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Deep neural networks have become the mainstream approach for analyzing and

interpreting histology images. In this study, we established and validated an interpretable

DNN model to assess endomyocardial biopsy (EMB) data of patients with myocardial

injury. Deep learning models were used to extract features and classify EMB

histopathological images of heart failure cases diagnosed with either ischemic

cardiomyopathy or idiopathic dilated cardiomyopathy and non-failing cases (organ

donors without a history of heart failure). We utilized the gradient-weighted class

activation mapping (Grad-CAM) technique to emphasize injured regions, providing an

entry point to assess the dominant morphology in the process of a comprehensive

evaluation. To visualize clustered regions of interest (ROI), we utilized uniform manifold

approximation and projection (UMAP) embedding for dimension reduction. We further

implemented a multi-model ensemble mechanism to improve the quantitative metric

(area under the receiver operating characteristic curve, AUC) to 0.985 and 0.992 on

ROI-level and case-level, respectively, outperforming the achievement of 0.971 ± 0.017

and 0.981 ± 0.020 based on the sub-models. Collectively, this new methodology

provides a robust and interpretive framework to explore local histopathological patterns,

facilitating the automatic and high-throughput quantification of cardiac EMB analysis.

Keywords: deep neural network (DNN), heart failure, endomyocardial biopsy, histopathology (HPE),

computer-aided diagnosis (CAD)

INTRODUCTION

Heart failure is amajor public health issue with a prevalence of over 23million worldwide (1). Along
with endomyocardial biopsy (EMB), non-invasive imaging methods such as an echocardiogram
and magnetic resonance imaging (MRI) are the most common tools for diagnosing myocarditis,
heart transplant rejection, and chemotherapy-induced injury (2, 3). EMB is a useful but invasive
modality for making a definite diagnosis in diseases that are often difficult to diagnose by imaging
modality alone. However, current grading methods in assessing histological patterns of myocardial
injury are labor-intensive, error-prone, and suffer from a high inter-rater variability (4). Thus, a
robust and reproducible method for the quantitative analysis of EMB is urgently needed.

Machine learning methods have been an integral part of biomedical research (5, 6) and clinical
work (7, 8), having the great potential to overcome the intra- and inter-observer variability (9, 10)
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and to improve diagnostic accuracy and efficiency (11). These
computational models are based on algorithms that can extract
features from clinical data (12). Compared to traditional
machine learning methods that rely on expert knowledge
to transform raw image data into features (e.g., texture,
statistics, and wavelet transform coefficients) (13, 14), deep
neural networks (DNN) can achieve better accuracy without
defining features explicitly. In the field of cardiovascular
diseases, deep learning has been widely implemented for
image classification and segmentation in multiple modalities,
including echocardiography, coronary artery calcium scoring,
coronary computed tomography angiography, single-photon
emission computed tomography, positron emission tomography,
magnetic resonance imaging, and optical coherence tomography
(8, 15–17).

Histopathological image analysis remains the gold standard
for diagnosing many diseases. DNN has been proven to be a
powerful approach in the analysis of histopathological images
of tumor specimens; DNN can predict tumor metastasis (11)
and has been shown to be useful for tumor grading (18) and
tumor microenvironment analysis (19). While some researchers
reported the implementation of DNN into EMB images, the
interpretability of DNN output remains challenging.

This study established and validated an interpretable DNN
model to assess EMB data of patients with myocardial injury. To
extract and classify representative features of myocardial injury
on local histological patterns, we adapted a well-established
VGG-19 model (20). We then applied the other two methods,
gradient-weighted class activation mapping (Grad-CAM) (21)
and uniform manifold approximation and projection (UMAP)
embedding method (22), to elucidate the model outputs and
visualize the intermediate features made by the VGG-19 model.
Moreover, we introduced a novel multi-model ensemble strategy
to minimize the intra- and inter-observer variability of random
dataset partition. Collectively, our method enables automatic
quantification of EMB images related to cardiomyopathy,
creating a series of visualizable archives for efficient and accurate
pathological inspection and providing new insight into cardiac
image analysis enhanced by machine learning.

