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A B S T R A C T

Objectives: Residual hip dysplasia is the most common underlying condition leading to secondary osteoarthritis
(OA) of the hip. Subchondral bone alterations in OA secondary to hip dysplasia (HD-OA) are poorly investigated.
The aim of the present study was to analyse the microarchitecture, bone remodelling and pathological alterations
of subchondral bone in femoral heads from patients with HD-OA.
Methods: Subchondral bone specimens were extracted from both weight-bearing and non–weight-bearing regions
of femoral heads from 20 patients with HD-OA and 20 patients with osteoporotic femoral neck fracture, during
hip replacement surgery. Micro-CT and histological examination were performed to assess the microarchitecture
and histopathological changes.
Results: The weight-bearing subchondral bone showed significantly more sclerotic microarchitecture and higher
bone remodelling level in HD-OA as compared with osteoporosis. In the non–weight-bearing region, the two
diseases shared similar microarchitectural characteristics, but higher bone remodelling level was detected in HD-
OA. Distinct regional differences were observed in HD-OA, whereas the two regions exhibited similar charac-
teristics in osteoporosis. In addition, HD-OA displayed more serious pathological alterations, including sub-
chondral bone cyst, metaplastic cartilaginous tissue, bone marrow oedema and fibrous tissue, especially in the
weight-bearing region.
Conclusions: Osteoarthritic deteriorations of subchondral bone induced by hip dysplasia spread throughout the
whole joint, but exhibit region-dependent variations, with the weight-bearing region more seriously affected.
Biomechanical stress might exert a pivotal impact on subchondral bone homeostasis in hip dysplasia.
The translational potential of this article: The histomorphometric findings in the project indicate an early inter-
vention for the development of hip dysplasia in clinic.
Introduction

Hip dysplasia is a congenital or developmental deformation of the hip
joint, which refers to a spectrum of anatomical abnormalities involving
the acetabulum and adjacent femoral head [1]. It is the most common
orthopaedic defect in newborns [2,3]. Multifaceted risk factors,
including positive family history, female sex and breech presentation,
have been assumed to contribute to the pathogenesis of hip dysplasia [4,
ic Surgery, Shanghai Jiao Tong U

Research, School of Surgery, The
g), minghao.zheng@uwa.edu.au
ly to this work.

20 August 2019; Accepted 28 O

evier (Singapore) Pte Ltd on beha
5]. Once diagnosed, hip dysplasia is normally treated by nonsurgical
methods (closed reduction) or surgical methods (open reduction), to
achieve and maintain concentric reduction throughout childhood and
adolescence [6]. If no treatment is conducted or the primary treatment
fails, persistent residual hip dysplasia might ensue, which threatens
long-term hip function and leads to the development of osteoarthritis
(OA) [7–11]. Residual hip dysplasia has been reported to be the most
common underlying condition leading to secondary OA of the hip in
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adults [12–16].
The deficient coverage by the acetabulum over the femoral head in

hip dysplasia, which leads to reduced load-transferring areas and
abnormally high contact mechanical stress, might have a close relation-
ship with the osteoarthritic degradation [14,17–19]. A study by Kim et al.
showed that in patients with hip dysplasia, the biochemical integrity of
cartilage correlates with the pain and severity of the dysplasia, suggesting
that early OA changes are associated with cartilage integrity in the ace-
tabulum and femoral head [20]. Apart from cartilage, subchondral bone
is also an important structure in joint homeostasis, which is actively
involved in the initiation and progression of joint degeneration [21,22].
However, in contrast to the wealth of studies concerning subchondral
bone in primary OA [23–28], the alterations of subchondral bone in OA
secondary to residual hip dysplasia (HD-OA) remain poorly investigated.
The sparse studies evaluating subchondral bone in HD-OA were
restricted to radiographic imaging assessment [29,30]. Little is known
about the relevant bone remodelling status and pathological alterations.
In addition, previous studies have typically focused on the
weight-bearing region, largely overlooking the non–weight-bearing
region.

