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Abstract

Some biochemical systems show oscillation. They often consist of feedback loops with repressive transcription regulation.
Such biochemical systems have distinctive characteristics in comparison with ordinary chemical systems: i) numbers of
molecules involved are small, ii) there are typically only a couple of genes in a cell with a finite regulation time. Due to the
fluctuations caused by these features, the system behavior can be quite different from the one by deterministic rate
equations, because the rate equations ignore molecular fluctuations and thus are exact only in the infinite molecular
number limit. The molecular fluctuations on a free-running circadian system have been studied by Gonze et al. (2002) by
introducing a scale parameter V for the system size. They consider, however, only the first effect, assuming that the gene
process is fast enough for the second effect to be ignored, but this has not been examined systematically yet. Here we study
fluctuation effects due to the finite gene regulation time by introducing a new scale parameter t, which we take as the
unbinding time of a nuclear protein from the gene. We focus on the case where the fluctuations due to small molecular
numbers are negligible. In simulations on the same system studied by Gonze et al., we find the system is unexpectedly
sensitive to the fluctuation in the transcription regulation; the period of oscillation fluctuates about 30 min even when the
regulation time scale t is around 30 s, that is even smaller than 1/1000 of its circadian period. We also demonstrate that the
distribution width for the oscillation period and amplitude scales with

ffiffiffi
t
p

, and the correlation time scales with 1=t in the
small t regime. The relative fluctuations for the period are about half of that for the amplitude, namely, the periodicity is
more stable than the amplitude.
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Introduction

One of the outstanding features in biological systems is that the

systems often operate on surprisingly small numbers of active

molecules, yet they seem to work quite reliably. This is especially

intriguing in the case where the chemical reaction system involves

a gene transcription because there are typically only a couple of

genes in a cell, and their stochasticity is known to produce

significant fluctuations [1–5].

One example is a circadian system, which shows a rhythmic

behavior of approximately 24-hour periodicity. It is a universal

feature of biological systems and known to be very accurate and

robust against external and internal perturbations [6,7]. Its

biochemical mechanisms have been proposed in several systems

[8–10], and most of them are based on a time-delayed negative

feedback loop of a biochemical reaction network which includes

transcription regulations. Some of the protein molecules are

expected to be very small in number, and the number of each gene

is typically of the order of one in a cell and does not scale with the

cell size, thus it is surprising that the circadian system is capable of

maintaining its extraordinary regularity especially in the case of a

single cell organism [11].

The effects of molecular fluctuations on the circadian system has

been studied by [12,13] by Monte Carlo simulations using the

Gillespie method [14,15] with the scale parameter V for the

molecular numbers. By simulating the system with various values

of the scaling parameter V, they demonstrated that the system

shows reasonably coherent oscillation as long as the system

contains more than several tens of mRNA, thus concluded that

their system are fairly robust against molecular fluctuations.

They examined the system rather systematically based upon a

standard method to study the stochastic nature of chemical

reactions [16] by scaling the reaction rates in the way to keep the

rate equation unchanged. However, there is an ambiguity in the

treatment of the gene regulation process because the number of

genes should not scale with other protein numbers. They scaled

the reaction rates proportional to V for the gene processes (see 1 in

Supporting Information S3), namely, they made the gene

regulation times infinitely fast in the large V limit, thus the system

dynamics reduce to the one described by the corresponding rate

equations without the gene processes [12]. This could be justified

only when the gene processes are so fast that they do not cause

significant fluctuation on the system behavior. In fact, it is not

reasonable to assume that the time scale of the gene regulation

depends upon the scale parameter V, if you think of it as the cell

volume, because the time scale with which a regulatory protein

binds to the operator site is determined by the protein

concentration, and the time scale with which the protein unbinds

is determined by its binding energy.
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In this work, in order to analyze fluctuations from the two

distinct origins separately, we introduce a new scale parameter t in

addition to V. The scale parameter t scales the binding/unbinding

time of the gene regulatory protein. Thus, these two parameters, t
and V, control the two distinct fluctuation sources that exist in the

biological systems, namely, V controls the fluctuations due to the

finite molecular numbers while t controls the fluctuations due to

the finite gene regulation times. We perform the Monte Carlo

simulations on the same system as the one studied by [13],

focusing on the latter effect, and demonstrate that significant

fluctuation can arise from the stochasticity in the gene process

alone. We also examine how the fluctuation scales with t.