MATERIALS AND METHODS

Data Collection
We used a publicly available dataset provided in a previous study
for DNN model development and evaluation (23). Hematoxylin
and eosin (H&E) stained EMB tissue samples were collected
from left ventricles of 209 patients registered at the University
of Pennsylvania, including 94 end-stage heart failure cases
diagnosed with either ischemic cardiomyopathy (n = 51) or
idiopathic dilated cardiomyopathy (n = 43), and 115 non-
failure cases (23). The non-failure cases were organ donors
without a history of heart failure; the hearts were not used for
transplantation. Each case included 11 random ROIs within the
myocardium, corresponding to 11 specific areas of 50× 50 µm2,
i.e., 250× 250 pixels.

In machine learning, a dataset is usually divided as a training
set, validation set, and held-out test set, used for model training,

TABLE 1 | Number of cases used in the model development and validation.

Subset partition Non-failure Failure

Individual model (Development set) Training 38 32

Validation 19 15

Multi-model ensemble (Development set) Fold-1 12 10

Fold-2 12 10

Fold-3 11 9

Fold-4 11 9

Fold-5 11 9

Held-out test set 58 47

Each case includes 11 regions of interest (ROIs).

model tuning, and evaluation, respectively. In this study, the
aforementioned dataset was divided on case-level into the
development set (104 cases, corresponding to 1144 ROIs) for
training and validation or multi-model ensemble, and the held-
out test set (105 cases, corresponding to 1155 ROIs), removing
the crosstalk between development and test sets.

A single model was trained on the well-established
development set (23), including 70 cases (770 ROIs) for
training and 34 cases (374 ROIs) for validation (Table 1). We
further employed a multi-model ensemble mechanism using
the five-fold-based cross-validation (see Cross-validation for

multi-model ensemble), where 10 models were trained and
integrated to improve accuracy.

Deep Neural Network for Myocardium
Assessment
We used VGG-19 network (20) to analyze EMB images. VGG-
19 network has been widely used in computational pathology
(24, 25). The first part of the model was composed of 16
convolutional layers and five max-pooling layers as the feature
extractor. The rest of the model was composed of a global average
pooling (GAP) layer and a classification layer with two nodes
(Figure 1A). In comparison to the original VGG-19 network,
our model is light-weighted and compatible with other parts
of our framework (see Regional and feature interpretability).
In our classification task, an input image was processed by all
the layers and turned into a probability distribution (pF or pN)
among all the classes in the output layer (Figure 1A). From
an overall view, the model receives input image of shape 224
(width) × 224 (height) × 3 (channels), and outputs a Bernoulli
distribution, where the pF activation gives the possibility that
the input image is acquired from a heart failure patient. The
entire model can be automatically optimized by minimizing the
discrepancy between the network activation and desired output
for end-to-end training.

Regional and Feature Interpretability
We employed the Grad-CAM method (21) to highlight the
potentially injured regions projected for interpretation and
implemented the UMAP embedding to visualize inter-sample
similarity generated by our VGG-19 model.
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FIGURE 1 | Framework of the interpretable VGG-19 model with Grad-CAM and UMAP embedding for heart failure detection. (A) A schematic diagram highlights the

basic pipeline from the myocardial section to digital prediction. The feature extractor of this single VGG-19 network includes 16 convolutional layers and 5

max-pooling layers, and the classifier is composed of a global average pooling (GAP) layer and a classification layer. This model is trained to discriminate failure and

non-failure regions of interest (ROIs) without explicit pathological patterns. dim, dimension. (B) Grad-CAM generates attention maps for failure and non-failure cases,

following the convolution and rectified linear unit (ReLU). (C) UMAP in the deep feature space converts 512-dimension features to 2-dimension visualization,

elucidating the model outputs and intermediate features made by the VGG-19 model. (D) The 10-model ensembling is generated by a 5-fold cross-validation manner,

and each fold is used for sub-model validation four times.

The 7 × 7 × 512 tensor was obtained from the feature
extractor conveys abstract semantic information to the Grad-
CAM to generate an attention map (Figure 1B) and UMAP to
reduce the dimension (Figure 1C). We defined the output tensor
from the last pooling layer in the VGG-19 model as F, and the
predicted failure probability as pF . Grad-CAM calculated the

gradient as G =
∂pF
∂F , followed by a global-average pooling as a

convolutional kernel w. Given an input size of 224× 224× 3, the
output size of F,G, andwwere 7× 7× 512, 7× 7× 512, and 1×
1 × 512, respectively. The final attention map (A) is determined
as follows:

A = ReLU(F ⊗ w),

where ⊗ represents convolutional operation, and ReLU is
defined as:

ReLU(x) = x if x > 0 else 0.

