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ABSTRACT

Motivation: Although the amount of data in biology is rapidly
increasing, critical information for understanding biological events
like phosphorylation or gene expression remains locked in the
biomedical literature. Most current text mining (TM) approaches to
extract information about biological events are focused on either
limited-scale studies and/or abstracts, with data extracted lacking
context and rarely available to support further research.
Results: Here we present BioContext, an integrated TM system
which extracts, extends and integrates results from a number of
tools performing entity recognition, biomolecular event extraction
and contextualization. Application of our system to 10.9 million
MEDLINE abstracts and 234 000 open-access full-text articles from
PubMed Central yielded over 36 million mentions representing 11.4
million distinct events. Event participants included over 290 000
distinct genes/proteins that are mentioned more than 80 million times
and linked where possible to Entrez Gene identifiers. Over a third
of events contain contextual information such as the anatomical
location of the event occurrence or whether the event is reported
as negated or speculative.
Availability: The BioContext pipeline is available for download
(under the BSD license) at http://www.biocontext.org, along with the
extracted data which is also available for online browsing.
Contact: martin.gerner@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The amount of information available in the biomedical literature
is increasing rapidly, with over 2000 articles published daily
(http://www.nlm.nih.gov/bsd/index_stats_comp.html). While the
information available in these articles (now exceeding 18 million
in number) represents a vast source of knowledge, its sheer size also
presents challenges to researchers in terms of discovering relevant
information. Efforts in biomedical text mining (TM) seek to mitigate
this problem through systematic extraction of structured data from
literature (Lu, 2011). To date, progress in biomedical TM research
has primarily focused on tools for entity recognition (locating
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mentions of species, genes, diseases, etc.) and the extraction of
gene/protein relationships (Krallinger et al., 2008a,b).

Recently, there has been increasing interest to develop TM tools
for the extraction of information about a wider array of biological
and molecular processes (often referred to as ‘events’), such as
expression, phosphorylation, binding and regulation of genes and
proteins. Community challenges (Kim et al., 2009, 2011) have
shown that extracting such events is often difficult because of the
complex and inconsistent ways in which such processes are reported
in the literature (Zhou and He, 2008). In addition, most efforts
to extract events have been restricted to limited-scale studies or
abstracts. Although some event extraction tools are now publicly
available, their usefulness for supporting biological discovery is still
unknown given the difficulties in applying and integrating data from
these systems on a large scale.

In this article we present BioContext, an integrated TM system
which extracts, extends and integrates results from a number of TM
tools for entity recognition and event extraction. The system also
provides contextual information about extracted events including
anatomical association and whether extracted processes have been
reported as speculative or negated (i.e. not taking place). In addition
to making the integration platform available under an open-source
license, we also provide the data resulting from processing the whole
MEDLINE and the open-access subset of PubMed Central (PMC)
for batch download and online browsing.

2 BACKGROUND
Biomolecular events are frequently reported and discussed in the
literature, and are critical for understanding a diversity of biological
processes and functions. Although some databases exist that contain
information about certain types of molecular events (e.g. protein–
protein interactions, PPIs; Ceol et al., 2009; Szklarczyk et al., 2011),
extraction and contextualization of a more general set of events using
TM systems will present a valuable addition to manually curated data
and enable focused navigation of the literature through a variety of
biological processes.

Identification of molecular events in the literature has been the
topic of several recent text mining challenges (Kim et al., 2009;
Krallinger et al., 2008a,b). The shared task 1 of BioNLP’09 (Kim
et al., 2009), for example, aimed to identify and characterize nine
types of molecular events: gene expression, transcription, protein
catabolism, localization, phosphorylation, binding, regulation,
positive regulation and negative regulation. Depending on the event
type, the task included the identification of either one (for the
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first five event types mentioned above) or more (for binding)
participating proteins/genes (sometimes referred to as themes).
Regulatory events could also have a cause (which could be a
protein/gene or another event) in addition to one theme/target of
regulation (also a protein/gene or another event). The task also
included the identification of a textual span (called ‘trigger’) that
indicated the occurrence of an event. For example, the sentence
‘MDM2 acts as a negative regulator of p53 expression’ contains two
events: (i) a ‘gene expression’ event, with the theme p53, and (ii) a
‘negative regulation’ event, where the theme is the gene expression
event in (i) and the cause is MDM2. The trigger for the first event
is the word ‘expression’ and the trigger of the regulatory event is
‘negative regulator’.