Model

The model we study is the simplest version of core model for a

circadian system that consists of a gene G, mRNA M, cytosolic

protein PC, and nuclear protein PN (Fig. 1). The biochemical

reactions for these elements are given by

GznPN /? GPNn, ð1Þ

G?GzM, ð2Þ

M?|, ð3Þ

M?MzPC, ð4Þ

PC?|, ð5Þ

PC /? PN: ð6Þ

The parameter n is the number of nuclear proteins PN that bind to

suppress the gene, i.e. Hill coefficient for the gene activity; we

adopt n~4 for most of the calculation as [12,13]. The reaction (1)

may be decomposed further into several chemical steps(see 2 in

Supporting Information S3), but we focus on the simple case

where there exists a rate limiting process that dominates the gene

process, and the overall process can be effectively represented by

the reaction (1) with the Hill coefficient n.

Now, we introduce the two scaling parameter V and t; V scales

the reaction rates so that the numbers of mRNA and the proteins

become proportional to it, and t scales the binding/unbinding

time of the nuclear protein to the gene operator site. The

transition rates for each reaction are listed in Table 1, where we

define the variables G, M, PC , and PN to represent the numbers

of active genes, mRNA, cytosolic proteins, and the nuclear

proteins in a single cell, respectively. The gene variable G takes

either 1 or 0 values, depending upon the active state (G) or the

inactive state (GPNn), respectively. Note that we employ Michaelis-

Menten enzymatic reactions for the degradation processes. The

first two reaction rates in Table 1 are for the gene regulation and

proportional to 1=t, but do not scale with V because we assume

only one gene in a cell (see 3 in Supporting Information S3). The

ratio of the binding and the unbinding times is determined in the

way that the corresponding average behavior described by the rate

equation remains the same with the original system in the small t
limit. On the other hand, the gene transcription activity in the

third reaction is scaled as vsV in order that the numbers of mRNA

and the proteins should be proportional to V.

If we naively write down differential equations for the time

evolution, ignoring the fact that the variables are integers, we

would have

t
dG

dt
~(1{G){

PN=V

KI

� �n

G, ð7Þ

dM

dt
~vsVG{vmV

M

KmVzM
, ð8Þ

dPC

dt
~ksM{vdV

PC

KdVzPC

{k1PCzk2PN , ð9Þ

Figure 1. Simplified core model for a circadian system.
doi:10.1371/journal.pone.0060938.g001

Table 1. Reaction table for a simplified circadian system.

no. reaction transition rate

a G~1
?

G~0

PN PN{n

1

t

PN

KIV

� �n

G

b G~0
?

G~1

PN PNzn

1

t
(1{G)

1 M ? Mz1 vsVG

2 M ? M{1
vmV

M=V

KmzM=V

3 PC ? PCz1 ksM

4 PC ? PC{1
vdV

PC=V

KdzPC=V

5 PC ?
PC{1

PN PNz1

k1PC

6 PC ?
PCz1

PN PN{1

k2PN

doi:10.1371/journal.pone.0060938.t001
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Figure 2. Oscillatory behaviors of the concentrations of mRNA and the cytosolic protein for various values of V with t~0:01 h. The
plots in the left column show the time variation and those in the right column are the projections of the trajectories in the M=V{PC=V plane. We
employ the same reaction parameters with those in Gonze et al.: n~4, vs~0:5 nM h{1 , KI ~2:0 nM, vm~0:3 nM h{1 , Km~0:2 nM, ks~2:0 h{1,
vd~1:5 nM h{1 , Kd~0:1 nM, k1~0:2 h{1 , k2~0:2 h{1 .
doi:10.1371/journal.pone.0060938.g002

Transcription Fluctuation Effects

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e60938



Figure 3. Oscillatory behaviors of the concentrations of mRNA and the cytosolic protein for various values of t with V~?. The
parameters are the same with those in Fig. 2.
doi:10.1371/journal.pone.0060938.g003
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dPN

dt
~k1PC{k2PN ð10Þ

z
n

t
(1{G){

PN=V

KI

� �n

G

� �
: ð11Þ

For ordinary chemical reactions without a gene transcription

process, the stochastic dynamics should be well described by such

equations for the large V case, where the numbers of molecules are

large. However, in the present system, the number of gene is one

and does not scale with V, thus the stochastic nature remains even

in the case of the infinite V as long as t is finite.

