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Abstract

Background: Accurate HLA typing at amino acid level (four-digit resolution) is critical in hematopoietic and organ
transplantations, pathogenesis studies of autoimmune and infectious diseases, as well as the development of
immunoncology therapies. With the rapid adoption of genome-wide sequencing in biomedical research, HLA
typing based on transcriptome and whole exome/genome sequencing data becomes increasingly attractive due to
its high throughput and convenience. However, unlike targeted amplicon sequencing, genome-wide sequencing
often employs a reduced read length and coverage that impose great challenges in resolving the highly homologous
HLA alleles. Though several algorithms exist and have been applied to four-digit typing, some deliver low to moderate
accuracies, some output ambiguous predictions. Moreover, few methods suit diverse read lengths and depths, and
both RNA and DNA sequencing inputs. New algorithms are therefore needed to leverage the accuracy and flexibility of
HLA typing at high resolution using genome-wide sequencing data.

Results: We have developed a new algorithm named PHLAT to discover the most probable pair of HLA alleles at four-
digit resolution or higher, via a unique integration of a candidate allele selection and a likelihood scoring. Over a
comprehensive set of benchmarking data (a total of 768 HLA alleles) from both RNA and DNA sequencing and with a
broad range of read lengths and coverage, PHLAT consistently achieves a high accuracy at four-digit (92%-95%) and
two-digit resolutions (96%-99%), outcompeting most of the existing methods. It also supports targeted amplicon
sequencing data from Illumina Miseq.

Conclusions: PHLAT significantly leverages the accuracy and flexibility of high resolution HLA typing based on
genome-wide sequencing data. It may benefit both basic and applied research in immunology and related fields as
well as numerous clinical applications.

Keywords: HLA typing, Transcriptome sequencing, Exome sequencing, Whole genome sequencing, Hematopoietic
transplantation, Autoimmune disease, Immunoncology, Human genetics

Background
Human Leukocyte Antigen (HLA) molecules, encoded
by a dense cluster of genes located on chromosome
6p21.3, present antigen peptides to lymphocytes and me-
diate key immunological events including self-antigen
tolerance and immune responses to pathogens or tu-
mors [1-3]. HLA molecules can be classified by function.
Class I HLAs express ubiquitously and present cytosolic
antigens to cytotoxic T cells, whereas class II HLAs
mainly express in immune cells and present extracellular
antigens that stimulate T helper cells and subsequently
antibody-producing B cells.

HLA loci are highly polymorphic. Polymorphisms in
the HLA loci often result in differences in the amino
acid sequences of HLA proteins. This HLA diversity al-
lows a wide range of different antigens to be presented
to immune cells within a population. However, these
variations in HLA sequence also result in histoincompat-
ibility of organs and tissues between individuals, greatly
complicating surgical transplantation of organs and tis-
sues. The risk of graft-versus-host disease and organ or
tissue rejection can be minimized if the alleles present at
the HLA loci of a perspective donor and recipient en-
code matching HLA proteins, to the extent possible
[4,5]. In order to determine whether there is a match, it
is necessary to determine what HLA alleles are present
at each of the HLA loci in the donor and recipient, a
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process known as HLA typing. An individual’s HLA type
at an HLA locus is made up of the two HLA alleles (or
two copies of a single HLA allele if homozygous) present
at the individual’s two copies of the HLA locus.
HLA types are also increasingly recognized as a factor

that plays a significant role in numerous diseases. For in-
stance, there are strong associations between specific
HLA types and autoimmune disorders, including lupus,
inflammatory bowel diseases, multiple sclerosis, arthritis
and type I diabetes [6-11]. As one example, class II HLA-
DQA1*02:01(DQ2) and HLA-DRB1*03:01(DR3) are fre-
quently present in systemic lupus erythematosus patients
and significantly associated with the disease susceptibility
[6]. Presence of other class II HLA proteins also correlates
with either the resistance or susceptibility to breast and
cervical cancers [12,13]. In cancer immunotherapy and
vaccination, activation of the cytotoxic T lymphocytes re-
quires the well-fitting interaction between class I HLA
molecules and the epitopes. Knowing the correct HLA
types is therefore critical to the success of these immu-
noncology therapies [14,15].
The pathological and therapeutic indications of HLA

molecules highlight the need for accurate and efficient
methods of HLA typing. HLAs have been resolved at
low resolution by distinguishing two-digit antigen groups
that approximate serologic specificities in peptide binding
(e.g. HLA-A*02). However, for many applications, two-
digit HLA typing is insufficient. Increasing evidences sug-
gest that T cells can recognize both a peptide and its bind-
ing HLA as a whole [16]. Different HLA proteins, even if
they present the same antigen peptide, can lead to allogen-
eic responses. For example, a single amino acid difference
between two HLA proteins of the same antigen group
(two-digit type) can result in altered T-cell recognition
specificity and allograft rejection [16-18]. Consequently,
high resolution HLA typing at the amino acid level can be
critical (also known as four-digit typing, e.g. HLA-
A*02:01). For example, resolving HLAs at high resolution
substantially improves the clinical outcome in unrelated
cord blood transplantation and in cancer vaccination trials
[15,19]. In addition, amino acid variations may lead to di-
verse functional perturbations. HLA proteins of the same
two-digit type can express at either normal or abrogated
levels, impose either predisposing or protective effects in
disease, or place different immune selection pressures
[20,21]. These differences can only be elucidated via high
resolution HLA typing.
The highly polymorphic nature of HLA genes renders

accurate, high-resolution typing a considerable chal-
lenge, particularly at high throughput. More than 7500
four-digit class I and II HLA alleles are present at the
major class I and class II HLA loci in the human popula-
tion, as documented by the international ImMunoGene-
Tics project (IMGT) database [22]. Existing HLA typing

methodologies capable of resolving HLA types at four-
digit or higher resolution, such as group-specific poly-
merase chain reaction (PCR) by sequencing specific prim-
ing (SSP) and sequence-based typing (SBT), have low
throughput [23,24]. Recently, high-throughput typing pro-
tocols are established to specifically target the HLA loci
via PCR-amplification, followed by deep sequencing
[25-27]. Such targeted amplicon methods yield long reads
(a few hundred of bases) and a high coverage, allowing ac-
curate (>90% accuracy) assignment of four-digit HLA
alleles. Nevertheless, due to cost and efficiency consider-
ations, genome-wide sequencing, such as transcriptome
or whole exome/genome sequencing, generally produce
much shorter reads (less than 100 bases) and lower cover-
age. The reduced read length and coverage limit the ac-
curacy of methodologies that attempt to use genome-wide
sequencing data for HLA typing. For instance, the four-
digit HLA type identification from short reads below 100
bp has been reported to be between 32% and 84% [28,29].
Although genome-wide sequencing data are suboptimal
for HLA typing, the data availability increases explosively
in both fundamental research and clinical practice. It will
be beneficial to uncover HLA genotypes from such re-
sources to enrich the data interpretation, screen immuno-
genetic risks or stratify patients for vaccination.
Current algorithms to identify HLA types from genome-

wide data follow two major directions. One is to assemble
reads into contigs and report the alleles or allele pairs best
matching the contig sequences [30,31]. The other is to
map the reads against a collection of allele sequences and
predict true alleles based on the number, quality and se-
quence consistency of the reads aligned to them [28-30,32].
The assembly approaches are error-prone with short reads
or versatile coverage and are computationally costly. The
mapping approaches are more flexible with read length,
yet often face ambiguous read alignments against the
highly homologous HLA alleles. Consequently the four-
digit allele identification remains challenging. For ex-
ample, seq2HLA only identifies 32% of the four-digit HLA
types correctly using short read transcriptome data [28].
The four-digit accuracy of HLAforest is enhanced but
stays moderate in most of its applications (~85%) [29].
HLAminer offers a contig assembly option that yields a
seemingly high four-digit sensitivity (90%-92%) when ap-
plied to several datasets of ~100 bp reads [30]. However,
the ambiguity in HLAminer predictions is substantial.
Reporting more than two alleles per HLA locus (some-
times >20 alleles) occurs over half of the time, leaving the
true HLA types essentially unresolved. Another assembly-
based method ALTHLATES is designed mainly for exome
sequencing but not transcriptome sequencing. Its applica-
tion on reads shorter than 100 bp is unclear. It also func-
tions only if specific coverage requirements are met [31].
Overall, there is a lack of methods to accurately identify
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four-digit types over diverse read lengths and depths, and
suit both RNA and DNA sequencing inputs.
We here present a new algorithm named PHLAT (Pre-