Named entity recognition (NER, locating entities in text) is
typically performed before information extraction. Entity classes
that have received attention vary widely and include genes/proteins
(Leaman and Gonzales, 2008; Settles, 2005), species (Gerner et al.,
2010a) and chemical molecules (Hawizy et al., 2011). Recognized
entities may also be normalized (i.e. linked to standard database
identifiers) in order to enable integration of extracted information
with other biological data [e.g. linking gene and protein mentions in
the literature to Entrez Gene using GNAT (Hakenberg et al., 2011)
or GeneTUKit (Huang et al., 2011)].

Despite increased interest and efforts, only a few general
biomolecular event extraction tools are publicly available. The Turku
event extraction system (TEES; Björne et al., 2009) combines a
machine learning approach (relying on dependency parse graph
features) with a rule-based post-processing step to identify complex,
nested events. EventMine (http://www.nactem.ac.uk/EventMine/),
based on the work of Miwa et al. (2010) also uses machine-learning
methods and a set of rich features. The Stanford Biomedical Event
Parser (McClosky et al., 2011), which uses dependency parses to
extract events, has also been made available very recently. Finally,
a recent publication by Kano et al. (2011) describes the creation of
a bio-event meta-service, which would make nine different event
extractors (including EventMine and TEES) available through U-
compare. However, this system is currently not yet available, and it
is not clear if sufficient computational resources would be available
for it to perform large-scale document processing.

3 MATERIALS AND METHODS
We designed and implemented an integrated TM system, called
BioContext, which extracts, extends and integrates mentions of
molecular events in the biomedical literature. The following sections
describe the system architecture and components (Section 3.1),
integration and event expansion methods (Section 3.2) and the
evaluation approaches (Section 3.3).

3.1 System overview, architecture and components
Figure 1 shows an overview of our TM system for large-
scale integrated extraction of biomolecular events. Processing
is performed in four stages: NER, grammatical parsing, event
extraction and contextualization. Each stage is composed of several
components, which are described in detail in the following sections.
In some cases, outputs from multiple components are merged prior
to use by other components. To illustrate the main stages, consider
the example sentence ‘Interleukin 6 is probably not expressed in

the spleen’. In this example, ‘Interleukin 6’ and ‘spleen’ are first
recognized by the gene/protein and anatomical NER components,
respectively (Stage 1). The event extractors then use grammatical
processing (Stage 2) to identify the internal structure of the input
sentence, and to recognize that it discusses the gene expression event
involving Interleukin 6 (Stage 3). Finally, in Stage 4, the extracted
event is placed into context: the anatomical association component
recognizes that the Interleukin 6 expression relates to the spleen,
and the negation/speculation component identifies this event as both
negated and speculative.

To facilitate the efficient execution of tools and merging of
data, we constructed a lightweight TM integration framework,
which we call TextPipe. Although other integrative TM frameworks
are available [e.g. UIMA and GATE (Cunningham et al., 2011)],
we developed TextPipe since we needed a system which was
both more lightweight than what was already available and, more
importantly, could be easily modified and optimized for any
stability or performance problems we encountered (see Section
4.1). TextPipe makes extensive use of modularization, parallel
processing, database optimization and error handling/recovery to
address various practical challenges when applying many TM
tools to large datasets of abstracts and full-text articles. Tools
are wrapped as TextPipe components (treated as black boxes
internally) by implementing two simple functions: one to specify
the output fields, and another to call the main method of the
tool. Data are communicated in the form of lists of key-value
pairs.

TextPipe components are either applied directly to documents
or run as services on demand. They do not need to provide a list
of dependencies. Instead, during run-time, they connect directly
to other components, providing the document(s) that need to be
processed, and fetching the output of those components to use as
their input. Computed results can be stored in a database for later
re-use to avoid processing of the same document multiple times.

The components that have been implemented and integrated in
BioContext are explained as follows.

