and 3) good experimental data.

Available literature models apply different descriptors and cor-

relation tools to different data sets to fit the data after meas-
urements have been made. This situation is of limited use for

experimentalists.
In our previous work,[5] specific in silico structural descriptors

for both cationic and anionic counterparts of ILs were recently
developed by using the VolSurf + approach and related to IL
properties by using a unique correlation tool, partial least

squares (PLS), which provides multiparameter equations with
no possibility of collinearity because the descriptors are or-
thogonal to each other.

The VolSurf + approach[6, 7] computes the interaction ener-
gies between molecules and four chemical probes and calcu-
lates the molecular descriptors derived from the information

coded into the 3D GRID molecular interaction fields (MIFs).[8–11]

VolSurf + descriptors quantify relevant physicochemical prop-
erties, such as molecular size and shape, hydrophilic and hy-

drophobic regions, hydrogen-bonding ability, interaction
energy moments and capacity factors, molecular amphiphilic

moments, hydrophilic–lipophilic balance, molecular diffusivity
in water as a solvent, partition coefficients in different solvents,

pH-dependent water solubility, and molecular flexibility in dif-

ferent solvents. The VolSurf + descriptors were successfully ap-
plied to develop quantitative models for structure–aquatic tox-

icity[5] and structure–polarity relationships.[12]

The above IL VolSurf + descriptors were compacted into

nine new in silico descriptors (five for cations and four for
anions), called IL PPs (principal properties), for 218 cations and

38 anions (hereafter denoted as PP + and PP@, respectively).[13]

These descriptors, which have a lower information content

than the original VolSurf + descriptors, have the advantage of
providing simpler QSPR models suitable for design purposes. A

multivariate approach, such as PLS, was able to correlate quan-
titatively and simultaneously both cation and anion ILs PPs to

IPC-81 cytotoxicity and AChE inhibition for over 200 ILs.[13] The
practical utility of this approach was demonstrated by the de-
velopment of a QSPR model that correlated IL structures to Vi-

brio fischeri toxicity by providing a simple three-parameter
equation that allowed prediction of IL toxicity toward Vibrio fi-

scheri without using chemometric and/or chemoinformatic
software.[14] The resulting correlation plot is comparable, if not

better than, that reported in a subsequent paper,[15] in which
six QSPR models that used multiparameter equations with be-

tween 9 and 12 descriptors were reported. The paper does not

provide numerical values for the descriptors, which prevents
a check of the results. The authors reported predictions by

using “the best model” but at the same time they observe that
“classical external validation metrics were unable to portray

poor model performances” and this led to the development of
new judgment criteria. In our work, all the data are reported in

the Supporting Information to allow reproducibility of the re-

sults for the examined data set and in a literature reference[13]

to allow experimentalists to predict for themselves the toxicity

of new compounds. The interest in predicting Vibrio fischeri
toxicity was confirmed in a recent paper that used IL structural

descriptors, such as the Gutman topological index, the lopping
center information index, and the number of oxygen atoms, in

a QSPR model.[16]

Research into the conversion from thermal into electric
energy has recently focused on the use of ILs in thermoelectro-

chemical devices. QSPR modeling aimed at the identification
of structural features of ILs (mixed with a Lil/I2 redox couple)

that influence the Seebeck effect has been reported.[17] In this
field, the design capability of IL PPs was demonstrated by
using a QSPR model that provided affordable predictions for IL

heat capacities, validated by experimental measurements. In
silico predictions allowed the design of a limited number of
structurally different ILs with similar Cp values, which has pro-
vided the possibility to select an optimal IL according not only
to its efficiency, but also to its environmental and economic
sustainability.[18]

The present general procedure, which uses readily available
descriptors and adopts an accessible statistical procedure, such
as PLS, can be extended to other QSPR models that involve rel-

evant IL PPs. A few applications will be provided below. The
choice between adoption of the entire set of VolSurf + descrip-

tors, with a higher degree of information, or compacted ILs
PPs, with a lower information content but easier to handle, will

be data-driven by following the ancient motto “Frustra fit per
plura quod fieri potest per pauciora” (It is vain to do with many
what can be done with few).