cise HLA Typing) that improves substantially the four-
digit typing accuracy using genome-wide RNA or DNA
sequencing data and with various read lengths and
depths. The key strategy is a read-mapping based selec-
tion of candidate alleles followed by a likelihood based
ranking over all pair-wise combinations of the selected
alleles. The final result is the most probable pair of al-
leles given the observed data at each locus. The candi-
date allele selection serves as a filter to clean up many
false alleles and the error-prone reads associated with
them. The likelihood scores consider the sequence
agreement between the observed reads and the alleles at
individual single nucleotide polymorphism (SNP) sites
(referred as genotype), the sequence consistency across
SNPs (referred as phase), as well as the known preva-
lence of the alleles. Similar likelihood scores were ap-
plied earlier to HLA typing using targeted amplicons
and 454 sequencing [26]. Nevertheless, they have not
been tested in genome-wide sequencing data. Moreover,
the integration of the allele selection and the likelihood
scoring in PHLAT is unique. This strategy effectively
boosts the four-digit precision. We have observed con-
sistently a leading performance of PHLAT, compared to
most of the existing methods, throughout a comprehen-
sive set of benchmarking data. PHLAT achieves 92%-
95% four-digit accuracy with both RNA and DNA se-
quencing and over diverse read lengths and depths.
PHLAT is also applicable to targeted amplicon data ob-
tained by Illumina Miseq.
In the following sections, we describe the PHLAT al-

gorithm and benchmark its performance together with
most of the existing methods. We further systematically
explore the applicability of PHLAT with respect to the
read length, coverage and sequencing protocols. The po-
tential extensions and future improvements of the algo-
rithm are also discussed. With the high performance
and flexibility, we believe that PHLAT can help bridge
the fast growing sequencing data and the high resolution
HLA typing. Eventually it may facilitate understandings
of the HLA loci in fundamental biology and in diseases,
and aid numerous clinical applications including genetic
risk screening, transplant donor-recipient matching and
personalized vaccines.

Methods
Overview of benchmarking datasets
We have applied multiple public genome-wide sequen-
cing datasets and one in-house targeted amplicon se-
quencing dataset to benchmark the performance of
PHLAT. The results are also compared with those of the
previous methods. For each dataset, we executed some

published methods locally if their original publications
did not report the corresponding predictions. All results
and associated running parameters are documented in
Additional file 1: Table S1, Additional file 2: Table S2,
Additional file 3: Table S3, Additional file 4: Table S4,
Additional file 5: Table S5, Additional file 6: Table S6,
Additional file 7: Table S7 and Additional file 8: Table S8.

HapMap RNAseq dataset
The HapMap transcriptome profiling data of lympho-
blastoids using paired-end short reads (2×37 bp) is ob-
tained from EMBL European Bioinformatics Institute
(EBI) database (study accession ERP000101). It includes
sixty Utah residents with ancestry from Northern and
Western Europe (CEU) in the HapMap project [33].
Fifty of these samples have been genotyped at major
class I and II HLA loci at four-digit resolution initially
by de Bakker et al. and subsequently validated by differ-
ent investigators [26,34]. Given the large sample size and
the well-established genotypes for both class I and II
HLAs, this dataset is ideal for benchmarking the per-
formance of HLA prediction algorithms. One sample
(run accession ERR009139) is excluded due to an abnor-
mally low rate of reads that can be mapped to human
genome (~19%). The remaining forty-nine subjects are
used for analysis and comparisons in this work (Additional
file 1: Table S1).

GEUVADIS RNAseq dataset
The new RNAseq data of a massive collection of samples
over 5 populations were released by Lappalainen et al. in
2013 [35] as part of the GEUVADIS project (Genetic
European Variation in Health and Disease, A European
Medical Sequencing Consortium). The study employed
longer sequence reads of 2×76 bp, compared to the ori-
ginal HapMap RNAseq. Such a read length is more
prevalent than 37 bp in current RNAseq studies such as
the Illumina Human Body Map 2.0 Project and the
Genotype-Tissue Expression (GTEx) project [36,37]. The
sequencing coverage and data quality also hold at a high
standard. We therefore include it as a more up-to-date
transcriptome sequencing data source. We have selected
46 CEU subjects from the new study whose HLA types
are available in de Bakker et al. [34]. The data is down-
loaded from EBI under study accession of ERP001942
(Additional file 2: Table S2).

Colorectal cancer (CRC) transcriptome sequencing dataset
The transcriptome sequencing data for sixteen colorectal
cancer (CRC) samples are obtained from EBI database
under accession number SRP010181 (Additional file 3:
Table S3). The study uses 101 bp paired-end reads. Two
previous algorithms have used this dataset to predict
class I HLAs in comparison with the experimentally
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determined results [29,30]. We therefore cover the CRC
dataset as well. Nevertheless, tumor transcriptomes may
not be ideal for HLA typing, owing to unforeseeable al-
terations in sequences and in expression levels. In
addition, we find that the quality of the reads drops sig-
nificantly beyond 90 bp and the coverage is low (<30x).

1000 Genome whole exome sequencing (WXS) dataset
The 2×100 bp whole exome sequencing (WXS) data of a
subset of the 1000 Genome samples is downloaded from
EBI database under study accessions PRJNA59835,
PRJNA59819, PRJNA59815, PRJNA59841, PRJNA59843
(Additional file 4: Table S4). This cohort includes three
subjects from Kinh in Ho Chi Minh City, Vietnam
(KHV), two from Peruvian in Lima (PEL), two from
African Caribbean in Barbados (ACB), two from Iberian
populations in Spain (IBS), and one from African Ances-
try in Southwest US (ASW). The corresponding class I
and II HLA types of total 100 alleles are taken from an
earlier publication [31].

HapMap whole exome sequencing (WXS) dataset
The HapMap whole exome sequencing (WXS) dataset
and the accompanying class I HLA types at four-digit
resolution have been gathered for fifteen individuals
from Utah residents with ancestry from Northern and
Western Europe (CEU), Japanese in Tokyo, Japan (JPT)
and Yoruba in Ibadan, Nigeria (YRI). The sequencing is
processed with paired-end 101 bp reads. The WXS data
are downloaded from EBI database (study accessions
SRP004078, SRR004076 and SRR004074), and the HLA
genotypes are taken from earlier publications [30,33]
(Additional file 5: Table S5).

Targeted amplicon sequencing data generation
The targeted amplicon sequencing data (Additional file 6:
Table S6) is generated by targeting the class I HLA-A and
HLA-B loci in five human cell lines. The method is similar
to a protocol described earlier that used 454 sequencing
[25]. Briefly, in the first round of PCR, amplicons are gen-
erated for the exon 2 and 3 at HLA-A and B loci and the
partial Illumina sequencing adapters are added simultan-
eously. We then pool all four amplicons per sample with a
1:1:1:1 ratio and proceed with a second round of PCR to
add the full adapter and the barcodes for multiplexing se-
quencing. Finally, we sequence the pooled five samples on
Illumina MiSeq (Illumina Inc. CA) by a multiplexed
paired-end run with 2×250 cycles. The protocol is illus-
trated in Additional file 9: Figure S1 and the primers are
provided in Additional file 7: Table S7. De-multiplexed
FASTQ files of the five samples are acquired by MiSeq Re-
porter software and submitted to EBI under accession
number PRJEB4744.

The HLA-A and B loci of the five samples are also
genotyped by Sanger sequencing as described below.
Genomic DNA is extracted from the five cell lines by
QIAamp® DNA Mini kit (Qiagen Inc. CA) at the optimal
concentration of 15–30 ng/μL, and subsequently PCR-
amplified and purified using SeCore Sequencing Kit (Life
Technologies Inc., CA). The sequencing reactions are
set up on the 3730xl automated ABI sequencing instru-
ment. The uTYPE® SBT software (Invitrogen Inc. CA) is
used to process the sequence files and create the HLA
typing report. A commercial vendor (Life Technologies
Inc. CA) have independently executed the HLA typing
of the five samples and returned matching results.

HLA allele sequences
PHLAT includes a total of 7059 alleles for major class I
and II loci HLA-A (1884), HLA-B (2489), HLA-C
(1382), HLA-DQA1 (47), HLA-DQB1 (165) and HLA-
DRB1 (1092). The genomic and coding DNA sequences
(CDS) of the alleles are obtained from IMGT release
3.8.0 [22] in a coordinate that is consistent with the hu-
man reference genome build 37/hg19. The genomic
DNA sequences are used for Bowtie 2 mapping (Figure 1,
step I and see below) whereas the CDS sequences are
for other following procedures (Figure 1 step II-V). For
simplicity, we only keep the genomic sequences from
the transcription start site (TSS) to the stop. For any al-
lele with only CDS but not genomic record, we fill in
the non-coding regions with the genomic sequence of
the reference allele used in the hg19 genome at the cor-
responding locus (e.g. A*03:01:01:01 is the reference al-
lele for HLA-A locus), given that no data have suggested
variations in the non-coding regions of that allele. We
expected that the genomic sequence imputation has lim-
ited impact to HLA typing in practice, as polymorphisms
in non-coding regions do not alter HLA types at the
amino acid level.