Stage 1. NER: identification of genes, species and anatomy
In the first stage, identification of gene and protein mentions
is performed by GeneTUKit (Huang et al., 2011) and GNAT
(Hakenberg et al., 2011; Solt et al., 2010). To the best of our
knowledge, these tools are the only tools available that are capable
of high-accuracy gene/protein normalization and are practically
applicable to large-scale datasets. Whereas GeneTUKit performs
normalization for any species, GNAT was limited to 30 of the most
commonly studied organisms. Both tools were configured/adapted
to utilize BANNER (Leaman and Gonzales, 2008) for gene/protein
name recognition in order to reduce the number of false positive
(FP) results. In addition, GNAT was modified to also return any
entities recognized by BANNER that could not be normalized.
While data extracted using non-normalized entities will have more
limited use, they should reduce the number of errors that the
event-extraction systems make due to incomplete gene/protein
information.

The outputs from both gene/protein NER systems are merged.
We used a confidence level cut-off of 0.01 for GeneTUKit,
and all results from GNAT. If the two tools have identified
overlapping spans, then we create a new span with the union
of their coordinates. If the tools have assigned different Entrez

2155



Copyedited by: TRJ MANUSCRIPT CATEGORY: ORIGINAL PAPER

[18:53 19/7/2012 Bioinformatics-bts332.tex] Page: 2156 2154–2161

M.Gerner et al.

Fig. 1. System architecture. Each box represents the application of one tool (see main text for description), and each arrow represents the transfer of data from
one tool to another. Circles represent data merging and post-processing. Entity recognition is performed by GeneTUKit (genes), GNAT (genes), LINNAEUS
(species) and GETM’s anatomical NER component. Parsing is performed by the McClosky–Charniak, Enju and Genia dependency parsers. Event extraction
is performed by TEES and EventMine. In the final contextualization step, Negmole detects whether events are negated and/or speculative, and events are
associated to anatomical entity mentions. Additional document parsing functions provide input to the system and database storage functions handle outputs
(but are not shown here)

Gene identifiers in the original overlapped spans, then priority is
given to the GeneTUKit normalization, as it was ranked higher in
BioCreative III gene/protein normalization challenge than GNAT.

Identification of species mentioned was performed using
LINNAEUS (Gerner et al. 2010a), and recognition of anatomical
locations (e.g. brain, T cells) and cell-lines (acting as proxies for
anatomical locations, e.g. HeLa for cervical cells) was performed
by the anatomical NER system from GETM (Gerner et al., 2010b).

Stage 2. Grammatical parsing
In the second stage, a number of grammatical parsers process the text
to determine the structure of the processed sentences. Parsing was
done by the McClosky–Charniak constituency parser (McClosky
et al., 2006), the Enju constituency parser (Sagae et al., 2008) and
the Gdep dependency parser (Sagae and Tsujii, 2007), as these are
requested by the down-stream modules (Stages 3 and 4). To increase
the accuracy of the parsers when applied to sentences with long
and complex entity names, we performed ‘semantic tokenization’ by
ensuring that multi-word phrases that are identified as entity names
(e.g. ‘acid phosphatase’ or ‘T cells’) were treated as single tokens.

Stage 3. Event extraction
For identification of event mentions, we used TEES and EventMine.
Similarly to gene NER tools, these were chosen since they
were the only tools available at the time with large-scale
processing capabilities and reasonable performance. Both systems
recognize events from the nine BioNLP types (gene expression,
transcription, protein catabolism, localization, phosphorylation,
binding, regulation, positive regulation and negative regulation) and
use gene/protein NER results from the first stage. The output from
each system consists of information about the event type, trigger and
participants. TEES relies on output from the McClosky–Charniak
parser, whereas EventMine uses results from the Enju and Gdep
parsers. The data extracted by TEES have previously been released
for the 2009 MEDLINE baseline release (Björne et al., 2010a,b). We
utilized this data for any documents that were in the 2009 MEDLINE
baseline release by mapping the entities in the TEES data to those

extracted by us in Stage 1 using positional overlaps. Events that
referred to entities that could not be mapped to our entities were
not included. Further, additional TEES extractions were performed
for the remaining documents (the full-text PMC documents and
1 412 095 additional abstracts that only are available in the 2011
MEDLINE baseline release). We performed event extraction with
EventMine for all documents.