Viscosity is a very relevant property required for process
design in industrial applications, such as heat exchangers,

pipelines, or distillation columns. A low viscosity is generally
desired for applications of ILs as solvents, to minimize pump-
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ing costs and increase mass-transfer rates, whereas higher vis-
cosities may be favorable for other applications, such as lubri-

cation or use in membranes.[19] Therefore, it is not surprising
that several viscosity QSPR-modeling studies by using different

approaches have been reported.
QSPR models for the ionic conductivity and viscosity of ILs

with group descriptors, by using the polynomial expansion
with a genetic algorithm model based on the type of cation,

length of side chain, and type of anion, exhibited relatively

good correlation and provided the reverse design of ILs.[20] The
group contribution method was also applied in QSPR model-
ing to estimate the viscosity of imidazolium-, pyridinium-, and
pyrrolidinium-based ILs that contained several anions and cov-
ered wide ranges in temperature.[19] A similar approach was
adopted to derive a relationship between the viscosity of imi-

dazolium-based ILs and the descriptive parameters of anions

and cations by considering temperature, molecular weight,
and the number of the branched-chain carbon atoms on the

imidazole ring.[21]

A group contribution model based on a feed-forward artifi-

cial neural network was applied to over 13 000 data points for
the temperature- and pressure-dependent viscosity of 1484 ILs

published in the open literature in the last three decades. The

data were critically revised and divided into training, validation,
and testing sets, to develop a new model that allowed in silico

predictions of the viscosities of ILs on the basis of the chemical
structures of their cations and anions as described by

242 building blocks.[22]

Many theory-driven QSPR models based on ab initio calcula-

tions based on CODESSA (comprehensive descriptors for struc-

tural and statistical analysis) or COSMOS-RS (conductor-like
screening model for realistic solvents) methods have been re-

ported. CODESSA derives descriptors by using quantum me-
chanical methods to develop QSAR (quantitative structure–ac-

tivity relationship/QSPR models. A critical analysis of error sour-
ces in quantum-chemical computations has been recently re-

ported.[23] The CODESSA approach was adopted to establish

QSPR correlations for conductivities and viscosities of low-tem-
perature-melting ILs with the bis(trifluoromethylsulfonyl)imide
anion. The authors concluded that the models were highly
temperature dependent and stressed that the experimental

properties of ILs depend heavily on the degree of purity, which
cannot always be easily controlled.[24] A more recent study at

eight different temperatures on ILs that contained bis(trifluoro-
methylsulfonyl)imide[25] concluded that interionic electrostatic
interactions are the most important factor that affects viscosity,

and this effect changes with temperature. The same research
group,[26] addressing an extensive database, developed QSPR

models and concluded that alongside temperature, pressure,
and impurity, the ionic structural characteristics of the IL cation

or anion also have significant effects on the viscosity. A QSPR

study addressing the viscosity of imidazolium-based ILs[27]

noted the predominant effects of cation–anion electrostatic in-

teractions whereas other interactions (e.g. interionic hydrogen
bonds, van der Waals interactions) or microcharacteristics (e.g.

molecular orbitals, electronic population, dipole moments,
volume, shape, branching degree, symmetry) provide a minor

contribution. However, it is worth mentioning that this work
considered only one heterocyclic scaffold and divided the orig-

inal dataset into four different sets, each modeled by using
multiparameter equations that involved up to 25 “independ-

ent” variables with a clear danger of colinearity that would
provide overoptimistic correlations. The COSMOS-RS approach
was adopted in a systematic study of the dynamic viscosity of
27 ILs[28] to study anion and cation effects. The COSMO-RS
method established relationships between molecular-level fea-

tures and viscosity data for the investigated families of ions. A
QSPR model that considered six molecular parameters by
using a genetic function approximation from selected molecu-
lar descriptors was developed, and led to a suitable correlative
and predictive ability.

The most abundant viscosity data set analyzed by using

COSMO-RS molecular descriptors included 1502 experimental
data points for 89 ILs under a wide range of temperatures and
pressures.[29] QSPR linear and nonlinear models were devel-

oped and the latter provided better viscosity predictions. Un-
fortunately, Ref. [29] does not give the opportunity to repro-

duce the results and to exclude the occurrence of data overfit-
ting due to the lack of numerical values for the descriptors.

An advantage of the COSMO-RS approach is that a unique

model can take into account temperature and pressure varia-
tions. However, a careful insight into the data shows that in

analyzing all available literature data, very similar or even iden-
tical values reported in different papers are all included in the

analysis. Just to quote an example, seven values are provided
for 1-octyl-3-methyl imidazolium hexafluorophosphate at

101.325 kPa and 343.15 K, some in the training set, others in

the test set. The inclusion of four to seven values under the
same pressure and temperature conditions either in the train-

ing or in the test set is common in this theoretical approach.
Such a situation, which obviously improves both the model

performance and the correlation, would be immediately no-
ticed and not tolerated in a data-based analysis.