Prediction accuracy
The accuracy measurements of HLA typing were not
consistent among previous work. Here we use a simple
definition of accuracy to evaluate all the algorithms ac-
cordingly. The human HLA loci possess two alleles per
locus, which can be either identical or different for
homozygous or heterozygous types, respectively. At a
given resolution, we count two alleles per locus as long
as the corresponding reference HLA types are available.
The predictions are compared to the reference types for
each allele and any inconsistency is counted as a mis-
take. For instance, a heterozygous prediction for a
homozygous reference (or a homozygous prediction for
a heterozygous reference) with one mismatched allele is
recorded as one mistake out of two typed alleles. If only
one allele is reported at a locus, as in some algorithms,
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the prediction is considered as homozygous. If more
than one prediction exists for an allele at a locus, this al-
lele is considered unresolved and thus incorrect. The ac-
curacy is then calculated as the ratio between the
number of correctly predicted alleles and the total num-
ber of the alleles.
Some algorithms (e.g. HLAminer) deliver multiple pre-

dictions for an allele at a locus. Though the true answer
may be included, the ambiguous results are considered
incorrect according to our definition of accuracy. For
reference purpose, we also calculate an apparent accur-
acy for HLAminer predictions that is defined the same
as above except ignoring the ambiguity. That is, an allele
with multiple predictions is considered correct if the
true solution is included.

PHLAT algorithm
PHLAT starts with a reference-based read mapping (step I
in Figure 1) using Bowtie 2 [38]. The reference genome is
constructed by extending the human genome with a collec-
tion of artificial chromosomes, each presenting the gen-
omic DNA sequence of one HLA allele. The corresponding

genomic sequences at HLA-A, B, C, DQA1, DQB1 and
DRB1 loci on the chromosome 6 of the human genome
are masked by N’s to avoid redundancy. It is logical to
consider the regions outside the HLA loci as part of the
reference during the initial mapping, as the input se-
quencing reads are originated genome-wide. The running
parameters for Bowtie 2 are set at –very-sensitive in
the –end-to-end mode and otherwise remain default.
After the mapping, the coordinates of the mapped reads
and all HLA alleles are converted to their correspond-
ing genomic positions on chromosome 6 in preparation
for the subsequent procedures. We chose Bowtie 2 for its
flexibility to handle various read lengths. We find that
changing the mapping engine to Bowtie [39], when the
read lengths are applicable to it, do not alter the perform-
ance of PHLAT significantly (data not shown).
The following HLA type prediction consists of two

major steps: a selection of candidate alleles (step II-IV in
Figure 1) and a likelihood based ranking over all pairs of
the candidate alleles (step V in Figure 1). This combin-
ation aids both the accuracy and the efficiency of the al-
gorithm. The allele selection eliminates the majority of

Figure 1 PHLAT algorithm workflow. The algorithm consists of read mapping via Bowtie 2 to a reference sequence comprising the human
genome and a plurality of genomic sequences of HLA alleles (I), selection of candidate alleles based on the number of mapped reads (II-IV), and
log-likelihood scoring (V) over every pair of selected candidate alleles (e.g. a pair of a and b alleles). The pair of alleles with the best likelihood
score is reported as the inferred HLA type at a given locus.
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the false alleles and their accompanying reads to minimize
the mapping errors at a given locus. It also reduces the
computational cost in the subsequent likelihood based
ranking in which every pair-wise combination of the al-
leles is evaluated.
The candidate allele selection involves a few iterations

of read counting. First, upon the Bowtie 2 mapping re-
sults, the number of reads mapped to each allele is
counted. A coarse pre-selection of possible alleles is exe-
cuted according to a simple upper quantile threshold (e.g.
90% percentile) of the read counts (step II in Figure 1). To
be conservative, we retain all alleles sharing the same
four-digit identity as long as one member of such alleles is
selected. These alleles will be refined in following steps.
Next, we re-compute the number of reads mapped to

each of the retained alleles as following (step III in
Figure 1). Every mapped read is evaluated against all
retained alleles that overlap with it. The read can only
be counted for the allele to which it matches best (or
multiple alleles if there is a tie), judging by the sequence
identity over the SNP sites covered by this read at a
given locus. In addition, the sequence identity over the
SNPs is required to be at least 99% to count a read for
any allele. The SNP sites of a locus refer to the union of
the polymorphic sites in the retained alleles at that locus,
excluding the sites that coincide with any indels in the
kept alleles to avoid bias in calculating mismatches
(indels are not considered as mismatches herein). A read
is considered optimal for its target alleles if it satisfies all
above criteria. Otherwise, it is suboptimal. We find that
excluding the suboptimal reads helps reduce false alleles
in the selection.
Last, the read counts of the alleles in the same protein

group are summed non-redundantly and used for candi-
date allele selection (step IV in Figure 1). A protein
group refers to the set of alleles that encode the same
protein with identical amino acid sequences. In other
words, these alleles are identical at the four-digit reso-
lution. As we aim for the four-digit HLA typing, it is
convenient to use the protein group as a unit to select
or drop candidate alleles. The grouping is only applied
at this selection step. Afterwards, the selected alleles are
considered individually regardless of their protein
groups. To start the candidate allele selection, for a
given locus, the protein groups are first sorted in de-
scending order by their read counts, referred here as the
level 0 ranking. The top group (or groups if a tie) with
the largest read counts are recorded and all associated
alleles are selected as candidates. To tolerate uncertain-
ties in the read mapping and counting, especially when
the sequencing depth is limited or the true and false al-
leles are much alike, we also include the alleles from the
second top ranking protein group at level 0 if it holds a
non-negligible amount of unique reads (>1% of the reads

mapped to the top ranking group) that are not shared
with the top group. Next, the read counts in the
remaining protein groups are adjusted by excluding the
reads shared with all selected alleles at level 0. The ad-
justed read counts are sorted in a descending order
(level 1 ranking) and the new top groups are selected. If
the alleles selected by the level 0 and level 1 ranking do
not explain most of the reads mapped to the locus
(<90% of the total reads), the procedure is repeated
(level 2 ranking) and the alleles from the new top pro-
tein group that can effectively account for the remaining
reads (>10% of the total) are selected. Though the
thresholds are empirical, they function well according to
the results in our large collection of benchmarking tests.
The statistical significance of the selected candidate al-

leles is estimated based on the read counts. Sequencing
count data usually follow Poisson or Negative Binomial
(if over-dispersed) distributions. In our case, we observe
that Gaussian distributions are good approximations as
the number of reads mapped to the alleles is sufficiently
large after the pre-selection (step II in Figure 1). In
terms of read counts, the top ranking protein groups at
each level (step IV in Figure 1) essentially represent the
outliers at the high extreme with respect to a Gaussian
distribution formed by the lower ranking groups. We
model the Gaussian distributions at each level by esti-
mating means and variances of the read counts, and de-
rive one-tailed z-test p-values for the selected protein
groups accordingly. All candidate alleles within each
group share the same p-value. Note that we do not use
p-values to determine final HLA types. Nevertheless, we
report them for the most likely pair of alleles to illustrate
how significantly they surpass the background regarding
to the read counts.
At the end of the selection, we only include the candi-

date alleles and their associated reads for the subsequent
analysis. Typically a few tens of alleles remained. This
number is small enough for an exhaustive likelihood cal-
culation over all pair-wise combinations (including self-
pair) of the alleles to discover the most likely pair.
PHLAT is designed to report a prediction at the highest
resolution that is resolved upon the input data, as de-
scribed below. To start, each allele in the pair-wise likeli-
hood evaluation is kept at its nucleotide (full-digit)
resolution. At the end of the evaluation, if one single
pair of full-digit alleles has the highest likelihood,
PHLAT will output it as is. On the other hand, if mul-
tiple pairs are equally likely, PHLAT will sequentially go
over different resolutions from high to low (e.g., eight-,
six- and four-digit and so on) and check if the multiple
pairs converge at each of the descending resolutions. It
stops when a consensus allele pair is achieved and out-
puts it as the final result. For example, if a locus has
multiple valid allele pairs that diverge at the six-digit,
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PHLAT produces a consensus four-digit call as the final
outcome. As we are targeting the four-digit HLA typing
in this study, any locus with a consensus allele pair that
is achieved at four-digit or higher resolution is consid-
ered unambiguously typed. If a consensus allele pair is
not obtained at a resolution of at least four-digit,
PHLAT will report the multiple allele pairs and hence
the locus is considered unresolved (or ambiguous). Sub-
sequently, the unresolved predictions are considered in-
correct in our accuracy calculation.
The likelihood score model is constructed as following.

