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Simple Summary: Surgery is the main treatment to cure pancreatic cancer (PC). However, the 5-year
survival rate of surgical resection is only 10–20%. The aim of our study was to develop a prediction
model with the novel machine learning algorithm random survival forest (RSF) and to offer easy-to-
use prediction tools, including risk stratification and individual prognosis. The study would benefit
patients and physicians in postoperative management and facilitate personalized medicine.

Abstract: Accurate prediction for the prognosis of patients with pancreatic cancer (PC) is a emerge
task nowadays. We aimed to develop survival models for postoperative PC patients, based on
a novel algorithm, random survival forest (RSF), traditional Cox regression and neural networks
(Deepsurv), using the Surveillance, Epidemiology, and End Results Program (SEER) database. A
total of 3988 patients were included in this study. Eight clinicopathological features were selected
using least absolute shrinkage and selection operator (LASSO) regression analysis and were utilized
to develop the RSF model. The model was evaluated based on three dimensions: discrimination,
calibration, and clinical benefit. It found that the RSF model predicted the cancer-specific survival
(CSS) of the postoperative PC patients with a c-index of 0.723, which was higher than the models
built by Cox regression (0.670) and Deepsurv (0.700). The Brier scores at 1, 3, and 5 years (0.188,
0.177, and 0.131) of the RSF model demonstrated the model’s favorable calibration and the decision
curve analysis illustrated the model’s value of clinical implement. Moreover, the roles of the key
variables were visualized in the Shapley Additive Explanations plotting. Lastly, the prediction model
demonstrates value in risk stratification and individual prognosis. In this study, a high-performance
prediction model for PC postoperative prognosis was developed, based on RSF The model presented
significant strengths in the risk stratification and individual prognosis prediction.

Keywords: pancreatic cancer; random survival forest; surgery; machine learning; visualization; the
Surveillance, Epidemiology, and End Results Program (SEER)

1. Introduction

Pancreatic cancer (PC) is a severe malignant tumor, with the characteristic of poor
prognosis and remarkable aggressiveness [1]. PC was one of five causes of death from
cancer, of which the relative 5-year survival rate is only 8.2% [2,3]. The population of
PC diagnosed has doubled in the past twenty years, which may be associated with
the aging population, smoking, obesity, alcohol usage, diabetes, etc. [4–9]. The thera-
pies, such as immunotherapy, chemotherapy, and radiotherapy, were less satisfactory
in the field of PC [10,11]. Surgical resection is still now the only hope for a cure of
PC [12]. With the assistance of adjuvant treatment, such as gemcitabine or FOLFIRI-
NOX (fluorouracil + leucovorin + irinotecan + oxaliplatin), the 5-year survival rate of PC
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patients who had undergone complete macroscopic resection is up to 19–26.1% [13]. Mean-
while, for borderline resectable pancreatic cancer, neoadjuvant chemoradiotherapy com-
bined with surgery also improves the 5-year overall survival rate up to 20.5% [14].

In this case, a practicable postoperative prognosis model for PC could benefit the
clinical management of PC. A few clinical prediction models for survival after surgery for
PC have been developed. Xu et al. constructed the overall survival of the pancreatic ductal
adenocarcinoma model (C-index = 0.887), with 265 patients using the multivariable Cox
regression analysis [15]. Likewise, Tol et al. developed the postoperative survival model
(C-index = 0.658) with 350 patients [16]. However, the insufficiency of sample size and the
homogeneity of prediction algorithms limit the performance of these models.

Recently, a novel machine learning algorithm, random survival forest (RSF), has been
proposed to predict disease progression. With the characteristics of high performance and
interpretability, the RSF is gaining ground. Until now, there have been no reports about the
application of RSF in the postoperative prognosis of PC.

In this study, we aimed to use the data from the Surveillance, Epidemiology, and End
Results Program (SEER) database, and to propose the postoperative prognostic model of
PC based on the RSF algorithm. We also attempted to provide physicians and patients with
prediction tools to assess the risk stratification and individual prognosis of postoperative
of PC.