To compare the advantages and drawbacks of our modeling

approach, we selected the same abundant literature data-
base[29] (see Data in the Supporting Information). The inductive

data-driven model for analysis of the viscosity data was the
PLS approach,[30, 31] a known multivariate procedure aimed at
finding relationships between an x descriptor matrix (in the
present case, the cation and anion IL PPs) and a y-dependent

variable (in the present case, log(viscosity)) for which numerical
values are reported (see Data in the Supporting Information).
IL PPs[13] are compacted descriptors for both IL anionic and cat-

ionic counterparts that are orthogonal to each other and,
therefore, can be used for multivariate experimental design. In

PLS the data are pre-processed by autoscaling all variables to
unitary variance, that is, by multiplying the variables by appro-

priate weights (the reciprocal of the variable standard devia-

tion) to give them unit variance (i.e. the same importance).
A simple chemometric tool, the IL physicochemical (ILPC)

predictor, which provides a preliminary qualitative prediction
of properties, such as viscosity, has recently been reported.[32]

The authors state that viscosity depends mainly on hydrogen-
bond formation, but “unfortunately this type of intermolecular
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relation is not covered by our set of descriptors”. Our ap-
proach, which uses hydrogen-bonding molecular descriptors

to develop a quantitative relationship, can be considered an
extension and a further development of this work.

The literature database[29] reports viscosity data at different
temperatures and pressures. In our data analysis, the PLS pro-

cedure should be applied to data obtained under the same ex-
perimental conditions. In the case of multiple literature values,
only one was considered, either the most reproducible one or

an average value. Initially, to obtain information on the data
structure, log(viscosity) values at fixed temperature and pres-

sure (283.15 K and 101 kPa, respectively) for 23 ILs were used
as the dependent variable and the corresponding nine PPs

(five for cations and four for anions) as the descriptor variables
in a PLS model. In such a model, three significant PLS compo-

nents describe 94.9 % of the total y variance with a predictive
ability of 0.872 (Table S1). In the VIP (variable importance for
projection) plot, which shows the importance of each x variable
in explaining x variation and correlation to y (Figure S1), PP@2,
and PP@3 are the most important descriptors, followed by

PP + 1 and PP + 5, whereas all other descriptors appear to be
less relevant. To limit the number of descriptors and simplify

the model, a new PLS correlation model was built by retaining

only four relevant x descriptors: PP + 1 and PP + 5 for the cat-
ions and PP@2 and PP@3 for the anions. The new simplified

23 V 4 matrix provided a two-PLS-components model that ex-
plained 92.6 % of the total variance, with a cumulative Q2 value

of 0.903 (see Table S2 for model details), which showed that
the exclusion of five low-relevance descriptors improved the

“goodness” of this model by considering simultaneous varia-

tions in both the cation (heterocyclic core, side-chain length,
presence of oxygen atoms in the side chain) and the anion

structural features described by only four descriptors (PPs). The
correlation between the predicted and experimental values is

reported in Figure S2.
There is no simple or unique criterion to decide how many

PCs should be considered significant, and Q2 is only one possi-

bility. It has been noted[33] that a high Q2 value is a necessary
but not sufficient condition for the model to have high predic-
tive power and that an external validation with at least five
compounds with different structural features that covers the

range of measured properties should be used. Since then, the
principles of internal and external QSAR model validation have

been clearly defined[34] and more recently the statistical criteria
for evaluation of the external predictivity have been widely dis-
cussed.[35–38] To check the predictive power of the model by ex-

ternal validation as well, we randomly selected two sets of five
structurally different ILs across the experimental viscosity

range as external test sets. The statistical parameters of the re-
sulting models, with 18 ILs in the learning sets and 5 ILs in the

test sets, are reported in Table S3, and the predicted versus ex-

perimental viscosity values for the test-set ILs are given in
Table S4. The Q2 values for the 18 IL models (0.833 and 0.872)

are comparable to that of the previous model (0.903). The
agreement between experimental viscosity values and the pre-

dicted ones for both test sets, reported in Table S4, provides

experimental validation support for the high Q2 value in the
model with 23 ILs.

Theory-driven approaches aim at the best fit for all available
data by using a unique, often nonlinear, model, whereas the

SIMCA (soft independent modeling of class analogy) ap-
proach[39] aims at raw data reduction by compacting them into

data of higher relevance and eventually adopting different soft
models of local validity, which provides more easily interpreta-
ble results. In this context we carried out different PLS models

at nine different temperatures for which the statistical parame-
ters are reported in Table S2. The correlation plot for 293.15 K

is reported in Figure 2 and those for other temperatures are
given in Figure S2.