As shown in eq. 1, the total log-likelihood score (LLtotal)
for a pair of alleles integrates the likelihoods of the allele
pair given the observed data over individual SNP sites
(LLgeno) and across multiple sites (LLphase), together with
the baseline probability of the allele pair in human
(LLfreq). The likelihood model is inspired by a previous
work [26]. Here we have modified the calculation of
LLgeno by considering only the SNP sites instead of all
available sites at a locus. Further, we formulate LLphase
differently (see below).

LLtotal ¼
X

LLigeno þ
X

LLi;iþ1phase

þ LLfreq; i ∈ SNP sites at a given locus

ð1Þ

Based on a widely-used Bayesian model [40,41], the
posterior log-likelihood LLigeno is proportional to the con-

ditional log-likelihood logP(Di|Gi), which is the log-
probability of observing the piled up bases (Di) given the
genotype of the allele pair interested (Gi) at site i. The
marginal prior logP(Gi) is assumed constant for any
genotype and therefore is not shown explicitly. P(Di|Gi)
is the product of individual conditional log-likelihoods
of observing a base j at site i, PðbijjGiÞ (eq. 2).

PðDijGiÞ ¼
Y

j

PðbijjGiÞ; bij ¼ base of read j at site i; Gi ¼ gi1g
i
2

PðbijjGiÞ ¼ 1−qj gi1 ¼ gi2 ¼ bij

¼ 1−qj
2
þ qj=3

2
gi1 ≠ g

i
2 and bij ¼ gi1 or b

i
j ¼ gi2

¼ qj=3 bij ≠ gi1 and bij ≠ gi2

ð2Þ

where qj is the error rate converted from the Phred
score of the base j.
The phase likelihood across SNP sites is modeled analo-

gously to the genotype likelihood of one SNP site. For two
sites, there are 15 possible mismatch (out-of-phase) states
and 1 matching (in-phase) state, in contrast to the 3 mis-
matches and 1 match for a single site (Additional file 9:
eq. S1).
The allele frequencies for the major class I and II loci

are retrieved from the Allele Frequency Net, which is

presumably the most reliable source of HLA allele fre-
quencies up to date [42] and has been used in previous
studies [26]. All alleles in one protein group share the
same frequency that equals to the maximum frequency
reported for any allele in that protein group among Eur-
ope, North America, Asia and Africa populations. LLfreq
is computed as the sum of the log-frequencies of the
two alleles.
In the likelihood model, LLfreq is a component based

on prior knowledge other than the input data. Incorpor-
ating prior knowledge is a common strategy in building
probabilistic models. For example, integrating known
pathways or protein-protein interactions together with
the data from perturbation measurements is often used
to infer probable regulatory networks [43,44]. Prior
knowledge of the possible movements among protein
residues and backbones also improve the efficiency and
accuracy of protein folding predictions via Monte Carlo
simulations [45]. In the case of the HLA typing, the
probability model utilizes the prior frequency to capture
the fact that the distribution of HLA alleles in human
population is uneven to start with. Notably, the prior
probabilities are never used alone. The complete likeli-
hood model combines the prior probability with the se-
quencing data to derive the posterior probability of the
alleles. In the model, we find that LLfreq is significantly
smaller than the data-driven LLgeno and LLphase terms by
a few orders of magnitude. Thus, it may impact the pre-
diction only when the data cannot provide sufficient in-
formation to distinguish different alleles at four-digit
resolution. In this situation, the basic logic of a probabil-
ity model is to output the most likely allele according to
the prior probabilities, as no evidence from the data sug-
gests otherwise. We have conducted an experiment to
access whether the PHLAT predictions are driven by the
data or by the prior probabilities. More specifically, over
the HapMap RNAseq, the 1000 Genome WXS and the
HapMap WXS datasets (in total 768 alleles), eliminating
the LLfreq component from the likelihood model intro-
duces nine alleles that are unresolved (i.e. ambiguous) at
four-digit (annotated in Additional file 1: Table S1,
Additional file 4: Table S4 and Additional file 5: Table S5).
As unresolved predictions are considered incorrect, it cor-
responds to a small overall accuracy drop of 1.2%. The re-
sults suggest that including the LLfreq term does not
significantly affect the PHLAT predictions, as there are
only limited circumstances where the data are inadequate
to infer the alleles at four-digit. We choose to keep LLfreq
for the completeness of the model.

Results and discussion
Accurate four-digit HLA typing is critical in fundamen-
tal research, diagnosis, treatment, and prevention of im-
munological and other diseases, as well as in many
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clinical applications. The massive accumulation of genome-
wide sequencing data provides a new rich source for HLA
analysis. Nevertheless, few existing bioinformatics tools
can infer accurately the four-digit HLA types from various
genome-wide “omics” data with diverse read lengths and
depths. Compared to the amplicon sequencing, genome-
wide sequencing faces more difficulties in mapping a read
to the allele that originates it. Thus, inferring HLA alleles
based on the number of mapped reads, as taken by some
earlier approaches [28], can be error-prone. In contrast,
PHLAT utilizes but not limits to the read counting. It first
pins down to the candidate alleles by the read counts,
which helps minimize the false alleles and the unreliable
reads as well as reducing the complexity in the subsequent
computations. PHLAT then examines the posterior likeli-
hoods of the alleles given the observed data. Combining
the allele selection and the likelihood scoring marks the
uniqueness of the PHLAT algorithm. Below we bench-
mark the performance of PHLAT together with other
methods using multiple public and in-house datasets. We
observe that PHLAT outcompetes most of the existing
methods over a wide range of read lengths and coverage.

PHLAT leads the four-digit typing accuracy using
transcriptome sequencing data
The HapMap RNAseq data employs paired-end 37 bp
reads. With the rapid advances in sequencing technol-
ogy, such short read length may not be often imple-
mented in transcriptome studies nowadays. Nonetheless,
this dataset represents one of the largest cohorts with
experimentally validated HLA genotypes available at
both class I and II loci and at high resolution. For this
reason, it has been used to benchmark HLA prediction
algorithms in multiple studies. In addition, we consider
the case of the 37 bp reads for the purpose of evaluating
the algorithms in a systematic manner. The results may

also provide a useful reference for HLA predictions
using historical RNAseq data that more often applied
short reads. RNAseq datasets with longer sequence length
(76 bp and 100 bp) are examined as well (see below).
It is often difficult to infer genotypes using very short

reads (~35 bp), as they are at the low extreme of map-
pable read lengths [46]. The difficulties augment at the
highly polymorphic HLA loci. Four-digit predictions by
previous algorithms using the HapMap RNAseq data are
not very accurate (Table 1 and Additional file 1: Table S1).
The seq2HLA method is not designed to resolve four-
digit HLA types and only reports a 32% accuracy [28].
There is no published result from HLAminer on this data
so we apply the program locally. We only execute the
alignment mode of HLAminer because the contig assem-
bly mode fails to run on the short reads. The resulting ap-
parent accuracy, if ignoring the ambiguities, is low
(43.0%). The accuracy calculated by the standard defin-
ition in this work is lower (39.8%). HLAforest reaches a
higher but still moderate prediction accuracy of 84.2%
[29] (Table 1 and Additional file 1: Table S1).
Using the same data, PHLAT infers 96.2% of the four-

digit HLA types correctly at the class I loci and 92.3%
overall for both class I and II loci (Table 1 and Additional
file 1: Table S1), outcompeting the existing methods sig-
nificantly. PHLAT controls very well the homozygous
calls. Among 45 homozygous loci (90 alleles) at four-digit
resolution, merely 6 are mistyped to be heterozygous
(total 7 false alleles). On the other hand, majority of the
mistyped alleles are accurate at the two-digit resolution.
Overall, only 5 out of the total 564 alleles at two-digit
resolution are incorrect, corresponding to an accuracy of
99.1%. In comparison, the two-digit accuracy of previous
methods is no more than 97.3% (Table 1).
The advantage of PHLAT is confirmed in two add-