The attention map highlights the regions in an input image that
are mostly responsible for prediction. Thus, it provides a way to
interpret the decision made by the deep neural network.

In addition to the region-based interpretation, we utilized the
UMAP embedding technique to reveal the discrepancy between
failing samples and non-failing samples in the feature space. We
gathered deep features immediately before the final classification
layer. Each input image corresponds to a deep feature vector
with a length of 512. Next, we calculated the pair-wise Euclidean
distances among all the ROIs, and the distance matrix was
processed by UMAP (22), resulting in a 2-D embedding for
each ROI. The embedding could be visualized as a scatter plot
(Figure 1C), reflecting the spatial relationships among samples.

Cross-Validation for Multi-Model Ensemble
Cross-validation is widely used to evaluate the performance of
machine learning models reliably in small datasets. The dataset
is generally partitioned to K portions, where each portion is
known as a “fold.” Based on the partition, we usually use
arbitrary m = K − 1 portions to train a model and evaluate
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FIGURE 2 | The flowchart of the study.

its performance on the rest of one portion. For this reason,
we further introduced this multi-model ensemble mechanism
based on cross-validation to mimic multiple human experts for
consultation in pathology and minimize the randomity caused
by dataset partition. We partitioned the development set into
K = 5 subsets on case-level (Table 1) and used m = 3 out of
K = 5 subsets to train a sub-model and the rest for validation at
each time. All the Cm

K = 10 models were independently trained
with the identical protocol above. This allowed us to generate
CK−m−1
K−1 = 4 independent predictions to validate the training

process prior to the model deployment on the held-out test set
(Figure 1D). The final decision from the multi-model ensemble
relied on the averaging results to eliminate the discrepancy
among individual models. The whole strategy of the multi-model
ensemble mechanism is similar to the pathology consultation
in which experience and knowledge vary from different experts,
providing a comprehensive insight into ambiguous cases.

EXPERIMENTS AND RESULTS

The study flowchart is shown in Figure 2. Given the study
cohort, image samples, and partitioned datasets, both individual
model and multi-model ensemble were trained and evaluated for
clinical heart failure detection. Furthermore, we integratedmodel
interpretation techniques, including Grad-CAM-based regional
visualization and UMAP-based feature space visualization, to
generate positive predictions for specific local histological
patterns such as fibrous infiltration and the enlarged myocardial
cell nuclei.

Training and Validation of an Individual
Model
We established an individual VGG-19 model on 770 training
ROIs from 38 non-failure and 32 failure cases. The model was
validated using 19 non-failure and 15 failure cases in 100 epochs
(Table 1). The model was initialized with parameters pre-trained

on ImageNet (20). The trainable parameters were then optimized
by anAdamoptimizer (26) (with a constant learning rate of 10−4)
to minimize cross-entropy loss:

L =
1

|C|

∑
c∈C

− yc log(ŷc),

where C is the label set of the dataset, yc ∈ {0, 1} is the one-hot
encoded label of a sample, and ŷc is the corresponding prediction
obtained from the output layer of the network. In response to
appearance variation among numerous ROIs, we adopted data
augmentation techniques, including random 224-pixel cropping,
horizontal and vertical flipping, and stain augmentation (27) in
the training process. Both training and validation losses were
calculated and recorded at the end of each training period. The
optimal network parameters with the lowest validation loss were
retrieved for the assessment on the held-out test set (Figure 3A).

The confusion matrix on the ROI level showed 588 and
481 correct classifications in 638 non-failure and 517 failure
cases, respectively (Figure 3B). We further used the proportion
of positive predictions of heart failure among 11 ROIs in each
patient as the aggregated risk score on the case level, achieving 53
and 46 correct classifications out of 58 non-failure and 47 failure
cases, respectively. The AUC values were 0.971 and 0.978 on the
ROI- and case-level, respectively.