2. Materials and Methods
2.1. Study Population

The data were extracted from the SEER Researcher Plus Database (Nov 2020 Sub).
The criteria for inclusion were: (1) the site and morphology code were ‘Pancreas’; (2) the
histological codes included 8010–8049 (epithelial neoplasms), 8140–8389 (adenomas and
adenocarcinomas), 8440–8499 (cystic, mucinous and serous), 8500–8548 (Ductal and lobular
neoplasms), 8560–8679 (complex epithelial neoplasms) (the International Classification
of Tumor Diseases Third Edition (ICD-O-3). (3) the behavior recode for analysis was
malignant. The exclusion criteria were: (1) patients younger than 18; (2) the cause of death
or follow-up survival months flag was unavailable; (3) patients lacking clinical information,
such as surgical information, primary site codes, T stage (AJCC 7th), N stage (AJCC 7th), or
clinical grade. The endpoint of the study was CSS (Cancer-Specific Survival), the duration
interval between the first diagnosis and the death from pancreatic cancer.

2.2. Variables

The following variables were collected: the demographic information, including age,
race, sex, and marital status; the clinical features, such as histological type, AJCC stage
(AJCC 7th), T stage, N stage, M stage, the site of the tumor, tumor size, and clinical grade
were incorporated. Meanwhile, the variables regarding the surgery, involving the surgery,
the number of examined lymph nodes, the number of positive lymph nodes, and the rate of
positive lymph nodes were retained. The records concerned chemotherapy and radiation
were also included in the study.

2.3. The Development of Models

Patients were randomly divided into the training set, the validation set, and the test
set at a ratio of 7:1:2. Variable selection was the main step before the modelling. The least
absolute shrinkage and selection operator (LASSO) regression analysis was adopted in
the RSF model. Then, the hyperparameters among the RSF model were fine-tuned in the
validation set using the grid search method, which let us select the best hyperparameters
from a list of options that we provide. The hyperparameters and range of grid search
are below: the number of estimators (10, 100, 500, 1000); minimum of samples split (1,
3, 5, 10, 15, 20); minimum of samples leaf (1, 3, 4, 10, 15, 20). Two different algorithms
containing Cox regression analysis and neural networks were also applied to develop the
postoperative prognostic model for comparison. The Cox regression model was based
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on the multivariable Cox regression analysis, in which the variables were selected by the
univariable regression analysis. The Deepsurv model was developed based on neural
network algorithms. The integrated variables were directly loaded into the Deepsurv
model without selection. The grid search is also applied in the Deepsurv model to look for
the best parameters. Figure 1 illustrates the flowchart of the models’ development.
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2.4. The Evaluation and Interpretation of Models

The models’ performance was evaluated in the test set. The following evaluation
metrics were adopted: the concordance index (C-index) and the area under the operating
characteristic curve (1, 3, and 5 years). The model’s calibration was evaluated by the Brier
score. When Brier score ≤ 0.25, the model was considered to have favorable calibration.
The decision curve analysis (DCA) was applied to calculate the clinical net benefit of the
model [17].

The interpretation predictive model was essential for supporting medical decision-
making, in which physicians could simply understand how the models make the prediction
regarding the postoperative prognosis in a transparent manner. The Shapley Additive
Explanations (SHAP) plot, which was a game-theoretic approach to explaining the output
of model, demonstrated the contribution of the variables to the outcome.

2.5. The RSF Risk Stratification of Patients

The RSF risk stratification was based on the risk score, which was computed by the
expected number of events for particular terminal node in the RSF model, could quantify
patients’ postoperative hazards. Using X-tile software, we stratified patients according to
their risk scores. The RSF risk stratification was tested by the Kaplan-Meier curve survival
analysis and checked by log-rank test. To verify the value of the clinical implement, the
survival predictions for patients at 1, 3, and 5 years after surgery of the RSF risk stratification
with the traditional AJCC stage were also compared.

2.6. The Individual Prediction

The individual visual prediction was composed of the survival probability plot and
local SHAP plot, which offer explicit individual prediction from the perspective of survival
expectation and risk factors. The survival probability was calculated by the instance in
each terminal using the non-parametrically estimate. The local SHAP plot is the local
interpretation form of SHAP plot, which shows the contribution of variables for a given
instance. According to the plot, the linkages between risk factors and the individual
prognosis were established.
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2.7. Statistical Analysis

The difference between demographic and clinical information was evaluated using
the Wilcoxon test for continuous variables, while the χ2 test or Fisher’s exact test were used
for categorical variables between the training set and the validation set. Two-tailed p values
less than 0.05 were believed to be statistically significant. Python (Version 3.8, Van Rossum,
Scotts Valley, CA, USA) was implemented to derive the models. The Cox model and
RSF model were based on the scikit-survival module (Version 0.17.2, Sebastian P), while
the Deepsurv model relied on the Pycox module. The fundamental data analysis was
conducted by R (Version 4.1.2, RCoreTeam, Vienna, Austria).