itional transcriptome datasets with longer sequence

Table 1 Prediction accuracy of PHLAT and other methods in benchmarking datasets

HLA
resolution

Dataset Read
length

PHLAT HLAminer HLAforest seq2HLA

Accuracy Accuracy Apparent
accuracy

Accuracy Accuracy

4-digit HapMap RNAseq 2×37 bp 92.3% 39.8% 43.0% 84.2% ~32%

1000 Genome WXS 2×100 bp 95.0% 55.0% 71.0% 77.0% -

HapMap WXS 2×101 bp 93.3% 53.3% 84.4% 45.6% -

Amplicon seq 2×250 bp 100% 50.0% 55.0% - -

2-digit HapMap RNAseq 2×37 bp 99.1% 71.1% 71.6% 97.3% 97.2%

1000 Genome WXS 2×100 bp 97.0% 83.0% 85.0% 95.0% 90.0%

HapMap WXS 2×101 bp 95.6% 78.9% 88.9% 81.1% 93.3%

Amplicon seq 2×250 bp 100% 95.0% 95.0% - -

The accuracies and apparent accuracies are calculated as described in Methods. The accuracies of the existing methods are taken from their original publications
if the datasets were examined therein, otherwise are derived by applying the methods locally (Additional file 1: Table S1 and Additional file 4: Table S4, Additional
file 5: Table S5 and Additional file 6: Table S6). The four-digit accuracy of seq2HLA in HapMap RNAseq dataset (~32%) is taken from the main text of its publication
[28]. For all other datasets, seq2HLA is applied only at two-digit resolution. The accuracy of seq2HLA predictions is calculated without any p-value threshold. It
produces less false negatives and hence higher accuracies than if imposing a p-value cutoff of 0.1 as described earlier [28].
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length (Additional file 2: Table S2 and Additional file 3:
Table S3): the GEUVADIS RNAseq data (2×76 bp), and
the CRC RNAseq data (2×101 bp). Details of the two
datasets are described in Methods. Compared to the ori-
ginal the HapMap RNAseq, the new GEUVADIS study
provides a more up-to-date data resource for the cohorts
whose four-digit HLA types are available at the major
class I and II HLA loci. The ~76 bp read length is also
widely adopted in current transcriptome sequencing
studies [36,37]. We therefore repeat the evaluation of
the algorithms using the GEUVADIS RNAseq data. We
observe that PHLAT remains the best performer
(Additional file 2: Table S2). The four-digit typing accur-
acy of PHLAT is 93.5%, whereas it is no greater than
85.7% in other programs. The two-digit prediction by
PHLAT is also the highest (99.6%) among the tested
programs. Similar conclusions hold for the CRC RNAseq
data using reads of 101 bp (Additional file 3: Table S3).
PHLAT outputs a four-digit accuracy of 89.7%. The
number is slightly better than that of HLAforest (85.0%)
[29]. It notably surpasses the accuracy of HLAminer ac-
cording to our standard definition (57.5%). In addition,
PHLAT continues to lead the two-digit prediction with
an accuracy of 98.9%, followed by HLAforest and
seq2HLA then HLAminer at 97.7%, 97.7% and 93.1%,
respectively.

PHLAT offers a high precision in HLA typing using exome
sequencing data
We next evaluate PHLAT and other methods using two
whole exome sequencing (WXS) datasets from the 1000
Genome and the HapMap projects. Both studies em-
ployed paired-end sequencing reads of ~100 bp. Using the
1000 Genome WXS data, we are able to evaluate one hun-
dred alleles of both class I (HLA-A, HLA-B, HLA-C) and
class II (HLA-DQB1 and HLA-DRB1) loci. Genotypes of
these alleles by Sanger sequencing from a previous study
are used as the reference [31]. The subjects in the 1000
Genome WXS data are from KHV, PEL, ACB, IBS and
ASW ethnic groups.
As shown in Table 1 and Additional file 4: Table S4,

five out of the one hundred alleles are mistyped by
PHLAT at the four-digit resolution, corresponding to an
accuracy of 95%. Three of the five mistyped alleles are
incorrect at the two-digit resolution, giving a two-digit
accuracy of 97%. The predictions from other tested algo-
rithms are less accurate. For example, the second best
four-digit and two-digit accuracies, which are both of-
fered by HLAforest, are 77.0% and 95%, respectively.
Notably, the four-digit accuracy of HLAforest drops
compared to that in the HapMap RNAseq data above
(84.2%), despite the longer read length in the 1000 Gen-
ome WXS (100 bp vs. 37 bp). Nonetheless, it has been ac-
knowledged that HLAforest is optimized for transcriptome

sequencing such that its accuracy on exome data can be
lower [47]. The results of HLAminer are taken from an
earlier publication [31]. Therein it was feasible to apply
the assembly mode, as the 100 bp read length is signifi-
cantly longer than the 37 bp used in the HapMap RNAseq
data. With the longer reads, HLAminer reaches an accur-
acy of 55.0%, better than that in the HapMap RNAseq
data (39.8%).
The HapMap WXS data contains fifteen HapMap in-

dividuals from CEU, JPT and YRI populations. Com-
pared to the 1000 Genome WXS data, the sequencing
depth in HapMap WXS is reduced despite the similar
read length (Additional file 8: Table S8). At the HLA
loci, the post-mapping fold coverage is ~60x, whereas
the 1000 Genome dataset has a ~190x coverage. Al-
though this fold coverage is considered decent for geno-
typing in general, its adequacy for HLA typing may vary
in different algorithms.
The performance of all methods in the HapMap WXS

data is summarized in Table 1 and Additional file 5:
Table S5. For HLAminer we report the results from the
assembly mode because it delivers better predictions
than the alignment mode. The improvement may be at-
tributed to the longer contigs assembled (~230 nucleo-
tides) that produce better sequence alignments with the
HLA alleles than the individual reads. At four-digit reso-
lution, the standard accuracy of HLAminer is 53.3%.
HLAforest is also executed locally on the same data with
default settings, resulting in an accuracy of 45.6%. The
reduced read coverage may have impacted the perform-
ance of HLAforest and further lowered its accuracy rela-
tive to what is noted in the 1000 Genome WXS data
above (77.0%). In comparison, PHLAT handles the Hap-
Map WXS data better than the other methods, yielding
a higher four-digit typing accuracy of 93.3%. PHLAT
gives a two-digit accuracy of 95.6%, slightly exceeding
seq2HLA (93.3%) and considerably better than HLAminer
(78.9%) and HLAforest (81.1%).

Application of PHLAT to targeted amplicon sequencing
data
PHLAT uses Bowtie 2 to handle reads up to a few hun-
dreds of base pairs. It is thereby readily applicable to tar-
geted amplicon sequencing data. We test PHLAT on a
paired-end 250 bp amplicon sequencing dataset of five
samples generated in-house (Methods). For a total of 20
experimentally validated alleles at HLA-A and HLA-B
loci, PHLAT is 100% correct at both two-digit and four-
digit resolutions (Table 1 and Additional file 4: Table S4).
None of the previous methods tested here except HLAmi-
ner are able to process the data, because the Bowtie
aligner used therein does not operate on such long reads.
The amplicon reads are flanked by intron sequences at the
3’ or 5’ ends. When using HLAminer to predict HLA
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types, we first trim the intronic portions and then apply
the assembly mode with a CDS reference. This procedure
yields better results than other attempts using the align-
ment or assembly mode with a genomic reference on ei-
ther the trimmed or original amplicon reads. We have
obtained an accuracy of 50% (apparent accuracy 55%) at
the four-digit resolution for HLAminer. It is considerably
lower than that of PHLAT. It is worthwhile to point out
that these prediction accuracies are obtained for only the
HLA-A and HLA-B loci tested here and are also limited
by the sample size. From the results, it is encouraging to
see that the algorithm can handle both genome-wide and
targeted sequencing data.