Grad-CAM-Based Local Visualization
We implemented the Grad-CAM to map the positive
confidence to corresponding locations in the raw EMB
images, demonstrating that the predictive capability of the
VGG-19 model is correlated with dominant morphology such
as enlarged nuclei (Figures 4A,B), inflammatory infiltration
(Figure 4C), and perinuclear vacuolation (Figure 4D). All the
morphologies above were labeled as high attention (arrows
in the top panel and corresponding regions in the bottom) in
contrast to the medium or low attention in surroundings. The
results implied that this deep model could recognize specific
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FIGURE 3 | The training process and performance of a single VGG-19 model. (A) Training (in blue) and validation (in orange) losses. (B) The confusion matrices and

ROC curves are shown on the ROI-level (top) and case-level (bottom), respectively. N, non-failure; F, failure; ROC, receiver operating characteristic; AUC, area under

ROC curve; FPR, false positive rate; TPR, true positive rate.

morphological patterns in the local area on the ROI. The
Grad-CAM provided a straightforward visualization method to
interpret the complicated features from the DNNmodel, guiding
us to concentrate on delicate inspection in high attention regions.
We further highlighted that Grad-CAM automatically generated
attention maps in accordance with pathologies, indicating that
this model learned a certain level of pathological knowledge
bypassing explicitly defined pathological patterns. Collectively,
the attention map visualization improved the creditability and
interpretability of the deep models.

UMAP Embedding-Based Global Feature
Space Visualization
The UMAP embedding method reduced the dimensionality of
the intermediate tensor at the end of the feature extractor in
the VGG-19 model, following a GAP layer. We converted all
images in the development set and the held-out test set to 512
× 1 column vectors and used the UMAPmethod to generate 2-D
embeddings of all the images. The failure and non-failure samples
were mixed together and could not be divided if processed
by dimension reduction in the feature space of the original
VGG-19model (Figure 5A). In comparison, our retrainedmodel
generated a clear boundary between two groups showing regular
distribution in the deep feature space (Figure 5B). This suggests
that the feature extractor is effectively re-modulated in the heart
failure detection task.

We further projected all ROIs to the corresponding
coordinates in the UMAP space, providing an intuitive
distribution of non-failure (in green) and failure (in pink) images
(Figure 5C). Compared to the failure group, the non-failure

images were correlated with densely arranged myocardium
cells. Our results indicated that the VGG-19 model was still
sensitive to specific applications, and retraining was mandatory
to improve the generalization capability.

Multi-Model Ensemble
In addition to the individual model, we employed the
multi-model ensemble to mimic multiple human experts for
consultation, and each sub-model served as an expert with
different background. This method allowed us to verify the
predictions made by different models trained on different
datasets (Table 1). We divided 104 cases in the development set
into five portions to generate 10 independent sub-models, and
each portion was used for validation (in orange) four times in the
development (Figure 1D). Thus, each case included 11× 4 grids
in Figure 6A. We further implemented these 10 sub-models into
the held-out test set (Figure 6B), generating 11 × 10 grids for
each case to assess the injured regions on 11 ROIs (Figure 6C).
We mapped out the integrative reports of all 209 cases in
Figure 6, accentuating the individual prediction of each ROI in
each case from all available models. In both development and test
sets, most non-failure cases had low failure risk predictions (in
green) and vice versa (in red). Besides the predicted likelihood of
being a failure, ourmodel could simultaneously generatemultiple
attention maps, providing more intuitive evidence for further
predictive decisions on ambiguous cases (Figure 6D).

We averaged corresponding likelihood scores to quantify the
prediction on the ROI- and case-level. In comparison with the
results of the individual model (Figure 3B), the multi-model
ensemble performed 604 and 483 correct classifications on the
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FIGURE 4 | Grad-CAM generates attention maps to visualize the dominant morphology on endomyocardial biopsy (EMB) images. The attention maps are visualized

as overlaid heatmaps on top of the H&E stained histopathological images. All suspected injured regions, including (A,B) enlarged nuclei, (C) inflammatory infiltration,

and (D) perinuclear vacuolation, are indicated by arrows in the top panel or labeled as high attention in red in the bottom, whereas the other regions with low attention

are in green. Scale bars: 10µm.