3. Results
3.1. The Characteristics of Patients

A total of 3988 patients were included in the study. The demographic and clinical
information of these patients between the training set and the test set was summarized in
Table 1.

Table 1. The information for postoperative pancreatic cancer patients in the training set and the test set.

Characteristic Training Set
(n = 2804)

Test Set
(n = 795) p Value

Age 65 (58, 73) 65 (57, 72) 0.5
Race 0.9

White 2215 (79%) 629 (79%)
Black 293 (10%) 82 (10%)

Asian or Pacific Islander 292 (10%) 84 (11%)
other 4(0.1%) 0 (0%)

Sex 0.5
Male 1432 (51%) 396 (50%)

Female 1372 (49%) 399 (50%)
Marital status 0.5

Married 2067 (74%) 577 (73%)
Single 737 (26%) 218 (27%)

Radiation 0.4
Yes 998 (36%) 271 (34%)
No 1806 (64%) 524 (64%)

Chemotherapy 0.2
Yes 1862 (66%) 508 (64%)
No 942 (34%) 287 (36%)

Histological type 0.5
Epithelial neoplasms 56 (2.0%) 9 (1.1%)

Adenomas and adenocarcinomas 1435 (51%) 413 (52%)
Cystic, mucinous, and serous 130 (4.6%) 32 (4.0%)
Ductal and lobular neoplasms 1144 (41%) 332 (42%)
Complex epithelial neoplasms 39 (1.4%) 9 (1.1%)

Surgery 0.1
Local excision 5 (0.2%) 5 (0.6%)

Partial pancreatectomy 464 (17%) 118 (15%)
Local or partial pancreatectomy and duodenectomy 1882 (67%) 537 (68%)

Total pancreatectomy 79 (2.8%) 32 (4.0%)
Total pancreatectomy and subtotal gastrectomy or duodenectomy 221 (7.9%) 68 (8.6%)

Extended pancreatoduodenectomy 132 (4.7%) 33 (4.2%)
Pancreatectomy 21 (0.7%) 2 (0.3%)

AJCC stage >0.9
I 357 (13%) 103 (13%)
II 2185 (78%) 621 (78%)
III 102 (3.6%) 26 (3.3%)
IV 160 (5.7%) 45 (5.7%)

T stage 0.7
T1 204 (7.3%) 55 (6.9%)
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Table 1. Cont.

Characteristic Training Set
(n = 2804)

Test Set
(n = 795) p Value

T2 449 (16%) 115 (14%)
T3 2039 (73%) 594 (75%)
T4 112 (4.0%) 31 (3.9%)

N stage 0.1
N0 942 (34%) 294 (37%)
N1 1862 (66%) 501 (63%)

M stage >0.9
M0 2644 (94.3%) 750 (94.3%)
M1 160 (5.7%) 45 (5.7%)

Site 0.4
Pancreas Head 1969 (70%) 572 (72%)

Pancreas Body Tail 566 (20%) 158 (20%)
Other 269 (9.6%) 65 (8.2%)

Clinical grade 0.2
I 449 (16%) 108 (14%)
II 1315 (47%) 394 (50%)
III 985 (35%) 283 (36%)
IV 55 (2.0%) 10 (1.3%)

Tumor size (mm) 32 (25, 45) 32 (25, 42) 0.5
Examined lymph nodes 14 (9, 21) 14 (9, 21) 0.6
Positive lymph nodes 1 (0, 3) 1 (0, 4) 0.2
Positive lymph nodes rate (%) 0.10 (0.00, 0.25) 0.08 (0.00, 0.25) 0.2

Notes: AJCC: American Joint Committee on Cancer

3.2. The Development of Models

RSF model: Using the LASSO regression analysis, eight variables were selected for the
RSF model with the minimum criteria: age, histologic type, AJCC stage, T stage, N stage,
clinical stage, the number of positive lymph nodes, and the rate of positive lymph nodes.
The procedures for selecting variables were shown in Figure 2. Taking advantage of the
grid search, the optimal structure of the RSF model comprised 500 estimators, 10 minimum
of samples split, and 10 minimum of samples leaf.