Characterization of the mistyped alleles
Mistyped four-digit alleles in PHLAT are collected from
the HapMap RNAseq, 1000 Genome WXS and the Hap-
Map WXS datasets, and are summarized per allele type
(Figure 2A and Additional file 9: Figure S2 and Table S9).
In particular, we are interested to investigate whether cer-
tain allele types are enriched, and if so, whether the algo-
rithm or other reasons introduce them. At the HLA-A, B,
C and DRB1 loci, almost all the alleles have a limited sam-
ple size (<=10 total occurrences) and mistyping incidents
(<=2). Thus, we do not conclude any enriched allele type.
Most of these incorrect predictions appear to be due to
the general difficulty in distinguishing alleles with high se-
quence similarity, and in dealing with data noise due to

limited coverage or read length. For instance, A*23:01 di-
verges from A*23:40 only at chr6: 29910759 position
(subject NA12760, Additional file 1: Table S1), C*16:01
varies from C*16:15 at chr6: 31239430 (subject NA12813,
Additional file 1: Table S1), and A*02:06 is different from
A*02:01 at chr6: 29910558 and 29910562 positions (sub-
ject NA18971, Additional file 5: Table S5). Other similar
incidents are from A*25:01, B*81:01, B*35:03, C*03:05,
C*07:01, C*15:02, DRB1*14:01 alleles and one of the
C*12:03 (mistyped as C*12:54) and DRB1*15:01 (mistyped
as DRB1*15:02) alleles. The incorrect predictions of alleles
A*02:01, A*66:03 and DRB1*04:01 occur in samples with
the coverage at the low end (<50x, subjects NA11918,
NA19131, NA18975, Additional file 1: Table S1 and
Additional file 5: Table S5). The misidentifications of the
B*08:01, B*55:01 alleles and the rest incidents of C*12:03
and DRB1*15:01 alleles occur in the 2×37 bp HapMap
RNAseq data but are resolved in the 2×76 bp GEUVADIS
RNAseq data, suggesting that they are likely due to noise
in certain input data. In fact, majority of the errors at
the class I and HLA-DRB1 loci from the HapMap RNA-
seq (13 out of 17) are corrected in the GEUVADIS
RNAseq. All the mistyping errors of the DRB1*15:01 al-
lele are among them. Thus, despite observing a predic-
tion accuracy below 90% for the DRB1*15:01 allele
(Additional file 9: Table S9), we expect that PHLAT can
type this allele more accurately when longer sequence
reads are adopted.

Figure 2 Analysis of frequently mistyped alleles. (A) The histograms illustrate the type (x-axis) and the number (y-axis) of the misidentified
alleles at the HLA-DQA1 (left panel) and HLA-DQB1 (right panel) loci, summarized over the HapMap RNAseq, the 1000 Genome WXS and the
HapMap WXS datasets. (B) Visualization of the mapped reads in one representative sample (subject NA12156, Additional file 1: Table S1) where
the HLA-DQA1*03:01 allele is mistyped as the HLA-DQA1*03:03 allele. The mapped reads are shown around the single SNP position (chr6: 32609965,
highlighted in between two vertical dashed lines) that distinguishes the two alleles. The hg19 reference sequence of the HLA-DQA1 gene is shown at
the bottom of the panel. The nucleotide bases A, C, G, T are colored in green, red, blue grey and blue, respectively. The bases in the reads, if different
from the reference sequence at the aligned positions, are visualized in the same color code. The pileup counts of the A, C, G, T bases at the highlighted
SNP are 141, 117, 0 and 0, respectively. (C) The alignment of a 135-nucleotide segment from the HLA-DQA1*03:03 allele, noted as the query, with the
HLA-DQA2 reference sequence in human genome hg19. The query sequence is simplified as a horizontal bar with only the mismatches indicated. The
existing dbSNP record at the mismatch is labeled with a red vertical marker and the associated identification numbers (e.g. rs62619945) followed by a
parenthesis indicating the major and the alternative base sequences. The alignment of the SNP that differ the DQA1*03:01 and DQA1*03:03 alleles
is boxed.
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Nonetheless, at the HLA-DQA1 and HLA-DQB1 loci,
we observe a few specific alleles dominant the observed
prediction errors. As shown in Figure 2A, among a total
of twenty faulty predictions at HLA-DQA1, ten HLA-
DQA1*03:01 alleles are typed as HLA-DQA1*03:03, and
six HLA-DQA1*05:01 alleles are mistaken as HLA-
DQA1*05:05. At the HLA-DQB1 locus, five HLA-DQB1*
02:01 alleles are called as HLA-DQB1*02:02. These mis-
takes account for >80% of all false predictions at the
HLA-DQA1 and HLA-DQB1 loci. These alleles also ex-
hibit low prediction accuracies in this study (61.5%-73.7%,
Additional file 9: Table S9). Although the real and pre-
dicted alleles are highly homologous in sequence (<=3
SNPs), a few observations below suggest that these errors
may not be random.
First, we find that other algorithms, HLAforest and

HLAminer, exhibit a similar tendency to mistype DQA1*
03:01 as DQA1*03:03 in the same samples miscalled by
PHLAT (Additional file 1: Table S1). HLAforest makes
identical errors as PHLAT in seven samples. The output
from HLAminer, DQA1*03:01P, is a P-designation anno-
tation [30] that groups DQA1*03:01, DQA1*03:03 and a
few other alleles. Rerun of HLAminer without the P-
designation reveals that indeed DQA1*03:03 is the most
confident prediction in all the samples mistyped by
PHLAT. As the same mistakes occur in the algorithms
that implement different aligners, e.g. Bowtie 2 for
PHLAT, Bowtie [39] for HLAforest and BWA [48] for
HLAminer, we may rule out that the errors are caused
by a specific alignment engine. Indeed, changing the
aligner to BWA in PHLAT does not alter the output in
any affected sample. These results suggest that the prob-
lem may not be due to the computational strategy or
aligner choice in the algorithm.
We next find that the DQA1*03:03 inference is sup-

ported by a decent amount of reads in all cases.
Figure 2B illustrates the read mapping details around the
single SNP site differentiating the DQA1*03:01 and
DQA1*03:03 alleles (chr6: 32609965, base A for DQA1*
03:03 and C for DQA1*03:01) in one representative sam-
ple where such a mistyping occurs (subject NA12156,
Additional file 1: Table S1). The second allele in this
samples is DQA1*02:01, whose sequence is C at this
position. These reads have passed through the PHLAT
pipeline and are used for the HLA prediction. In sample
NA12156, about half of the bases are A’s, resulting a het-
erozygous genotype of AC. Hence, inferring a DQA1*
03:03 allele, together with a DQA1*02:01 allele, is con-
vincing given the data. Similar observations hold for all
other samples with DQA1*03:03 predictions. Further,
PHLAT reports the same mistakes for the corresponding
samples in the GEUVADIS dataset (Additional file 2:
Table S2). It suggests that the errors may not simply due
to random noise in the data.

It is possible that the reads supporting the alternative
allele are originated from elsewhere in the genome. A
BLAST query using a 135-nucelotide segment (chr6:
32609874–32610008) harboring the SNP site (chr6:
32609965) from the HLA-DQA1*03:03 allele returns the
top full length hit located at the exon 3 of the HLA-
DQA2 gene. There is no other mismatch except the very
SNP site between the two alleles within this region
(Figure 2C). IMGT database does not include any HLA-
DQA2 entry due to the limited knowledge of its alleles.
Consequently, all previous algorithms have no HLA-
DQA2 sequence in their mapping reference. PHLAT
extends the reference to the whole genome. Yet it only
includes the sequence of one specific HLA-DQA2 allele
used in the hg19 genome and thereby not fully capturing
its polymorphisms either. Given the high sequence hom-
ology and the lack of complete allelic references of
HLA-DQA2, misaligning the reads of the HLA-DQA2
gene to the HLA-DQA1 gene is a non-negligible possi-
bility. In fact, there is a common C-to-A missense SNP
of the HLA-DQA2 gene (rs62619945, ~4% minor allele
frequency, Figure 2C) at chr6: 32713784, the matching
site in the sequence alignment for the DQA1*03:03 al-
lelic SNP. Thus, if a subject happens to carry a specific
HLA-DQA2 allele with the rs62619945 SNP, the result-
ing reads may be falsely taken as from an HLA-DQA1*
03:03 allele.
Analogous observations exist for other two frequently