One advantage of this approach is that log(viscosity) values
at different temperatures can be easily calculated by using

four parameters [Eqs. (1)–(9)] .

logh283:15 ¼2:43378@0:0467197 PPþ 1 þ 0:246482 PPþ 5

@0:321282 PP@2@0:299658 PP@3

ð1Þ

logh293:15 ¼2:12028@0:05129 PPþ1 þ 0:200276 PPþ5

@0:29018 PP@2@0:2723 PP@3

ð2Þ

logh298:15 ¼1:94932@0:0719465 PPþ 1 þ 0:11487 PPþ 5

@0:259657 PP@2 @ 0:197003 PP@3

ð3Þ

logh303:15 ¼1:962@0:0450731 PPþ 1 þ 0:165658 PPþ 5

@0:207737 PP@2@0:214209 PP@3

ð4Þ

logh313:15 ¼1:74491@0:0563375 PPþ 1 þ 0:148687 PPþ 5

@0:173187 PP@2@0:176367 PP@3

ð5Þ

logh323:15 ¼1:55596@0:047622 PPþ 1 þ 0:0926056 PPþ 5

@0:145431 PP@2@0:154512 PP@3

ð6Þ

logh333:15 ¼1:48278@0:0501674 PPþ 1 þ 0:124556 PPþ 5

@0:126096 PP@2@0:136255 PP@3

ð7Þ

Figure 2. Predicted vs. experimental log(viscosity) values at 293.15 K
(R2 = 0.93).
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logh343:15 ¼1:32238@0:0423298 PPþ 1 þ 0:0930893 PPþ 5

@0:116262 PP@2@0:134434 PP@3

ð8Þ

logh353:15 ¼1:22789@0:041984 PPþ 1 þ 0:106297 PPþ 5

@0:0979848 PP@2@0:11833 PP@3

ð9Þ

The coefficients of Equations (1)–(9) indicate that the impor-
tance of both anionic descriptors decreases as the temperature

increases, whereas only the PP + 1 cationic descriptor exhibits
the same trend (Figure S3). This can be interpreted by consid-

ering that the directional polar interactions, such as the hydro-
gen-bond interactions (expressed by PP + 5), are less efficient

as the temperature increases. At 353.15 K, PP + 5 appears to

have the same importance as PP@2 and PP@3. PP + 1, which is
a contribution of molecular descriptors that are positively and

negatively influenced by temperature, is not affected by tem-
perature variation and anyway provides a lower contribution.

The physicochemical interpretation of cation and anion PPs
has been commented on previously.[13] In particular, PP@2 is re-

lated to the hydrophilic/hydrophobic character, whereas PP@3

is related to anionic size/shape and to the ability to form hy-
drogen bonds as a donor or acceptor. The latter intermolecular

interaction, not covered by previous descriptors[32] and de-
scribed by PP@3, accounts for the good predictability of the

present model. PP + 1 embodies information related to cation
solubility, size, flexibility, and molecular weight. High values for

PP + 1 indicate high solubility in water, whereas low values are

related to molecular size and shape and to solubility in organic
solvents, and PP + 5 discriminates the hydrogen-bond donor/

acceptor ability.
Another advantage of the adopted approach is that the re-

sults can be summarized into plots that allow interpretation
and design in addition to data prediction. In Figures 3 and 4,

respectively, we report the cation and anion experimental

space explored by using our data analysis as compared with
the potential experimental space, which could be covered by

the cation and anion PPs reported in Ref. [13]. ILs with high
viscosity have cations with negative PP + 1 values and anions

located in the lower-left quadrant of Figure 4 b.
The same considerations can be drawn from inspection of

Figure 5, in which the VIPs for cation and anion descriptors are
reported. The latter has a higher effect on viscosity; in particu-

lar PP@2 is the most important descriptor in determining vis-
cosity, that is, the lower the PP@2 value (chlorides and iodides),
the higher the viscosity. Accordingly, anions with high PP@2

values are expected to exhibit low viscosity. Tetracyanoborate
and tricyanomethanide, which exhibit the highest PP@2 values

in Figure 4 b (7.57 and 6.89 respectively),[13] are hydrophobic
anions used to generate hydrophobic ILs[40] with interesting

applications in dye-sensitized solar cells. It has been report-

ed[41, 42] that a low viscosity seems to be associated with the
use of these anions.

This is in excellent agreement with the results of our analysis
despite the fact that tetracyanoborate and tricyanomethanide

anions (Figure 4 b) are both outside the experimental space ex-
plored by using anion PPs in our model (Figure 4 a).

The above consideration indicates that Figures 3 and 4 pro-

vide in silico design opportunities that can be handled directly
by an experimentalist who will be able to evaluate the synthet-

ic affordability and confirm the IL behavior of potential IL can-
didates for specific applications. The simplicity and the practi-

cal utility of this approach in R&D studies of ILs are evident.