Before contextualization (Stage 4), the outputs of the two event
extraction systems are post-processed, expanded and integrated as
described in Section 3.2.

Stage 4. Contextualization
Events can occur in different places and under different conditions,
and this information is key for the comprehensive understanding of
the biomedical processes. In the fourth stage, extracted events are
enriched with contextual information, including species involved,
anatomical locations associated with the event and whether extracted
events have been reported as speculative or negated. Anatomical
locations are linked to events using an expanded version of
the GETM method described in Gerner et al. (2010b), which
relies on Gdep dependency trees to link events and associated
anatomical entities. Speculative and negated events are recognized
by an extended version of the negation-detection system Negmole
(Sarafraz and Nenadic, 2010). Negmole uses machine learning and
relies on constituency parse trees from the McClosky–Charniak
parser.

3.2 Event integration and post-processing
Events extracted from TEES and EventMine are compared to
determine if they refer to the same mention. Two events extracted
from a given sentence are considered to be the same if their type
and participants match (using approximate span matching, allowing
overlap). If the event is ‘nested’ (e.g. regulates another event), the
comparison is performed recursively. Note that we do not require the
triggers to match, as they do not convey any additional biological
information.
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The results of event extraction are additionally post-processed
to improve precision (by eliminating likely FPs) and coverage (by
inferring additional events), as follows:

(i) Removing probable FPs. After studying a sample of the
merged output from the large-scale MEDLINE processing, we
noted certain patterns that contributed towards clearly incorrectly
extracted events. We therefore designed post-processing methods
that discriminated against likely FPs, similarly to our previous study
(Sarafraz et al., 2009). We have not observed the patterns removing
any events that should not have been removed. The rules were based
on (a) event chains (sequences of ‘nested’ events linked through
regulation); and (b) event triggers (keywords indicating the presence
of an event) as follows.

(a) Negative discrimination based on the event chains: For nested
regulation events, one or more of the participants can be other events.
Common likely FPs were events that are circularly nested (e.g. E1
causes E2, and E2 causes E1) or where there is a long, potentially
indefinite chain of events (i.e. E1 causing E2 causing E3 and so
on). For example, in one instance, TEES found a chain of 211 769
connected events. We noticed that there were very few instances in
the BioNLP’09 training data where events are nested further than
two levels, and there are no circularly nested events. Therefore, all
events with a ‘nestedness’ level above 2 were removed.

(b) Negative discrimination based on the event trigger: Events
characterized with unlikely triggers are also removed, for example,
events with very short triggers (one or two characters, mostly
consisting of punctuation, single letters or abbreviations). We
compiled a whitelist of 11 short words (e.g. ‘by’) that could be
triggers, and a blacklist of 15 longer words (common English stop
words) that were often recognized incorrectly as event triggers.
Events that had a trigger from the whitelist were not removed,
whereas events that had a trigger from the blacklist were removed. In
addition, capitalized triggers that did not occur in the very beginning
of the sentence were also removed as they were likely to be proper
nouns. For example, an event with the (incorrect) trigger ‘Region’
from the sentence ‘The prevalence of urinary lithiasis in children in
Van Region, Turkey.’ (PMID 20027811) would be removed (here,
the incorrect event was ‘expression of Van’, also representing a
gene/protein NER FP).

(ii) Inferring additional events from enumerated entity mentions.
A number of gene/protein and anatomical entity mentions in
MEDLINE (see Section 4) are part of entity ‘enumerations’, i.e.
lists of more than one entity connected within a conjunctive phrase.
Event extractors, however, typically ignore enumerations. We
hypothesized that, where an event is associated with a gene/protein
or anatomical entity that is part of such an enumeration, we could
infer additional events by substituting the original entity with each
of the other entities in the enumeration. For example, consider
the sentence ‘In the present study, we describe three novel genes,
Dorsocross1, Dorsocross2 and Dorsocross3, which are expressed
downstream of Dpp in the presumptive and definitive amnioserosa,
dorsal ectoderm and dorsal mesoderm.’ (PMID 12783790). Here,
gene expression events should be extracted for all three Dorsocross
genes, and each of those events should be associated with each of
the three anatomical locations mentioned. If any of these nine events
are not extracted directly, the enumeration processing would allow
them to be inferred indirectly.