mistyped alleles, HLA-DQA1*05:01 and HLA-DQB1*
02:01. PHLAT, HLAminer and HLAforest (without P-
designation) all misidentify them as HLA-DQA1*05:05
and HLA-DQB1*02:02, respectively, in five samples
(Additional file 1: Table S1). There are three SNPs driv-
ing the DQA1*05:05 calls at chr6: 32605266, chr6:
32610002 and chr6: 32610445. Each of them has a sig-
nificant number of mapped reads supporting the
DQA1*05:05 allele (Additional file 9: Figure S3A). Fur-
ther, each SNP is located within an exon segment (se-
quence taken from the DQA1*05:05 allele) homologous
to the HLA-DQA2 gene (Additional file 9: Figure S4A).
These segments are of 72–116 nucleotides in length and
differ from the HLA-DQA2 sequence (hg19 genome) at
2–4 chromosomal positions. All the positions in the
HLA-DQA2 gene have a dbSNP record wherein the al-
ternative base matches the sequence in the DQA1*05:05
allele. Thus, it is possible to confuse the reads from the
HLA-DQA2 and HLA-DQA1 loci regarding to these re-
gions. Similar story holds for the SNP favoring the HLA-
DQB1*02:02 allele over the HLA-DQB1*02:01 allele
(chr6: 32629905, Additional file 9: Figure S3B). It is in-
side a homologous region of 91 nucleotides between the
HLA-DQB1 and HLA-DQB2 genes (Additional file 9:
Figure S4B). HLA-DQB2 alleles are poorly studied and
not recorded in IMGT database either.
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Collectively considering the results above, we reason
that misaligning the reads from the minor HLA-DQA2
and DQB2 loci to their homologous major HLA-DQA1
and DQB1 loci, respectively, may have led to the unusual
high frequency of the mistyped HLA-DQA1 and DQB1
alleles. This limitation is independent of the algorithms
and thereby explaining their consistent mistakes. Experi-
ments may be conducted in the future to examine the
sequence of the HLA-DQA2 and DQB2 loci in the indi-
cated samples. Algorithm wise, incorporating the allelic
sequences of HLA-DQA2 and DQB2 in the mapping ref-
erence may alleviate the problem. Currently implementing
this fix is difficult due to the lack of allelic information of
the HLA-DQA2 and DQB2 genes. Nevertheless, it may be
less a concern when using data with paired-end reads of
100 bp or longer, as the homologous regions discussed
here are around 100 nucleotides. Long sequencing reads
may extend into surrounding less homologous regions to
reduce the misalignment. For now, we recommend users
of PHLAT or other existing algorithms to validate HLA-
DQA1*03:03, HLA-DQA1*05:05 and HLA-DQB1*02:02
allele types by Sanger or targeted amplicon sequencing, if
they observe such predictions and are interested to follow
up their biology significance. We may also include in-
tronic SNPs and allow read mapping across splicing junc-
tions in the future to leverage the distinguishing power
between the alleles.

Candidate allele selection contributes most to the
prediction accuracy
PHLAT implements three major procedures to help le-
verage the prediction accuracy: extending mapping refer-
ence to include genome sequences outside the HLA loci
of interest, applying stringent criteria to define the opti-
mally mapped reads for an allele, selection of candidate
alleles based on the counts of the optimal reads. We
here estimate the contributions to the accuracy from the
three components in order to highlight the most import-
ant one. The impact of the candidate allele selection is
estimated by disabling the corresponding procedure in
PHLAT and measuring the consequent decrease in ac-
curacy. Using a genome-wide mapping reference and
identifying the optimal reads are pre-processing steps
before the selection of candidate alleles. We therefore
estimate their contributions by the further decrease in
the prediction accuracy when revoking these procedures
in the absence of the candidate allele selection. To void
the genome-wide mapping reference, we change to a ref-
erence genome that consists of only the interested HLA
loci. For the optimal read identification, we relax the se-
quence mismatch stringency to 10% per read, which ap-
proximates the mismatch rate allowed in Bowtie 2.
Over the HapMap RNAseq, the 1000 Genome WXS

and the HapMap WXS datasets, the average accuracy

contributions by mapping to a genome-wide reference,
identifying optimally aligned reads, and selecting candi-
date alleles are 6.9%, 6.3%, and 9.2%, respectively. The
selection of candidate alleles appears to be most influen-
tial. PHLAT selects candidate alleles by the number of
the reads optimally mapped to them. This procedure
does not intend to determine precisely the best pair of
alleles for a locus. Instead, the purpose is to eliminate
the likely false alleles and their associated reads. Keeping
the false alleles and their reads introduce more noise to
the likelihood score calculations and eventually yield
more faulty predictions. Given the largest impact to the
prediction accuracy, we consider that the candidate al-
lele selection is the key component of the PHLAT
algorithm.
In the pre-processing stage, PHLAT applies a genome-

wide reference for Bowtie 2 mapping, and refines the
mapped reads using a stringent threshold for mis-
matches. Including the genomic sequences outside the
HLA loci in the mapping reference is one unique feature
of PHLAT. When the reads are generated genome-wide,
it is rational to search the best alignment position over
the whole genome, in order to reduce mapping errors in
the first place. Indeed, the contribution of a genome-
wide reference to the prediction accuracy is notable
(6.9%). This design is especially useful for HLA typing
using genome-wide sequencing data. It may not be a sig-
nificant factor for the targeted sequencing where the
reads originate specifically from the HLA loci. As a test,
the prediction accuracy in our Miseq amplicon sequen-
cing dataset remains unchanged with either the genome-
wide or HLA-specific mapping references. PHLAT also
focuses on the optimally mapped reads that hold the
most power in differentiating various alleles. In particu-
lar, only the reads that are optimal for a given allele are
considered for the subsequent analysis. An optimal read
requires that no more than 1% of the SNP sites covered
by the read are mismatches. The accuracy drops by 6.3%
without this stringent threshold. Analogous observations
have been reported in a few earlier studies, wherein
accepting fewer mismatches in the alignment generally
improved the typing accuracy [28,29]. One study also
applied a similar, small mismatch rate (2%) during the
read alignment [32].
These results highlight that pre-processing is import-

ant for the quality of HLA type inferences. As the pre-
processing is often the first step of a HLA typing algo-
rithm, noise induced by the incorrectly mapped reads
may mislead all downstream processes. Many standard
alignment tools and pipelines, such as Bowtie, BWA,
TopHat and GATK [39,40,48,49] have been established
with vast successes in general analysis of genome-wide
sequencing data. Nevertheless, simply following these
standards may not be enough when dealing with the
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HLA loci that are the most polymorphic regions in the
human genome. We have shown that it is useful to re-
duce misaligned reads originated from non-HLA loci,
and to use only the best reads with very limited mis-
matches. In the future, improvement of the existing
strategies and development of new ones are expected to
further advance the HLA typing quality. For instance, it
may be helpful to extend the reference with multiple
copies of the regions outside yet homologous to the
HLA loci to capture their polymorphic variations, to-
gether with the better documented allelic sequences of
the minor HLA genes, improve the general mapping
sensitivity of the aligners, and reduce amplification in-
duced bias in the reads.

Practical factors in data generation that impact the HLA
inference
The benchmarking data offer us test cases with read
lengths ranging from 37 to 250 bp and fold coverage
from ~60x to ~330x. In addition, the pair-end reads can
be used as the single-end reads to evaluate the allele
identification under different sequencing protocols. We
consolidate the outputs of PHLAT from these datasets
to systematically investigate how the sequencing param-
eters impact the accuracy of the HLA inference. Such
knowledge not only summarizes the performance of our
algorithm, but also provides a guideline for future ex-
periment design and data generation. Figure 3 illustrates
the results from three datasets: the HapMap RNAseq
(top panel), the 1000 Genome WXS (middle panel) and
the HapMap WXS (bottom panel) (also see Additional
file 8: Table S8). For each dataset, the samples are
binned by their post-mapping fold coverage at the HLA
loci (x-axis). The y-coordinates of the symbols represent
the mean accuracy at four-digit resolution of the samples
within each bin, with error bars indicating the variance.
We also process each paired-end sequencing dataset
(closed symbols) under the single-end assumption (open
symbols) by ignoring the paired relationship between the
reads. The trend of the symbols is illustrated via spline
interpolation.
Figure 3 shows an ascending trend of the accuracy

with the fold coverage. It suggests that the HLA predic-
tion accuracy positively correlates with the fold coverage,
consistent with previous observations [29]. This depend-
ency may help estimate an empirical threshold of the
coverage for PHLAT to reach a desired performance.
For instance, to achieve an accuracy of no less than 90%
in the paired-end sequencing (Figure 3, horizontal dot-
ted lines), around 50x coverage may be needed, with a
safer choice of about 100x coverage.
By ignoring the paired relationship and thereby treating

the reads as single-ended, we observe a non-negligible sys-
tematic reduction in the prediction accuracy for all

datasets. Earlier studies observed a similar accuracy de-
cline by changing the reads from paired-end to single-end
[28]. In addition, the decrease augments by shortening the
read length. In Figure 3, the accuracy in the HapMap
WXS data drops from >90% for the paired-end reads to
~85% for the single-end reads (bottom panel, close and
open circles, respectively). The decrease is more dramatic
in the HapMap RNAseq data: from 90-95% (top panel,
close circles) to 70-90% (top panel, open circles). These
observations highlight the importance of the paired-end
sequencing protocol in HLA typing. The advantage of the
paired reads primarily originates from the effectively dou-
bled read length that leverages the mapping accuracy. On
the other hand, when the length of a single read becomes
sufficiently long, the difference between the paired-end
and single-end protocols may diminish. In the 250 bp tar-
geted amplicon dataset, we mistype merely one allele by
treating the reads as single-ended (data not shown) in-
stead of pair-ended.