2.2. Density

Liquid density is a crucial physical property required in the in-
dustrial process design of equipment, such as condensers, re-

boilers, liquid–liquid two-phase mixer–settler units, in liquid
metering calculations, and in material and energy balances

that involve liquids, vapor–liquid, and liquid–liquid separation

processes.[21, 43] Thus there is longstanding interest in the pre-
diction of IL densities by using several approaches, from Sed-

don’s early studies that used a surface-tension-weighted molar
volume, the parachor,[44] to QSPR modeling based on semiem-

pirical calculations with 11 molecular descriptors,[43] to
COSMOS-RS based on quantum-chemistry calculations,[45] to

Figure 3. A) The cation PP + 1/PP + 5 descriptor space explored by using the
PLS model as compared with B) the PP + 1/PP + 5 available descriptor
space.[13]
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a group contribution method that uses the Patel–Teja

equation.[46]

Recent studies[47] suggest that the use of semiempirical
methods (faster and less expensive than ab initio ones) for ge-

ometry optimization provide comparable QSPR models to pre-
dict the density of 66 ILs.

Our approach, based on the literature,[48–53] considered as
many as 109 density values (see Data in the Supporting Infor-

mation). A preliminary PLS analysis (model D1) by using nine
PPs as descriptors, the statistical parameters of which are re-
ported in Table S5, revealed that anions such as long-chain sul-
fates, SbF6, bromides, iodides, and nitrates deviate from the

linear correlation (Figure S4 a). Deviation from linear behavior
may be ascribed to size differences between ions and packing

effects.[50] Exclusion of the above anions led to soft model D2
for 98 ILs by using nine PPs (five for cations and four for
anions) as descriptors. The statistical parameters are reported

in Table S5 and the correlation plot and VIP plots are given in
Figures S4 b and S5, respectively. In analogy to the procedure
adopted for viscosity, a new simplified PLS correlation model
included four relevant X descriptors : PP + 1 and PP + 2 for the

cations and PP@1 and PP@3 for the anions (model D3). This
model explained 80.2 % of the total variance and provided the

correlation plot reported in Figure 6.

Two sets of ten structurally different IL external sets that
covered the experimental density range were selected ran-

domly. The statistical parameters of the resulting models, with
88 ILs in the learning sets and 10 ILs in the test sets, are report-

ed in Table S6 and the predicted versus experimental density

values are given in Table S7. The Q2 values for both 88 IL
models (0.797 and 0.776) are comparable to that of the previ-
ous model (0.802), which provides external validation for the
model.

Figures 7 and 8, respectively, show the cation and anion PPs
experimental spaces explored by the present data analysis,

compared with those spanned by all PPs in Ref. [13] . It is

worth mentioning that the cation experimental space includes
many heterocyclic scaffolds. No cation is present in the upper-

left quadrant of Figure 7 a because those in the same quadrant
of Figure 7 b, characterized by long alkyl chains, are not liquid

at 298.15 K.
Predicted density values at 298.15 K can be easily calculated

by using the following four-parameter equation [Eq. (10)] with

the descriptor values reported in Ref. [13]:

D298:15 K ¼1:1968þ 0:0138095 Pþ 1@0:0061904 PPþ 2

þ0:0244469 PP@1 þ 0:0646624 PP@3

ð10Þ

Figure 4. A) The anion PP@2/PP@3 descriptor space explored by using the
PLS model as compared with B) the PP@2/PP@3 available descriptor space.[13]

Figure 5. VIP bar plot for the viscosity PLS model (T = 283.15 K) displaying
the importance of each PP.

Figure 6. Predicted vs. experimental densities from model D3 (R2 = 0.82).
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From Equation (10), it is evident that anions have a higher
effect on density, in particular as quantified by the PP@3 de-

scriptor. ILs with high density exhibit high PP@3 values (e.g.
tris(pentafluoroethyl)trifluorophosphate and 1,1,1-trifluoro-N-
(trifluoromethylsulfonyl) methanesulfonamide) whereas low-
density ILs have low PP@3 values (e.g. acetates, thiocyanates,
and chlorides). High PP@3 values are related to high anionic
size, surface, and polarizability,[13] which result in higher densi-

ties, whereas low PP@3 values indicate a high anion ability to
form hydrogen bonds that result in lower densities. As previ-
ously illustrated for viscosity, the above plots provide insights

for experimental design, although great caution should be
adopted because the developed soft model has local validity

and cannot be applied to anions not included in the model
derivation.