Cox model: According to the univariable Cox regression analysis, the significant
variables contained age, chemotherapy, histological type, AJCC stage, surgery, T stage,
N stage, the primary site of the tumor, clinical grade, tumor size, the number of positive
lymph nodes, and the rate of positive lymph nodes. In the multivariable Cox regression
analysis, age, chemotherapy, AJCC stage, T stage, the primary site of the tumor, tumor size,
and the rate of positive lymph nodes were identified as prognostic factors for postoperative
pancreatic cancer. The details of the multivariable Cox regression analysis are shown in
Table S1.

Deepsurv model: After grid search, the backbone of the neural networks contains
three layers, and the nodes were 10, 5, and 5 from the top down (Figure S1). The details are
shown in the Deepsurv model section of the Supplementary Material (Figure S2).

3.3. The Evaluation and Interpretation of the Models

The models’ performance was checked in the test set. Models’ performance is shown
in Table 2. The Brier scores of all models were less than 0.25, which demonstrated their
good calibration. The RSF model outperformed other models as its highest C-index (0.723).
According to Figure 3, the DCA regarding the RSF model showed fair clinical net benefits
in 1, 3, and 5 years.
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Table 2. The models’ performance in the test set.

Model AUC Brier Score C-Index
1-Year 3-Year 5-Year 1-Year 3-Year 5-Year

RSF model 0.753 0.744 0.759 0.188 0.177 0.131 0.723
Cox model 0.736 0.737 0.76 0.193 0.181 0.132 0.670

Deepsurv model 0.744 0.742 0.749 0.202 0.175 0.122 0.700
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Figure 3. The decision analysis curves of RSF model. (A) The one-year decision analysis curve of RSF
model. (B) The three-year decision analysis curve of RSF model. (C) The five-year decision analysis
curve of RSF model. In the decision analysis curve, the x-axis represented the threshold probability
while the y-axis represented the clinical net benefits. The blue line in the DCA plot reflects the strategy
of “assume all patients have received the assessment of the RSF model”, while the horizontal black
line demonstrates the strategy of “assume no patient has received the assessment of the RSF model”.

Furthermore, the RSF model was interpreted visually. In the SHAP plot (Figure 4), the
variables in the model were listed in descending order of importance. The positive lymph
node rate was considered the most significant variable, followed by clinical grade, age,
the positive lymph nodes, histological type, etc. Meanwhile, the survival analysis of the
categorical risk variables is supplied in Figure S3.
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Figure 4. The SHAP plot of the RSF model. In the SHAP plot, the length of the horizontal axis where
each variable is located represents the variable’s contribution to the outcome. The color of the dot
symbolized the numerical value of the variable. For example, the variable (positive lymph node rate) is
the most significant risk factor. The higher the rate is, the higher the probability of poor prognosis is.

3.4. The RSF Risk Stratification of Patients

The stratification of the patients was of major importance for guiding patient manage-
ment. Patients were divided into the high-risk group (risk score > 157), medium-risk group
(123 ≤ risk score ≤ 157), and the low-risk group (risk score < 123) with the assistance of
X-tile (Table S2). The specific process was illustrated by the section of the optimal cut-off
values of RSF risk stratification proposed in the Supplementary Material. The results of
the Kaplan-Meier analysis and log-rank test between the high-risk group, medium-risk,
and low-risk group were presented in Figure 5, which demonstrated significant difference
between three groups. The medium survival time of different RSF stratifications are shown
in Tables 3 and 4. Meanwhile, as shown in Table 5, the RSF risk stratification demonstrated
better discrimination in 1, 3, and 5 years after the PC surgery by comparison with traditional
AJCC stage.
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Table 3. The medium survival time (months) of different risk stratifications in the training set.

RSF Risk Stratification Number Events Median 0.95 LCL 0.95 UCL

Low-risk 1332 644 73 63 85
Medium-risk 766 719 19 18 20

High-risk 706 686 10 9 11
Note: LCL: Low confidence interval, UCL: Up confidence interval.

Table 4. The medium survival time (months) of different risk stratifications in the test set.