Future extensions
PHLAT outputs the allele types at the highest resolution
that is resolved upon the input data. Currently PHLAT
uses a CDS-based reference for HLA inference steps and

Figure 3 Impact of read length, coverage and sequencing
protocols on HLA typing accuracy. The plot summarizes the HLA
typing accuracy of PHLAT using samples from the HapMap RNAseq
(top panel), the 1000 Genome WXS (middle panel) and the HapMap
WXS (bottom panel) datasets. Prediction accuracies are calculated by
considering the sequencing data as either paired-end (close symbols
and solid lines) or single-end (open symbols and dashed lines). The
symbols represent the mean accuracy at four-digit resolution of the
samples that are binned by their fold coverage at the HLA loci, with
the error bars indicating the variance. The post-mapping fold
coverage is calculated regarding to the CDS regions of the major
class I and II HLA loci, excluding the reads suboptimal or not aligned
to the candidate alleles. The smooth lines by spline interpolation
illustrate the trend of the symbols.
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thereby typically delivering a four- to six-digit prediction
that corresponds to the non-synonymous and synonym-
ous coding variants, respectively. Nevertheless, the algo-
rithm itself permits full resolution typing, as long as the
reference sequences and the observed data are available
at the genomic regions that differentiate one allele from
the others. In the future, it is straightforward to include
introns and UTR sequences for more accurate or higher
resolution typing when such data become more com-
plete. PHLAT can also be applied to the minor class I
and II HLAs by appending the corresponding reference
sequences.

Conclusions
High resolution HLA typing is essential in many areas of
immunology, such as hematopoietic stem cell transplant,
immunogenic screening and vaccine design. Recent
technology advances and cost reductions in next gener-
ation sequencing have led to a rapid replacement of the
locus-specific genotyping by the genome-wide sequen-
cing in both fundamental research and clinical applica-
tions. Thus, inferring HLA types from transcriptomic,
exomic or genomic data will not only take good usage of
the rich information embedded therein, but also supple-
ment the genetic interpretation of the “omics” data
themselves. Though a few computational methods have
emerged, accurate high resolution HLA typing remains
challenging. Few method can perform consistently well
for both RNA and DNA sequencing and with various
read lengths and sequencing depths.
To help overcome the limitations in the typing accur-

acy and flexibility, we have developed the PHLAT algo-
rithm and benchmarked it in comparison with most of
the methods published previously. The benchmarking
data include a large number of HLA alleles with experi-
mentally validated four-digit genotypes (768 in total),
from both RNA and DNA sequencing and with various
read lengths (37–250 bp) and coverage (from ~60x to
~330x). These data allow us to rigorously access the
quality of different methods and develop practice guide-
lines for HLA inference. In all tested datasets, PHLAT
holds the best prediction accuracy at four-digit and two-
digit resolutions. The accuracy improvement is substan-
tial in many cases (e.g. 92.3% vs. 32%-84.2% in HapMap
RNAseq data, and 93.3%-95.0% vs. 45.6%-77.0% in 1000
Genome and HapMap WXS data). PHLAT also succeeds
in a targeted amplicon study and predicts the HLA types
with zero mistakes, whereas other methods either can-
not process the long amplicon reads or mistype half of
the alleles. Considering collectively the accuracy and
flexibility, PHLAT appears to be a leading method for
HLA typing based on genome-wide sequencing.
Our algorithm has a few unique features. In the pre-

processing stage, two approaches are taken to reduce

possible mapping errors. One is to incorporate the gen-
omic regions outside the HLA loci in the reference for
the initial Bowtie 2 mapping. The other is to apply a
stringent criterion to recognize the optimally mapped
reads for analysis. We have estimated that the prediction
accuracy can decline by 6%-7% without either of the
procedures. Moreover, PHLAT implements a candidate
allele selection prior to the calculation of the likelihood
scores. The selection effectively eliminates a large num-
ber of the false alleles and their associated reads that are
likely unreliable. This step appears to contribute most to
the prediction accuracy. In the absence of the candidate
allele selection, 9.2% reduction in the accuracy is ob-
served. The selection also greatly reduces the number of
alleles such that the pair-wise evaluation becomes tract-
able. It permits PHLAT to infer a pair of alleles simul-
taneously. Some existing methods infer each of the
alleles sequentially [28-30] and thus may miss the best
solution when both alleles are considered as a whole.
The advantage of predicting a pair of alleles has been
recognized in a recent publication [31]. The combin-
ation of these attributes has led to the high performance
of PHLAT as well as distinguishing it from the previous
methods [26,28-31].
The systematic evaluation of PHLAT helps develop

some best practices for HLA typing using the genome-
wide data. For example, a paired-end protocol is highly
desirable. A fold coverage of 100x or higher is ideal. The
read length can be flexible given a paired-end protocol
and under an applicable coverage. Such information may
assist optimizing the experimental design in the future
for the best utilization of the data.
The framework of PHLAT is suitable to support the

HLA typing at up to the nucleic acid level (i.e. the full-
digit resolution). Currently it focuses on the variations
within the CDS regions and therefore the four- to six-
digit typing. Nevertheless, it is straightforward to extend
PHLAT to higher resolution in the future by including
the intron and UTR sequences of the alleles into the ref-
erence. Other future improvements may be to construct
a better mapping reference with more complete poly-
morphic sequences in regions homologous to the HLAs,
remove amplification artifacts in the data, and utilize the
reads across the splicing junctions.
As the field moves quickly into a personal genomics

era, genome-wide sequencing progressively becomes a
routine for individuals participating in research projects,
medical practices, and clinical trials. We expect that
PHLAT, as a useful method for high resolution HLA
typing, help leverage the application of the massive se-
quencing data in the existing and future human genetics
studies. Especially, our method will add value to the
studies where next generation sequencing data are avail-
able and HLA type information is essential but not
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available. The resulting genotype of the HLA loci will fa-
cilitate the fundamental research in immunology and as-
sociated diseases. High resolution HLA typing is also
essential in many clinical procedures as discussed in the
Background, such as organ and hematopoietic stem cell
transplantations, peptide-based vaccines and adoptive T
cell transfer approaches for cancer immunotherapies. Al-
though PCR-based typing method is a common choice
in the current practice, the NGS-based typing tech-
niques gain growing attentions given the significantly
higher throughput, continuous cost reduction and in-
creasing read length and quality. Our PHLAT algorithm
has many features suitable for the needs of the NGS-
based HLA typing. It offers a good typing accuracy. It
handles both RNA and DNA sequencing data with vari-
ous read lengths. Besides genome-wide sequencing,
PHLAT also supports targeted amplicon sequencing in-
put. Accurate and flexible bioinformatics tools such as
PHLAT may assist the further transition from the low
throughput methods to the NGS-based typing tech-
niques. Eventually, the high throughput HLA typing may
accelerate the treatment procedures and benefit the
patients.

Availability of supporting data
The data sets supporting the results of this article are
available in the EBI repository, under accession numbers
ERP000101 (http://www.ebi.ac.uk/ena/data/view/ERP000
101&display=html), ERP001942 (http://www.ebi.ac.uk/
ena/data/view/ERP001942&display=html), PRJNA59835
(http://www.ebi.ac.uk/ena/data/view/display=html&PRJNA
59835), PRJNA59819 (http://www.ebi.ac.uk/ena/data/view/
display=html&PRJNA59819), PRJNA59815 (http://www.
ebi.ac.uk/ena/data/view/display=html&PRJNA59815),
PRJNA59841 (http://www.ebi.ac.uk/ena/data/view/display=
html&PRJNA59841), PRJNA59843 (http://www.ebi.ac.uk/
ena/data/view/display=html&PRJNA59843), SRP004078
(http://www.ebi.ac.uk/ena/data/view/SRP004078&display=
html), SRP004076 (http://www.ebi.ac.uk/ena/data/view/SRP
004076&display=html), SRP004074 (http://www.ebi.ac.uk/
ena/data/view/SRP004074&display=html), SRP010181 (http://
www.ebi.ac.uk/ena/data/view/SRP010181&display=html) and
PRJEB4744 (http://www.ebi.ac.uk/ena/data/view/PRJEB47
44&display=html).
An implementation of PHLAT algorithm can be ob-

tained for academic users at https://sites.google.com/
site/phlatfortype.
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