To implement this inference, we used regular expression patterns
to detect groups of enumerated entities. Where at least one of these

entities (e.g. T1) were part of an event (e.g. E1), we constructed a
new event E2 with the entity T2, where T2 was mentioned in the
same enumeration group as T1. Except for T1, all other properties
of E1 were duplicated in E2.

3.3 Evaluation approaches
To measure the impact that different processing steps have on the
data as it moves through the pipeline, the performance of different
components was evaluated individually, with evaluations of the final
components also showing the accuracy of the system as a whole.
The gene/protein NER, event extraction and negation/speculation
detection components were evaluated against a corpus based on
the BioNLP’09 and GENIA corpora (described in the following
paragraph). The anatomical associations and the event inference
components were evaluated by manual inspection.

The public portion of the BioNLP’09 corpus (Kim et al., 2009),
consisting of 800 training documents and 150 development test
documents was created from a subset of the GENIA event corpus
(Kim et al., 2008) with extensive manual modifications (Kim et al.,
2009; Ohta et al., 2009). Only the GENIA entities considered
to be genes or gene products were included in the BioNLP’09
corpus. However, many events in the GENIA corpus contain links
to protein complexes, which were not included in the BioNLP
corpus. For example, many mentions of NF-kappa B that refer
to protein complexes were removed from the BioNLP’09 corpus.
Because of the importance of protein complexes for biomolecular
processes, we decided to expand our definition of event participants
to also include protein complexes. Therefore, the BioNLP’09 and
GENIA corpora were merged into a new corpus, which we refer
to as the B+G corpus. More specifically, the BioNLP’09 corpus
was expanded with mentions of entities from the Protein_complex
and Protein_molecule GENIA classes. Protein_molecule entities
were added since protein complexes often were annotated as
Protein_molecule entities in the GENIA corpus (for example, we
estimate that NF-kappa B was annotated as Protein_molecule in 38%
of cases). We also included any events involving these entities. By
merging the two corpora, we could retain the modifications made
to the BioNLP’09 corpus but gain additional events that involve
protein complexes from GENIA. The merged corpus is used as a
gold standard for evaluation of both NER and event extraction, and
is available in Supplementary Material S1. In the following, we
include protein complexes together with genes and proteins when
we refer to gene(s) or protein(s).

When evaluating event extraction components, an extracted event
was considered to be a true positive (TP) if all of the following
criteria hold: (i) the extracted event type is the same as the event
type annotated in the gold standard; (ii) the entity participants are all
TPs, and approximately match boundaries with the participants in
the gold standard; (iii) the participant types match (theme or cause);
and (iv) if any of the participants is an event, it is also a TP, defined
recursively.

To the best of our knowledge, no corpus currently exists
that provides cross-species normalized gene/protein mentions—all
available corpora provide gene/protein annotations at the recognition
level (i.e. gene/protein mentions are not normalized to database
identifiers). Therefore we can only evaluate the combined data of
GNAT and GeneTUKit on the recognition level, and refer to the
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Table 1. The total number of gene mentions and the number of normalized, distinct genes recognized by GNAT and GeneTUKit in MEDLINE and PMC

Source Entity mentions Distinct entities

MEDLINE PMC MEDLINE + PMC MEDLINE PMC MEDLINE + PMC

GNAT 35 910 779 12 729 471 48 050 830 227 809 129 244 253 929
GeneTUKit 47 989 353 19 217 778 66 431 789 258 765 143 706 287 218
Intersection 26 281 266 8 638 823 34 479 547 224 604 125 763 249 932
Union 57 618 866 23 308 426 80 003 072 261 412 146 552 290 557

Table 2. The total number of event mentions and the number of distinct events extracted by TEES and EventMine from MEDLINE and PMC

Source Event mentions Distinct events

MEDLINE PMC MEDLINE + PMC MEDLINE PMC MEDLINE + PMC

TEES 19 406 453 4 719 648 23 856 554 6 570 824 1 804 846 7 797 604
EventMine 18 988 271 4 010 945 22 737 258 6 502 371 1 588 178 7 539 364
Intersection 9 243 903 1 331 456 10 455 678 3 080 900 573 903 3 424 372
Union 29 150 821 7 399 137 36 138 134 9 635 566 2 676 257 11 442 462

original papers (Hakenberg et al., 2008, 2011; Huang et al., 2011)
for evaluation in terms of normalization.