RSF Risk Stratification Number Events Median 0.95 LCL 0.95 UCL

Low-risk 218 41 41 35 53
Medium-risk 156 20 20 17 21

High-risk 212 14 14 12 18
Note: LCL: Low confidence interval, UCL: Up confidence interval.

Table 5. The area under the curve of RSF risk stratification vs. AJCC Stage.

1-Year 3-Year 5-Year

RSF risk stratification 0.667 0.693 0.688
AJCC stage 0.568 0.603 0.622

p value <0.001 <0.001 0.012

3.5. The Individual Postoperative Prognostic Prediction

Three patients were chosen at random for the individual postoperative prognostic
prediction demonstration. Figure 6A shows the individual prediction survival fraction. The
local SHAP explained the prognosis of each patient from the point of variables’ contribution,
which are shown in Figure 6B–D.
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Figure 6. The individual postoperative prognostic prediction. (A). The estimated survival function of
patients. The green line symbolizes the patients A while the yellow line represents the patient B. The
blue line on behalf of the patient C. (B). The local SHAP plot of the patient #1. (C). The local SHAP
plot of the patient #2. (D). The local SHAP plot of the patient #3. The red ribbon in the local SHAP
plot represented the risk factors, which promoted the poor prognosis, whereas the blue ribbon was
the relatively protective factors.

Patient #1: 70 years male, AJCC stage was IV, T stage was III, N stage was N1, M stage
was M1. The clinical grade was II. The positive lymph nodes were 13. The positive lymph
nodes rate was 0.54. The CSS time was 10 months.
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Patient #2: 74 years female, AJCC stage was II, T stage was III, N stage was N0, M
stage was M0. The clinical grade was III. The positive lymph nodes were 0. The positive
lymph nodes rate was 0. The CSS time was 30 months.

Patient #3: 53 years male, AJCC stage was I, T stage was II, N stage was N0, M stage
was M0. The clinical grade was I. The positive lymph nodes were 0. The positive lymph
node rate was 0. The CSS time was 139 months.

The RSF model and the prediction tools are available in the website: https://github.
com/Lin725/RSF-model (accessed on 16 August 2022). It provides a quicker and more
intuitive way of predicting. Meanwhile, the clinical practitioners can furthermore optimize
our model in the future on the basis of the open-source codes.

4. Discussion

This study reported the postoperative prognostic model of PC using the SEER database
based on the RSF algorithm. The RSF model demonstrated better calibration and discrimi-
nation in predicting 1-, 3-, and 5-year CSS of postoperative PC patients than the models
by Cox regression and neural networks. Through the visual interpretation for the model,
the positive lymph node rate was identified as the most significant risk variable, followed
by clinical grade, age, and positive lymph nodes. Furthermore, the risk stratification and
individual postoperative prognostic prediction based on the RSF model showed potential
in the clinical practice.

The RSF algorithm, which was first proposed in 2008, has emerged as an intuitive tool
for predicting the prognosis [18]. Compared to the traditional Cox regression analysis, the
RSF algorithm tends to develop better performing models, particularly when processing the
high-dimensional data [19]. Meanwhile, due to the restriction of the proportional hazard
assumption, the application of Cox regression analysis was limited. However, there was no
such restriction in the RSF, benefiting from the non-parametric structure. Despite the fact
that the models developed by the neural networks always show impressive performance,
the characteristic of the “black box” remained an obstacle [20]. The RSF algorithm could
obtain the balance between the model fitting and the interpretation, as shown in this study.

The analysis of risk factors, which were identified in the RSF prediction model might
facilitate the surgery management and reduce the medical burden. The rate of positive
lymph nodes had a decisive influence on the patients’ outcome. With the increasing
rate of positive lymph nodes, the survival time of patients was reduced significantly.
Previous studies also noted the unfavorable impact of increasing rate of the positive
lymph nodes [16,21–23]. However, the impact of specific nodes rate on the outcome
was inconclusive.

The clinical grade described how abnormal the cancer cells and tissue look under a
microscope when compared to healthy cells. In our study, the high clinical grade led to the
poor prognosis of postoperative patients. The mechanism behind the phenomenon might
be due to the more remarkable aggression of the high clinical grade cell compared to the
low clinical grade cells. Yang et al. and Geer et al. also demonstrated that the prognosis of
PC with a higher clinical grade was less satisfactory [24,25].