2.3. Decomposition Temperature

The decomposition of ILs represents an essential physicochem-
ical property to evaluate their thermal stability and, therefore,

the industrially applicable temperature range. The decomposi-
tion temperatures for 35 ILs are available in the literature[48, 50, 54]

(see Data in the Supporting Information). A preliminary PLS

analysis by using PPs as descriptors provided a statistically un-
reliable model (M1), as shown by the parameters reported in
Table S8. Therefore, to improve the modeling ability and ach-

ieve more accurate predictions, a new PLS analysis that used
all the original VolSurf + descriptors and their product terms,
and also took into account cation–anion interactions, was per-
formed. The resulting PLS model (M2) included 35 objects (ILs)

and 244 variables (128 cation descriptors, 48 anion descriptors,
and 48 cross terms) and provided a nonsignificant first PLS

component, a second significant PLS component, and a third

nonsignificant PLS component (negative Q2 value, Table S8).
This situation is encountered for particular data structures

for which the orthogonal information in the x block is strong.
This is the case for the present data structure. A chemometric

analysis able to handle such matrices is the orthogonal PLS
(OPLS) approach,[55–57] which is able to discriminate between

the predictive and orthogonal x variation that results in

a higher Q2 value. The OPLS model provided, in addition to
the predictive OPLS component, seven statistically significant

orthogonal PLS components (Table S9). The correlation plot in
Figure 9 can be considered as very satisfactory given that it re-

sults from an OPLS model with an optimum Q2 value (see dis-
cussion in the Supporting Information).

Figure 7. A) The cation PP + 1/PP + 2 descriptor space explored by using the
PLS model as compared with B) the PP + 1/PP + 2 available descriptor
space.[13]

Figure 8. A) The anions PP@1/PP@3 descriptor space explored by using the
PLS model as compared with B) the PP@1/PP@3 available descriptor space.[13]
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The predictive power of the model underwent external vali-
dation by randomly selecting two sets of five structurally differ-

ent ILs that covered the experimental decomposition tempera-
ture range. The statistical parameters of the resulting models

are reported in Table S10 and the predicted versus experimen-
tal temperature values for both test sets of ILs are given in

Table S11. The Q2 values for both 30 IL models (0.707 and

0.680) are only slightly lower than that for the 35 IL model
(0.795), which provides external validation support for the

35 IL model.
In addition to more accurate predictions, the OPLS analysis

with all the original VolSurf + descriptors and their product
terms, which also take into account cation–anion interactions,

provides a more detailed interpretation of the descriptors.

Table 1 reports the OPLS coefficients higher than 0.03 and
lower than @0.03 for cation and anion VolSurf + descriptors

and for their interactions.
Interestingly, Table 1 shows that the decomposition temper-

ature decreases as cation–anion van der Waals interactions in-
crease (D3_CatxAn, D4_CatxAn, D5_CatxAn, D7_CatxAn),

whereas it increases with the increase in hydrogen-bond-de-

rived polar interactions (W5_CatxAn, W6_CatxAn, CW5_CatxAn,
CW6_CatxAn). Therefore, not surprisingly, the thermal stability

data for ILs are influenced by both anionic and cationic com-
ponents, and this finding may allow us to modulate the degra-
dation processes. Such an easy computational approach,
which leads to the prediction of the thermal degradation of
ILs, may allow selective and application-driven design.

2.4. Conductivity

Of the common properties of ILs, conductivity is of crucial im-
portance for their potential applications as electrolytes in elec-
trochemical devices. For example, when ILs are applied as elec-

trolysis solutions for batteries, larger ionic conductivities are
required.[20, 58, 59]

Conductivity data for 43 ILs are available in the literature[48, 49]

(see Data in the Supporting Information). In this dataset, the
conductivity values for 1-hexyl- and 1-octyl-3-methylimidazoli-

um bromides (12.06 e and 10.55 S m@1, respectively) are signifi-
cantly different from all others (in the range of 0.007–

2.93 S m@1). These values, reported by Li et al. ,[60] were exclud-
ed from the dataset.

Recent studies[61] adopted the logarithm of conductivity for
QSPR modeling. A preliminary PLS analysis by using nine PPs

as descriptors and log(conductivity) as the dependent variable
provided a statistically unreliable model (Table S12), probably
because two ILs (IM01 1COO and IM01 CF3COO) are outside

the confidence ellipse of the scores plot (Figure S8). This could
be due to the fact that in these two ILs, only one imidazolium
ring nitrogen has an alkyl substituent, whereas all other imida-
zolium rings have two alkyl substituents. Therefore, the above

two ILs, which behave as outliers with respect to all other imi-
dazoliums in the dataset, were excluded and the correspond-

ing PLS model was derived (C2, see Table S12). However, the

statistical parameters of this model were not satisfactory, prob-
ably due to the limited ability of compacted PPs to describe

conductivity, which suggests that new OPLS analysis must be
carried out by using all the original VolSurf + descriptors and

their product terms, which also take into account cation–anion
interactions (C3, Table S13). It is perhaps worth mentioning

here that the exclusion of four ILs was not arbitrary, but sug-

gested by the adopted data-driven approach that used data
examination and the inspection of structural features.