Large V Limit
Supposing the scale parameter V as a cell volume, we define the

‘‘concentrations’’ of mRNA and the proteins as,

½M�:M

V
, ½PC�:

PC

V
, ½PN�:

PN

V
, ð12Þ

and write down the rate equations for them as

d½M�
dt

~vsG{vm

½M�
Kmz½M� , ð13Þ

d½PC�
dt

~ks½M�{vd
½PC�

Kdz½PC�
{k1½PC�zk2½PN�, ð14Þ

d½PN�
dt

~k1½PC�{k2½PN�, ð15Þ

where we have ignored the term of the order of n=V in Eq.(15).

For ordinary chemical reactions, we expect that the determin-

istic dynamics represented by the rate equations would describe

the system accurately in the large V limit, because the effect of

molecular fluctuation becomes negligible. However, for the

present case, the system remains stochastic even in the large V
limit because the variable G remains stochastic.

Small t Limit
In the case where t is much smaller than any other time scales

in the system, the system reduces to the one studied by [13]. This

can be seen by introducing the time dependent average value of G,

denoted by GAv(t), i.e. the time average of G over the longer time

scale than t but shorter than other time scales in the system. Its

value is given by the condition that the first two reactions in

Table 1 are equilibrated,

GAv(t)~
1

1z(½PN�=KI )n : ð16Þ

Then the system dynamics are given by the stochastic dynamics of

reaction 1*6 in Table 1 with G replaced by GAv.

If we take the large V limit on top of this, we obtain the

deterministic rate equations given by Eqs.(13),(15) with G being

replaced by GAv(t) of Eq.(16).

Simulations and Results
In order to examine the effect of gene fluctuations, we have

performed numerical simulations for various values of t and V.

We examine two cases: (i) the case where both t and V are finite,

and (ii) the case where t is finite but in the large V limit. In the first

case, the fully stochastic dynamics are given by Table 1; for these

we employ the Gillespie method [14,15]. In the second case, the

concentrations ½M�, ½PC�, and ½PN� follow the deterministic

dynamics while the gene process remains stochastic. In this case,

we integrate the rate equations (13),(15) using Runge-Kutta

method, but at every time step of the length Dt, the gene variable

G is subject to a trial for change according to the probability wDt
under Poisson process with w being the transition rate given in the

first two processes in Table 1.

Figure 2 shows the system behaviors for various values of V with

t~0:01h. The other reaction parameters are the same as those

Figure 4. Distributions for (a) the period (i.e. peak-to-peak
interval) and (b) the peak value of the cytosolic protein
variation for t~1:0, 0.1, 0.01 h with V~?. The averages and
the standard deviations are tabulated in Table 2, from which one can
see that the width of the distribution scales roughly as

ffiffiffi
t
p

.
doi:10.1371/journal.pone.0060938.g004
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used by [13]. The plots in the left column are the time variations of

the concentrations of mRNA (solid lines) and the cytosolic protein

(dashed lines), and those in the right column show the oscillation

trajectories projected on the M=V{PC=V plane of the phase

space. The fluctuation decreases as V increases, but it remains

finite even in the infinite V case because of the fluctuation from the

gene activity.

In order to see the effect of gene stochasticity, we examine the

case for various values of t in the large V limit (Fig. 3). The

fluctuation decreases on decreasing t as in the case of increasing V.

The trajectories are smoother in comparison with the previous

case because the stochasticity is limited to the gene activity. One

can see that the fluctuation is evident even in the case t~0:01h,

where the ratio t to the period (,24 h) is as small as 0.5|10{3.

Figure 4 shows the period (i.e. the peak-to-peak interval)

distributions and the peak value distributions of ½PC� for t~1:0,

0.1, and 0.01 h. The averages and the standard deviations for the

distributions are tabulated in Table 2. Both of the distributions

become narrower for the smaller value of t approximately

proportional to
ffiffiffi
t
p

, but the standard deviation of the period

distribution is still about a half hour even for the case of t~0:01 h.