FIGURE 5 | UMAP embeddings of the deep features obtained from VGG-19 networks. All the images are processed by the feature extractor, resulting in features of

length 512. These features are then reduced to 2-dimension (2-D) via UMAP (red for failure label, green for non-failure label) for the characterization of spatial

relationships on the ROI-level. The 2-D UMAP embeddings are given for pretrained VGG (A) and retrained VGG models (B). (C) Corresponding EMB images are

projected onto the UMAP coordinates for the sake of visualization. For better visual effect, 20% of samples are randomly selected. Representative examples are

shown in the bottom, where the first two (a,b) are failure samples, and the others (c,d) are non-failure samples.
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FIGURE 6 | Predictions of the multi-model ensemble. The failure probability predicted for each ROI of each case in the (A) development and (B) held-out test sets is

mapped out. The low and high likelihood of being failure are represented in green and red, respectively. (C) An example case from the held-out test set is used to

demonstrate the multi-model ensemble. Each block composed of 11 × 10 grids represents a single case, corresponding to the outputs from 10 sub-models applied

on 11 ROIs. Each sub-model independently generates a prediction on each ROI, and all 11 × 10 outputs are ensembled to reflect the discrepancy among all

sub-models. (D) Representative attention maps are generated by 10 sub-models independently on the same ROI, providing the failure probabilities and dominant

morphology in the process of a comprehensive evaluation. Image size: 50 × 50 µm2.

ROI-level, and detected 56 true non-failure and 46 true failure
cases on the case-level (Figure 7). The AUC values of the
ensemble model were 0.985 and 0.992 on the ROI- and case-level,
respectively, exceeding the average of the 10 sub-models [AUC=

0.971 ± 0.017 and 0.981 ± 0.020 (mean ± standard deviation),
respectively], and the AUC values achieved by random forest
(AUC = 0.933 and 0.952), and two pathologists (AUC = 0.75,
0.73, on case-level) (23). The quantitative results demonstrated
that ourmulti-model ensemble reduced themisclassification rate,
especially on the non-failure cases, and improved the AUC values
on both ROI- and case-levels, suggesting its ability to serve as a
great complimentary tool to assist clinical diagnosis.

DISCUSSIONS

While the clinical diagnosis of heart failure relies on ejection
fraction and serum biomarker, EMB is always a useful method
for making a definite diagnosis in diseases that are difficult to
diagnose by imaging modality alone. Computational pathology
techniques based on the deep learning method can reduce
the workload on pathologists, particularly for regions that
have shortages in access to pathological diagnosis services.
Nevertheless, the interpretability issue affects people’s trust in
deep learning systems. This study established and validated
an interpretable DNN model to assess EMB histopathology in
response to myocardial injury.

We demonstrated that the well-trained VGG-19 network
could distinguish heart failure cases from the non-failure ones
using local ROIs selected on whole-slide images. Different from
traditional methods that rely on explicit pathological patterns
such as cell types (28) or morphological features (29), our model
was trained with failure or non-failure label solely. However,
the attention maps generated by Grad-CAM were well-localized
with representative morphologies such as enlarged nuclei and
irregular shapes of cells, indicating that the extracted features
from our model pertain to a certain level of pathological
knowledge. Combined with Grad-CAM and UMAP embedding
methods, we further provided an intuitive visualization of the
local and global feature patterns of all EMB images learned by
the VGG-19 model. Unlike other applications in cancer (24,
30–32), the implementation of this new model in myocardial
injury reveals ill-defined histopathological patterns in local
regions, providing a guideline and attention maps for well-
trained pathologists. Therefore, integrating VGG-19 with Grad-
CAM and UMAP embedding methods provides an interpretive
DNNmodel for more accurate histopathological analyses.