Likewise, no gold-standard data exist that could be used to
evaluate anatomical associations or event inference, so we manually
inspected a randomly selected set of 100 extracted events for each
component to estimate their levels of precision.

4 RESULTS AND DISCUSSION
We performed two types of experiments to assess the benefits of
the data produced by our system: a large-scale data generation
experiment to quantify and characterize application of the system on
MEDLINE and PMC, and a smaller-scale evaluation of the quality
of the data.

4.1 Large-scale application to MEDLINE and PMC
We applied our system to MEDLINE (2011 baseline files, containing
10 946 774 abstracts) and to the open-access subset of PMC
(downloaded May 2011, containing 234 117 full-text articles.)

Table 1 shows the number of gene/protein entities (both mentions
and distinct entities) extracted from MEDLINE and PMC with the
two gene normalization tools. Of the 80 003 072 extracted gene
mentions in the union set, 10 261 208 (12.8%) were not normalized,
all coming from GNAT. The GeneTUKit and intersection data
contain only normalized entities linked to Entrez Gene. We note
that only 43% (34 479 547/80 003 072) of all mentions in the
MEDLINE+PMC union set were recognized by both NER tools.
This is even more extreme in the case of full-text articles (only 37%
of all mentions recognized by both tools).

Of the 80 003 072 gene/protein mentions in the MEDLINE and
PMC union sets, 11 317 242 (14%) were part of enumerated groups
as detected by our patterns. Likewise, of the 56 659 248 anatomical
mentions found, 3 489 723 (6.2%) were found to be enumerated.
These results suggest that authors study multiple genes/proteins
more frequently than they study multiple anatomical locations.

Table 2 presents the number of events extracted from MEDLINE
and PMC. The relative volumes of different event types are available
in Supplementary Material S2. To estimate the number of distinct
events reported, we define two events to be the same if the following
are true: (i) they are of the same type; (ii) they involve the
same normalized gene entities; or, if non-normalized genes are
involved, the gene mention strings match; or, if more than one
entity is involved, all pairs match; (iii) either no anatomical entity
is associated with neither of the two events; or, if one event is
associated with an anatomical entity, the other event should also
be associated with an entity normalized to the same anatomical
location; (iv) they are both affirmative or both negated; (v) they
are both certain or both speculative; (vi) if any of the participants
of the events is another event, those nested events also match
recursively. We note that in total, almost 11.5 million distinct events
could be extracted from the MEDLINE+PMC union set. Of the
union of distinct events, only 32% and 21% were recognized by
both tools in abstracts and full-text articles, respectively. Similar
observations hold for event mentions (32% abstracts, 18% full text),
demonstrating complementarity of the event extractors.

Of the 36 138 134 event mentions in the MEDLINE+PMC union
set, 1 052 541 (2.9%) were created through the event inference
method. Although the percentage of events inferred is low, the
absolute number is still large enough to demonstrate its utility.

In terms of contextualization, 13 564 939 events (37.5%) could
be associated with an anatomical entity, 1 487 502 (4.1%) were
negated and 1 253 133 (3.5%) were speculative. We note that
the negation/speculation ratios are slightly lower than those of the
combined BioNLP’09 training and development sets (at 6.8% and
5.3%, respectively).

Compared with the previously released dataset of 19.2 million
total event mentions extracted from the 2009 release MEDLINE by
TEES (Björne et al., 2010a,b), the dataset described here provides
additional value in a number of ways, including the addition of
nearly 1.5 million MEDLINE abstracts and more than 234 000
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full-text PMC articles, normalization of genes and proteins to
species-specific identifiers, and association to anatomical locations.
In addition, the use of multiple tools for the more challenging aspects
(gene/protein NER and event extraction), allows users to query and
interpret data depending on whether it was extracted by one or more
components of the system.