It should be noted that the ratios of the standard deviation to the

average for the peak value distributions are about twice as large as

those for the period distributions. More systematic data are

presented in Supporting Information S2 to show the
ffiffiffi
t
p

scaling

and the ratio of the two distribution widths. As for the averages of

the distributions, they shift toward larger values for larger t. This is

because the system tends to make larger loops of oscillation when

PN binding is delayed, therefore, the gene activity is prolonged due

to a small binding constant.

The time correlation function C(t) of the nuclear protein

concentration ½PN(t)� is defined as

C(t)~
1

T

ðT

0

D½PN(t’zt)�D½PN(t’)� dt’, ð17Þ

where D½PN(t)� represents the deviation from the average,

D½PN(t)�:½PN(t)�{ 1

T

ðT

0

½PN(t’)�dt’ ð18Þ

with T being the time length of the whole simulation. In Fig. 5, the

correlation functions are plotted and fitted to the form of damped

oscillation

A cos (v0tzh0) e{t=tcorr ð19Þ

to estimate the correlation time tcorr. Figure 6 shows the t
dependence of the correlation time tcorr in the logarithmic scale. It

shows the scaling

tcorr*
1

t
ð20Þ

in the small t regime, and the longer correlation time in the n~4
case than in the n~1 case. One may notice that the correlation

time for t~0:01 h is quite long, i.e. tcorr&2000 h for the n~4
case, even though the period fluctuations are substantial as can be

seen in Fig. 4 (See Supporting Information S1).

The scaling of tcorr given by Eq.(20) can be understood as the

phase diffusion when the standard deviations of the period

distributions scales as
ffiffiffi
t
p

as shown in Fig. 4.

Discussion

We have examined the effects of molecular fluctuations in a

biological system on a simplified model of a circadian rhythm

system, where there are two types of fluctuation sources: (i) small

numbers of molecules involved and (ii) finite time scale of the gene

regulation. The first effect has been studied by [13], assuming that

the gene regulation time scale is infinitesimal. In the present work,

we focus on the second effect, i.e., in the case where the molecular

numbers are large enough that the fluctuation due to the first effect

is negligible.

We have developed a method to study this effect systematically

by introducing a new parameter t to scale the gene regulation

times. We set t to be the unbinding time of the transcription

factor, keeping the ratio of the binding to the unbinding rate

constant. We performed numerical simulations for various values

of t without an external entrainment of the 24-hour period. As t
decreases, the oscillation appears more deterministic; the width of

the distributions for the oscillation periods and the peak values

scales with
ffiffiffi
t
p

and the correlation time for the correlations

function scales with 1=t. We have found that the system is very

sensitive to such fluctuation, and demonstrated that the oscillation

period fluctuates by about 30 min even for very small t~0:01 h

&30 s in comparison with its period around 22 h. For the present

parameter set, the nuclear protein concentration PN=V oscillates

in the range 0,5 nM, therefore, the value of t&30 s for the

unbinding time gives about 1 s for the binding time. These

estimates may be tested with experimental data.

The 30 minutes period fluctuation is large for a circadian

system. This sensitivity to the fluctuation in the gene regulation is

an interesting feature of the present simplified model. Multiple

feedback loops with several phosphorylation steps found in actual

biological systems have been discussed in the context of

stabilization mechanism of the oscillation [17,18]; Such redun-

dancy in the systems may also provide reduction mechanism of

this sensitivity. Such possibility can be studied by extending the

present method.

The correlation function for the protein oscillation fits to the

damped sinusoidal function very well, and the estimated correla-

tion time tcorr scales as 1=t in the small t regime. Such decay in

the correlation function is caused by the phase diffusion due to

fluctuations. We estimate tcorr for the Hill coefficient for the gene

regulation n~4 and 1, and found that tcorr’s for n~4 are about 5

times larger than those for n~1; the fluctuation effect is

Table 2. The averages and the standard deviations for the
period and the peak value distributions for the cytosolic
protein concentration shown in Fig. 4.

t (h) 1 0.1 0.01

av. 24.6 22.3 22.0

period (h) std. 3.92 1.32 0.45

std./av. 0.16 0.059 0.020

av. 7.82 6.50 6.37

peak value (nM) std. 1.87 0.79 0.26

std./av. 0.24 0.12 0.041

The ratios of the standard deviation to the average for the peak value
distributions are about twice as large as those for the period distributions.
doi:10.1371/journal.pone.0060938.t002
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suppressed by the larger value of the Hill coefficient by the

cooperativity effects as in the case of [12,13].