Our method can be used to obtain the predictive results of
each ROI from all ensembled sub-models, leading to an intuitive
illustration of the discrepancy among individual sub-models
(Figure 8, corresponding to representative results in Figure 6).
In this study, we emphasized two types of disagreements among
sub-models: (1) a significantly different prediction generated by
a sub-model (Figures 8A–E, corresponding to A–E in Figure 6),
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and (2) in distinguishing false positive or false negative results
(Figures 8F–J, corresponding to F–J in Figure 6). The former
disagreement is due to the varied staining appearance of specific
cases (Figures 8A–E), resulting in an incomprehensive training
dataset. Specifically, the data distribution should be inspected
prior to model development in response to negative effects
introduced by the domain shift (33). The cross-validation
protocol employed in this study provides a way to observe such

FIGURE 7 | Confusion matrices and ROC curves of the multi-model

ensemble. The ROI-level and case-level results are reported at the top and

bottom, respectively. The ROC curve and AUC value of the 10-model

ensemble (in dark blue) are compared with the ones of individual sub-models

(in light blue). N, non-failure; F, failure; ROC, receiver operating characteristic;

AUC, area under ROC curve; FPR, false positive rate; TPR, true positive rate.

effects in the training dataset. The latter type of disagreement
(Figures 8F–J) pertains to transitional predictions, an ambiguous
case-related false-positive or false-negative result. In some cases,
with the label of “non-failure” (e.g., Figures 8K,L, corresponding
to K and L in Figure 6), a few ROIs receive high-risk scores.
While the case-level predictions match the ground truth, such
circumstance indicates that the case may exhibit severe local
injury. To address this issue, we will gather more representative
samples, investigate the whole-slide image instead of some
specific ROIs, and incorporate other supplementary approaches
such as immunohistochemistry staining and polymerase chain
reaction (PCR)-based analysis for a comprehensive assessment.

DNN has been proved as a generalizable tool in assisting
cardiovascular disease diagnosis, for example, evaluating cardiac
allograft rejection by analyzing histopathological or multiplex
immunofluorescence images (4, 34). DNN has also led to
breakthroughs in other imaging modalities for cardiovascular
diagnosis or research, such as echocardiography, coronary artery
calcium scoring, coronary computed tomography angiography,
light-sheet microscopy, light-field imaging, etc. (17, 35, 36).
Numerous applications such as quantification of receptor
status (37), estimation of Ki-67 index (38), or implementation
into Ziehl-Neelsen staining (39) and Masson’s Trichrome
(40) are potentially feasible in cardiovascular studies as well.
Besides generic image classification and segmentation, DNN has
demonstrated its viability to synthesize pseudo H&E images
from Raman spectroscopy and other multi-modality non-
linear imaging techniques, augmenting non-invasive and in vivo
diagnosis (41). Collectively, the proposed framework provides
a general pipeline for most of modalities and applications,
improving the reliability and credibility of deep learningmethods
in cardiovascular diagnosis and research.

As a data-driven model, an unbiased and comprehensive
training dataset is always preferred in an ideal condition.
Our current model can be improved from the following
aspects. First, the model was trained supervisory with a case-
level label (belonging to failure or non-failure group). While

FIGURE 8 | Examples of misclassified cases. Representative ROIs are used as examples to demonstrate two types of misclassification marked in Figure 6. (A–E)

Weak staining; (F–I) false-positive cases; (J) false-negative cases; (K,L) critical cases are correctly classified but confirmed to exhibit severe local injury and receive

high-risk scores. Scale bars: 10µm.
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the high attention regions are correlated with pathological
patterns, these patterns are not explicitly defined and cannot
be quantified by DNNs. We will further introduce additional
labels to characterize specific pathological patterns, for example,
infiltrated inflammation and myocardial necrosis (12). Second,
our data were provided by a single institute. We plan to include
more diverse data sources to address the issues of varying data
quality, processing protocol, and the equipment used for sample
preparation (42). A more robust model covering the sample
diversity may further advance future clinical investigations.

CONCLUSION

In this study, we integrated the VGG-19 network with Grad-
CAM, UMAP, and multi-model ensemble methods for assessing
EMB images from heart failure cases, providing an interpretive
classification with high efficiency and accuracy. Three strategies,
including the attention maps produced by Grad-CAM, the deep
feature visualization via UMAP embedding, and multi-model
ensemble, facilitated the interpretability of this VGG-19 model
and clarified the dominant morphologies of injured regions on
EMB images. Both individual model and multi-model ensemble
indicated that DNN-aided diagnosis had great potential to
recognize cardiomyopathy. Overall, our method established the
basis for quantitative computation and intuitive interpretation of
EMB images that can advance the applications of deep learning
models in cardiac research.
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