When scaled to the total number of documents processed, we
find an average of 2.7 extracted event mentions per abstract and
31.6 event mentions per full-text article in the union data. Thus,
only ∼8.4% of the events stated by authors are in the abstracts.
This is similar to results from a previous study, which after manual
annotation of 29 full-text articles reported that only 7.8% of claims
were made in the abstracts (Blake, 2010). Although events stated in
the abstracts can be expected to be more important in general than
those stated elsewhere in the article, it still highlights the importance
of processing full-text documents. It is therefore unfortunate that
only ∼2% of MEDLINE entries have open-access full-text articles
that are available for text mining. If the open-access subset of PMC
is an indicator of the richness of full-text articles in general, we
extrapolate that roughly 300–400 million (31.6 × 10.9 million)
further event mentions are described in the full text of articles in
MEDLINE.

In addition to the 80.0 million gene/protein mentions and the
36.1 million event mentions, the process of extracting events
from MEDLINE and PMC also produced large volumes of other
intermediary data that are available and should prove useful to
the text mining and bioinformatics communities. This data include
70.9 million species entity mentions, 56.6 million anatomical entity
mentions and 133 million parsed sentences from each of the Gdep,
Enju and McClosky–Charniak parsers.

We note that processing on the scale reported here presents
several challenges. The large number of documents resulted in
large computational time requirements. Even using 100 processor
cores (in a cluster), a full run of the system required 2–3 months.
Testing requirements and tool crashes resulted in the total processing
requirements of roughly double that. For example, although the
documents in MEDLINE and PMC are generally well-structured,
there were outliers that introduced significant problems. Examples
we have found included documents over 300 pages long (causing
some tools to crash when running out of memory, and others never to
finish) and documents that typically confuse TM tools by containing
non-ASCII characters or programming or TeX source code (causing
every single grammatical parser to crash). We have, therefore,
implemented robust general error detection and recovery methods
within our framework (TextPipe) to help with unusual processing
time, frequent crashes and other external problems, such as network
connection timeouts or machine failures.

4.2 Gold-standard evaluation
Evaluation results for the gene/protein NER systems on the 3 000
annotated gene/protein mentions in the B+G corpus are shown in
Table 3. Both precision (at 72–80% for the individual systems, with
a maximum of 83% for the intersection set) and recall (at 79–84%,
with a maximum of 92% for the union set) are similar to what has
previously been reported for common recognition tools [BANNER:
85% precision, 79% recall; ABNER: 83% precision, 74% recall;
(Leaman and Gonzales, 2008)]. A brief manual inspection of FP and
false negative (FN) errors indicate that some of the more common

Table 3. Gene/protein NER evaluation results

Precision (%) Recall (%) F-score (%)

GNAT 79.8 83.7 81.7
GeneTUKit 72.2 79.1 75.5
Intersection 82.8 70.4 76.1
Union 71.4 92.0 80.4

Table 4. Event extraction evaluation results on the B+G corpus

Precision (%) Recall (%) F-score (%)

TEES 50.4 53.6 51.9
EventMine 45.7 45.5 45.6
Intersection 66.2 36.6 47.1
Union 41.3 62.0 49.6

Table 5. Event extraction results on the B+G corpus, including
negation/speculation detection as processed by Negmole

Precision (%) Recall (%) F-score (%)

Intersection 62.6 34.6 44.6
Union 38.8 58.3 46.6

categories of errors include incorrect dictionary matches (e.g. non-
gene acronyms matching synonym entries in gene dictionaries), the
use of terms by authors that are not in dictionaries, and incomplete
manual annotations of the corpora.

Evaluation of the two event extractors on the 2 607 annotated
events in the B+G corpus (Table 4) shows the best precision of 66%
(for intersection) and the best recall of 62% (for union). Event type-
specific evaluation results are available in Supplementary Material
S3. TEES alone provides the best balance between precision and
recall (52%). Manual inspection reveals that many FP and FN errors
by the event extractors were due to incorrect entity recognition
that propagated to the event extraction stage, sentences that were
particularly linguistically or semantically complex, and incomplete
manual annotation of the corpora.