The statistical parameters for the soft OPLS model provided
a good predicting ability (Q2 = 0.833) and a very satisfactory

correlation plot, recorded in Figure 10 (R2 = 0.98). For external
validation we randomly selected two sets of five structurally

Figure 9. Predicted vs. experimental decomposition temperatures from
model M3 (R2 = 0.96).

Table 1. Coefficients (scaled and centered) for the VolSurf + descriptors
in the decomposition-temperature OPLS model.

Var ID Coeff. [+] Var ID Coeff. [@]

CW2_An 0.1093 IW3_An @0.0306
CW3_An 0.1013 D5_CatxAn @0.0312
CW4_An 0.0943 D7_CatxAn @0.0320
CW1_CatxAn 0.0886 R_CatxAn @0.0325
W1_An 0.0824 HL1_An @0.0357
A_An 0.0752 D4_CatxAn @0.0386
W2_An 0.0737 CW8_An @0.0413
ID1_An 0.0713 W8_An @0.0413
ID1_CatxAn 0.0711 D3_CatxAn @0.0450
ID2_CatxAn 0.0706 R_Cat @0.0465
W3_An 0.0632 CP_CatxAn @0.0481
DD7_Cat 0.0602 S_CatxAn @0.0493
CP_An 0.0582 CW7_An @0.0503
D2_An 0.0576 V_CatxAn @0.0512
D3_An 0.0545 IW1_An @0.0530
ID3_An 0.0513 W7_An @0.0550
ID4_An 0.0496 ID4_CatxAn @0.0592
D1_An 0.0488 IW4_An @0.0778
W4_An 0.0487 CW6_An @0.1085
W5_CatxAn 0.0483 HL2_An @0.1253
ID2_An 0.0471 W6_An @0.1280
HL2_CatxAn 0.0464
CW5_CatxAn 0.0463
W6_CatxAn 0.0430
CW6_CatxAn 0.0429
A_CatxAn 0.0415
CD2_An 0.0399
CD3_An 0.0355
CW5_An 0.0331
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different ILs that covered the experimental conductivity range.
The statistical parameters for the resulting models are reported

in Table S14 and the predicted versus experimental conductivi-
ty values for these test-set ILs are given in Table S15. The Q2

values for the validation models (0.782 and 0.746), similar to
that of the previous model (0.833), provide external validation

for the model.

Table 2 reports the OPLS coefficients higher than 0.03 and
lower than @0.03 for cation and anion VolSurf + descriptors

and for their interactions. Table 2 shows that experimental con-
ductivity data are also influenced by cation–anion interactions,

as demonstrated by the coefficients of the descriptors ID2, ID3,
ID4, D1, D2, D3, D4, CP, and A for both cation and anion moiet-

ies. The interpretation is that hydrophobic spots on cation and
anion partners (Dx) and their locations at the molecular surface

(IDx), plus the amphiphilic moment and critical packing (A and
CP), influence the IL packing and the viscosity of the mixture,

and thus have an effect on the overall conductivity.

2.5. Melting Point and Glass-Transition Temperature

The use of ILs at an industrial scale requires knowledge of their
melting points and glass-transition temperatures, which are

needed to set feasible temperature operation ranges. The ex-
perimental determination of solid–liquid phase transitions of
ILs cannot be clearly distinguished into melting points and
glass-transition temperatures because many samples begin to
melt after the glass transition and no distinct peaks can be ob-
served.[62] As expected, no significant PLS models were ob-
tained by using PPs or VolSurf + descriptors, the derivation of

which, and consequently the use of, are relative to the liquid

phase.

3. Conclusions

Theory-driven approaches aim at the best fit of all available

data by using a unique, often nonlinear, model. To demon-

strate the superiority of the adopted model, most papers
report the plot of predicted versus experimental data, which

provides a better correlation than that of other models. How-
ever, interpretation of the results is not always easy and in

many cases only the numerical values of experimental and pre-
dicted properties, but not the numerical values of the descrip-

tors, are reported. This prevents other researchers from repro-

ducing the results, a condition always required for the publica-
tion of papers that involve experimental procedures, but rarely

for computational results.
Conversely, the data-driven approach presented herein starts

with an overview of the raw data and then compacts it into
data of higher relevance that is eventually modeled by using

different soft models with local validity. The domain of validity
of each model was determined by the “objects” included in
the learning set, herein IL cations and anions present in the

learning set. Descriptor availability allows the readers to repro-
duce the results and perform a simple interpretation of their

relevance, and the methodology is more flexible because it
may adopt different data-modeling techniques depending on

the purpose of the investigation and on the structure of the
data.