To address these knowledge gaps, we performed a comparative study
between patients with HD-OA and patients with osteoporosis (OP).
Microarchitecture, bone remodelling and pathological alterations were
analysed in subchondral trabecular bone (STB) from both weight-bearing
and non–weight-bearing regions in femoral heads from these patients.

Materials and methods

Patients

20 patients with HD-OA undergoing total hip replacement were
recruited in the study (17 females and 3 males, mean age 64.25 � 5.20
years, age range 58–74 years). As for HD-OA, the criterion for enrolment
in the study as a dysplastic hip was radiological evidence of dysplasia
with a lateral centre-edge angle less than 20�on the anteroposterior
radiograph [31]. When either an anatomic abnormality cannot be
determined or other specific causative entities are not identified, primary
OA is the diagnosis of exclusion. All these HD-OA patients had radio-
graphic evidence of moderate or severe OA (Grade�3), according to the
Kellgren and Lawrence criteria [32]. Exclusion criteria for HD-OA
Figure 1. The regions in the femoral head from which cylindrical specimens were ext
region (W region) and the inferior non–weight-bearing region (N region), respectivel
diagnosed with OP.
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patients were as follows: 1) patients with primary OA or OA secondary to
trauma or other identified disorders; 2) known metabolic or bone dis-
orders other than OA, which could affect bone metabolism, such as se-
vere renal impairment, thyroid or parathyroid disease and malignancy;
3) receiving treatment that affects bone metabolism such as anti-
resorptive drugs, calcitonin, thyroid or parathyroid hormone therapy, or
hormonal replacement therapy; or 4) history of hip osteotomy.

To avoid the disturbance of age and gender, 20 age- and gender-
matched patients with OP who underwent prosthetic hip replacement
for low-trauma femoral neck fracture were recruited for comparison (15
females and 5 males, mean age 67.15 � 7.70 years, age range 55–76
years). Exclusion criteria for OP patients were as follows: 1) patients with
hip fractures following severe traumas; 2) known metabolic or bone dis-
orders other than OP; or 3) receiving treatment that affects bone meta-
bolism. Owing to the relatively normal joint morphology and mechanical
loading, the femoral head from OP patients are normally chosen as a
control in previous human studies concerning hip OA [23,24,26,33,34].

Informed consent was obtained from each patient. The study protocol
was approved by the Human Research Ethics Committee of The Uni-
versity of Western Australia and complied with the Declaration of
Helsinki.

Specimen preparation

One cylindrical specimen of articular cartilage and subchondral bone
was extracted from the superior principal compressive weight-bearing
region (W region) in each femoral head [26,30,35] (Figure 1). Another
cylindrical specimen was extracted from the inferior non–weight-bearing
region (N region) [28,35] (Figure 1). According to different disease
conditions and extraction regions, specimens were categorised into four
groups: 1) specimens from the W region of osteoarthritic femoral heads
(OA-W group); 2) specimens from the N region of osteoarthritic femoral
heads (OA-N group); 3) specimens from the W region of osteoporotic
femoral head (OP–W group); and 4) specimens from the N region of
osteoporotic femoral head (OP–N group); each specimen (10 mm in
height and 9 mm in diameter) was prepared under continuous water
irrigation using a precision bone trephine. STB is defined as the most
superficial 5 mm of the specimen, beneath the cartilage and subchondral
bone plate [36–38]. Specimens were fixed in 4% paraformaldehyde in
phosphate buffered saline (PBS) for 5 days and stored in 70% ethanol.
racted: The red and blue parallel lines demonstrated the superior weight-bearing
y. The representative coronal (A) and sagittal (B) CT images were from a patient