We note that our evaluation results differ from the previously
reported level of 64% precision in (Björne et al., 2010a,b); recall was
not reported. However, the evaluation methods between these two
studies are different, hindering direct comparisons. In the evaluation
of (Björne et al., 2010a,b), 100 events were selected randomly for
manual verification, rather than being compared with an already
annotated gold-standard corpus. Furthermore, a more inclusive
definition of ‘entity’ was also used, with ‘cells, cellular components
or molecules involved in biochemical interactions’ considered as
TPs if recognized.

Evaluation of the event extraction results after performing
negation and speculation detection by Negmole is shown in Table 5.
In addition to having a correctly extracted event (evaluated in
Table 4), events were also required to have both their negation and
speculation status correctly identified to be classified as a TP. Only
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relatively small differences in data quality can be observed before
and after the application of Negmole (relative to the results in Table
4). This is expected since only a small subset of events are negated
and/or speculative (3.3% and 4.3% of events in the test corpus were
found to be negated and speculative, respectively).

To evaluate the performance of the anatomical association and
event inference, we randomly selected 100 events associated
with anatomical entities and 100 events produced by the event-
inference rules. The events were otherwise selected randomly
from the complete union of events in MEDLINE and PMC.
Manual inspection of the 100 events associated to anatomical
entities showed a precision of 34%. The lack of a gold-standard
corpus of anatomical associations prevented estimation of recall for
anatomical association. The 100 inferred events showed a precision
level of 44%.

Overall, we observed that many FPs and FNs that occurred in
the NER stage are propagated to the event extraction stage, and
additional FPs and FNs introduced there are in turn propagated to
the context association stage. This means that even relatively small
error rates can have a large impact on the final results, especially if
they occur early in the pipeline.

Finally, we note that evaluations performed using the B+G corpus
are limited by the fact that it was drawn by the corpus creators from
the set of MEDLINE abstracts containing the MeSH terms ‘humans’,
‘blood cells’ and ‘transcription factors’ and therefore may not be
completely representative for MEDLINE as a whole.

5 CONCLUSION
In this article we present an integrated TM system, BioContext and
the data produced by it when applied to 10.9 million abstracts in
MEDLINE and 234 000 full-text articles in the open-access subset
of PMC. The data contain 36.1 million event mentions, representing
11.4 million distinct events describing processes such as gene
expression, transcription, catabolism, localization, phosphorylation,
binding and regulation of genes and proteins. Over a million of
additional event mentions were created through enumerated entity
mentions. Event participants are whenever possible linked to Entrez
Gene identifiers. The data contain contextual information regarding
the associated anatomical locations and whether events are reported
as negated or speculative.

The process of generating and integrating this huge volume of data
proved challenging and differences observed between the output
of individual tools indicate that the identification of events in text
is not always easily reproducible on a large scale. Nevertheless,
differences among tools in recognized entity and event mentions
can be useful when deciding the balance between precision and
recall for different applications. As expected, we find that for both
gene/protein NER and event extraction, the intersection of multiple
tools shifts the balance towards increased precision while the union
favours increased recall.

We have made the data available at www.biocontext.org both for
batch download and for browsing through a web search interface,
giving biologists not only more comprehensive access to data in
the literature, but allowing bioinformaticians to run more powerful
integrative analyses using information extracted from literature. We
also provide the entire set of intermediary data files as well as
the integration framework, TextPipe, which can be used either for

completely new TM projects or to construct and deploy modified
versions of the system described here.

Several tasks remain for future work. Data interfaces could be
enhanced by allowing restrictions on which documents results are
returned for the search interface, or by importing and integrating
the BioContext data into a pubmed2ensembl-style biological data
mining portal (Baran et al. 2011). We would also like to improve
the accuracy through improved filtering techniques. Further, as
protein complexes currently are not linked to any reference
source, we would like to enable normalization of these entities,
either to their constitutive genes or directly to protein complex
databases. Finally, a more detailed analysis of the extracted
data is also warranted, which will hopefully shed new light
on biomolecular events at an unprecedented scale of global
understanding.
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