We found the differences in histological types also reflected in the postoperative
prognosis, which were also referred to in prior study [26,27]. The epithelial neoplasms and
cystic, mucinous and serous neoplasms seemed to gain more benefits from the surgery
in our study. Pokrywa et al. also pointed that the median overall survival of the cystic
mucinous neoplasm was 52.6 months, while the ductal adenocarcinoma was only 20.2
months. However, the uneven distribution of histological types may lead to a biased
conclusion. In this study, the adenocarcinomas counted for 51%, while the cystic mucinous
neoplasm only counted for 4.6%. More information regarding the rare histological type
needs to be collected in the future to reach more solid conclusions.

The AJCC stage, consisting of the T stage, N stage, and M stage, was the basic tumor
staging method, which could make a rough assessment for patients’ prognosis [28]. The
median overall survival of stage I was 51 months, while it was 19 months in stage II, III,

https://github.com/Lin725/RSF-model
https://github.com/Lin725/RSF-model
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and IV in our study. The high AJCC stage was the sign of an unsatisfactory outcome.
Meanwhile, the T stage and N stage, which indicated the extent of tumor invasion and the
lymph node metastasis also significantly affected the patients’ outcome. Considering that
patients who had distant metastases usually did not undergo surgical treatment, M stage
was not significant in our model.

Notably, the elderly patients indicated a low survival rate. This phenomenon might
be related to the immune deficiency and physical deterioration of elderly patients [29]. For
the patients with the above-mentioned risk factors, the physicians should emphasis more
attention to their postoperative prognosis.

The RSF risk stratification could make assessment of the patient’s prognosis based
on the intraoperative situation. Compared to well-established score systems, such as
Heidelberg-Score, PANAMA-score, we incorporated a larger sample size for development
and validation (1071 patients for Heidelberg-Score, 216 patients for PANAMA-score, and
3988 patients for RSF risk stratification) [30,31]. The RSF risk stratification also made
innovations in the field of algorithm. However, due to the heterogeneity of the variables
incorporated in each score system, it was difficult for us to compare their performance fairly.
It was worthwhile to compare each score system in a large population in the feature. When
using the RSF risk stratification, physicians could evaluate the survival cycle of patients.
Meanwhile, physicians should pay more attention to the high-risk group (risk score > 157).
Because these patients had a median survival time of only 14 months. They were more likely
to suffer from early death. The individual postoperative prognostic prediction provided a
more specific view of patients’ prognosis. Compared to the nomogram, which had been
widely used as prognostic device in oncology and medicine, the RSF model provided a
more flexible approach to forecasting [32]. The disadvantage of the nomogram was that
it can only predict the survival situation at the exact point in time. The lack of intuition
regarding the impact of risk factors on individual outcomes was another shortcoming of the
nomogram, whereas the RSF model improved the form of prediction. With an individual
survival probability curve, patients’ postoperative prognosis was presented from a more
precise perspective. Additionally, the local SHAP plot visually explained the impact of risk
factors on individual survival outcomes. Our study attempted the new clinical prediction
application and assessed its feasibility.

Some limitations of this study should be referred to. First, the retrospective nature
of the study leads to potential selection bias. Second, the training set and the test set are
extracted from the same database, which may reduce the model’s generalizability. The
external test set with large patient numbers was required to future validate the model.
Third, due to the restriction of the SEER database, some possible variables, such as the
usage of drugs, genetic factors, etc., are not available. The incorporation of additional
potential variables may enhance the performance of the RSF model. Meanwhile, the lack of
further exploration of adjuvant therapies (adjuvant therapy and neoadjuvant therapy) is
also a shortcoming of our study.

5. Conclusions

Using the RSF algorithm, we developed the high-performance prediction model
regarding the postoperative prognosis of PC patients. Furthermore, we stratified the post-
operative populations and predicted the individual prognosis comprehensively with the
RSF model. We also provided physicians and patients with an easy-to-use prediction tool
for postoperative management and facilitate personalized medicine. Our study supports
that RSF algorithm shows promise in future clinical research and practice.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14194667/s1. Table S1. The results of the multivariable Cox regression
analysis; Table S2. The best cut-off values of the RSF risk stratification with X-tile; Figure S1. The structure
of the Deepsur model; Figure S2. The learning rate plot; Figure S3. The survival analysis of risk factors in
the RSF model.
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