In conclusion, data-driven chemometrics and chemoinfor-

matic approaches are an unexploited opportunity for experi-
mentalists to model, predict, and design the physicochemical

properties of ionic liquids. Modeling from data complements
theory-driven approaches for interpretation and correlation
purposes and may represent an alternative for experimental
design in industrial applications.

Figure 10. Predicted vs. experimental log(conductivity) values from model
C3 (R2 = 0.98).

Table 2. Coefficients (scaled and centered) for the VolSurf + descriptors
in the conductivity OPLS model.

Var ID Coeff. [+] Var ID Coeff. [@]

CW2_An 0.1062 V_An @0.0320
ID4_CatxAn 0.1050 W1_Cat @0.0324
CW3_An 0.1013 IW2_Cat @0.0325
CW1_An 0.0965 CD1_Cat @0.0329
CW4_An 0.0912 IW2_An @0.0353
D3_CatxAn 0.0869 D2_Cat @0.0373
CP_CatxAn 0.0863 D3_Cat @0.0386
CW5_An 0.0857 DD6_Cat @0.0433
IW3_An 0.0811 A_Cat @0.0486
CW1_CatxAn 0.0742 CW1_Cat @0.0500
D2_CatxAn 0.0696 PB_Cat @0.0514
D1_Cat*An 0.0695 R_An @0.0524
W2_An 0.0627 CD3_Cat @0.0540
ID1_An 0.0601 IW1_An @0.0546
DD2_Cat 0.0568 CD2_Cat @0.0582
W3_An 0.0562 W8_An @0.0693
DD5_Cat 0.0539 CW8_An @0.0727
A_CatxAn 0.0498 DD3_Cat @0.0737
ID2_Cat 0.0491 R_CatxAn @0.0810
ID2_CatxAn 0.0474 FLEX_RB_Cat @0.1110
G_CatxAn 0.0441 R_Cat @0.1167
DD1_Cat 0.0429
W1_An 0.0401
W4_An 0.0374
DIFF_Cat 0.0373
CD5_Cat 0.0349
CW2_CatxAn 0.0340
D4_CatxAn 0.0331
G_Cat 0.0304
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Computational Methods

Herein, chemometric tools available in the SIMCA software pack-
age,[39] namely partial least squares projections to latent structures
(PLS) and orthogonal PLS (OPLS), were used. Relationships be-
tween in silico molecular properties (x matrix) derived by using Vol-
Surf + and the “response” y (IL PPs) can be achieved by using PLS
analysis,[30, 31] in which y can be described as a function of the
x matrix. The PLS algorithm computes PLS components and simul-
taneously looks for a linear relationship between the x scores and
y by using Equation (11), in which ba is a proportionality
coefficient:

y ia ¼
X

batia þ hia ð11Þ

The algorithm used in SIMCA is iterative for each dimension and
consists of finding the latent variables of the x matrix tia that maxi-
mize the relationship between yi and ti.

The predictive power of a PLS/OPLS model was assessed by using
the Q2 value, which expresses the fraction of predicted variation. It
is usually evaluated by using cross-validation (CV) techniques. For
the cases studied herein, the CV process was performed by build-
ing reduced models (models for which some of the objects were
removed) and using them to predict the y variables of the held-
out objects. Then the predicted y was compared with the experi-
mental y and for each model the following dimensionality index
was computed [Eq. (12)]:

Q2 ¼ 1@½
X
ðy@y0Þ=

X
ðy@+yÞA ð12Þ

in which y is the experimental value, y’ is the predicted value, and
ý is the average value. In particular, CV in SIMCA[39] was performed
by dividing the dataset into seven groups, with an equal (or nearly
equal) number of objects in each one, and applying the above CV
procedure to them.

The PLS method identifies the variables in the x block that are rele-
vant to determine the dependent variable y by using the VIP
values. The latter reflects the importance of the variables both
with respect to y, that is, its correlation to the response, and with
respect to x.

The OPLS[55–57] method, a modification of the PLS method,[63] sepa-
rates the systematic variation in x into two parts, one that is linear-
ly related to y and one that is unrelated (orthogonal) to y. This par-
titioning of the x data facilitates model interpretation and im-
proves model predictivity.[55–57] The OPLS model is comprised of
two modeled variations, the y-predictive (TPPp T) and the y-orthog-
onal (TOPO T) components. Only the y-predictive variation is used
for the modeling of y (TPCP T), see Equations (13) and (14).

Model of x : x ¼ TPPp Tþ TOPO Tþ E ð13Þ

Model of y : y ¼ TPCP Tþ F ð14Þ

in which E and F are the residual matrices of x and y, respectively.
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