It is also interesting to find that the relative fluctuations for the

peak values are twice as large as those for the periods, namely, the

period is more stable than the amplitude. This may be a reason

why the correlation time is quite long in spite of apparent

fluctuations in the oscillation.

In the present work, we study only the case where the copy

number of the gene is 1. However, there are typically a couple of

genes in a cell. In the case of multiple genes in a cell, the

fluctuation in each gene cancels each other, therefore overall

fluctuation will be reduced. We confirmed by simulation that the

fluctuation for a two-gene system with t is almost the same as that

for a single gene system with t=2. This is because the fluctuation

cancellation by two genes should be comparable with that by one

gene that switches twice as fast. Simulation data are presented in

Supporting Information S2.

The fluctuation indicated by our simulations may be compared

with previous experimental observations. Although circadian

clocks are very accurate as a system, large fluctuations have been

observed in the oscillation of individual cells of fibroblasts [19] and

cyanobacteria [20] when they oscillate independently. For both

cases, it is reported that the fluctuations are much larger for the

amplitude than those for the period. In the latter case [20], the

correlation time is estimated as long as 1666100 days in spite of

apparent large fluctuations in the amplitude. Such a long

correlation time corresponds to our case of the gene regulation

time scale t~0:01 h, which gives the tcorr&1950 h.

Very little fluctuation is usually observed in circadian systems;

fluctuation in the period is typically less than 10 minutes [21],

which is even smaller than the fluctuation of 30 minutes that we

obtained for the case t~0:01 h. There are some possible

mechanisms to suppress molecular fluctuations. (i) Cooperativity

among cells: The present system models a single cell behavior, but

for the case of multicellular organisms, the cooperativity among

cells may exist and that should reduce the fluctuation in each cell.

Actually, variability in each cell is much larger than that of a whole

system in the case of multicellular organisms [22–25]. (ii) Multiple

feedback loops: Our model is a simplified core model for a

circadian system and consists of a single negative feedback loop.

However, it has been known that circadian systems typically

consist of multiple feedback loops [26–29], which could be

designed in the way to compensate the fluctuations in one loop by

the other. (iii) Chemical oscillation without gene control: In the

case of cyanobacteria, it has been proposed that the circadian

system consists of proteins only and does not involve a gene

expression [30]. In such a system, the fluctuation discussed in this

work does not exist.

Other than circadian systems, there are some oscillations

observed in biology such as Hes1 oscillation during somite

segmentation [31], p53 oscillation after DNA damage by gamma

irradiation [32], or oscillations in artificially constructed systems

[33–35]. In these systems, the fluctuations are much more

profound than circadian systems, and part of the fluctuations

should come from the gene regulatory processes, for which the

present analysis is applicable.

In summary, we have developed a theoretical tool to study the

molecular fluctuation due to the finite transcription regulation

time, and have demonstrated that a simplified core model of

circadian system is sensitive to such fluctuation. Our method can

be extended to study a more realistic system and can be utilized to

clarify biological significance of a detailed design of circadian

system in terms of stability against the molecular fluctuation.

Figure 5. The time correlation functions for the nuclear protein
concentration for the regulation time t~0.01, 0.1, 1 h with
V~?. The (green) lines shows the fitting curves of the form

A cos (v0tzh0)e{t=tcorr . The fitted values of tcorr are shown on the
plots. The other parameters are the same with those in Fig. 2.
doi:10.1371/journal.pone.0060938.g005

Figure 6. The regulation time t dependences of the correlation
time tcorr for n~1 and 4 with V~? in the logarithmic scale. The
(green) dashed lines shows the fitted lines proportional to t{1 .
doi:10.1371/journal.pone.0060938.g006
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