Figure 2. Representative original, binary and colour micro-CT images of STB from the W and N regions in femoral heads from patients with HD-OA (A1–D1) and
patients with OP (A2–D2): 2D visualisation of the cross-section of STB from the W region (A1, A2) and the N region (C1, C2), 3D reconstruction of STB (B1, B2) from
the W region and the N region (D1, D2). The colour images represent mineralisation distribution in trabecular bone. Red, green, and blue represent low, intermediate,
and high mineral density, respectively. W: weight-bearing; N: non–weight-bearing; HD-OA: osteoarthritis secondary to hip dysplasia; OP: osteoporosis; STB: sub-
chondral trabecular bone.
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Micro-CT examination

Each specimenwas placed in a saline-filled acrylic case for acquisition
by a micro-CT scanner (Skyscan 1174, Skyscan, Kontich, Belgium). Im-
aging acquisition was conducted at a voltage of 50 kV, current of 800 μA,
an isotropic pixel size of 14.4 μm (1024 � 1024 pixel image matrix) and
with a 0.75-mm-thick aluminium filter for beam hardening reduction.
After scanning and reconstruction, the images were transferred with a
fixed threshold to binary images for analysis (Figure 2). The measure-
ment region was 8 mm in diameter, which was 1 mm smaller than the
diameter of the specimen, to avoid the inclusion of bone debris due to the
cutting procedure. The subchondral bone cyst (SBC) was also screened. In
samples with SBC, measurement was only conducted in the trabecular
region surrounding SBC, rather than the whole specimen. STB micro-
architecture was then analysed, using the built-in software.

The following microarchitectural parameters were calculated: bone
volume fraction (BV/TV) (%), trabecular thickness (Tb.Th) (μm), trabec-
ular separation (Tb.Sp) (μm), trabecular number (Tb.N) (1/mm), structure
model index (SMI), degree of anisotropy (DA), connectivity density
(Conn.D) (1/mm3) and bone mineral density (BMD) (mg/cm3) [39]. BMD
was obtained by conversion of x-ray attenuation coefficient, using a
calibration curve obtained from phantom specimens of known density.

Histology and histomorphometry

Each specimen was fixed, infiltrated and embedded in methyl meth-
acrylate. All bone blocks were trimmed and sectioned on a microtome
(Leica RM 2255, Wetzlar, Germany). Sections, 5 μm thick, were stained
by Goldner's Trichrome method. Histomorphometry was performed
using Bioquant Osteo Histomorphometry software (Bioquant Osteo,
Nashville, TN, USA). The following remodelling parameters were
measured in each ROI: thickness of osteoid (O.Th, μm), percentage
osteoid volume (OV/BV) (%), percentage osteoid surface (OS/BS) (%),
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specific osteoid surface (OS/BV) (mm2/mm3), percentage eroded surface
(ES/BS) (%), specific eroded surface (ES/BV) (mm2/mm3) and eroded
surface in bone tissue volume (ES/TV) (mm2/mm3) [40]. Pathological
alterations in the subchondral bone marrow were also assessed.
Statistical analysis

Statistical analyses were performed using the Statistics Package for
Social Sciences (SPSS for Windows, version 17.0; SPSS Inc, Chicago, IL,
USA). All microarchitecture and bone remodelling parameters were
expressed as means and 95% confidence intervals (95% CI). These data
were tested for normality using the Shapiro–Wilks test. Subsequently, as
applicable, a Student's t test (for data which are normally distributed) or
the Mann–Whitney U test (for the data which are not normally distrib-
uted) was used to test for significant differences between HD-OA and OP.
In addition, the comparisons between OA-W and OA-N, and between OP-
W and OP-N were analysed by paired Student's t-test (for the data which
are normally distributed) or Wilcoxon test (for the data which are not
normally distributed). Concerning pathological alterations, Pearson's chi-
square test was used to compare the frequency difference between OA-W
and OP-W, and between OA-N and OP-N. The comparisons of pathology
frequency between OA-W and OA-N, and between OP-W and OP-N were
analysed by McNemar's test. All hypotheses were two-tailed, and
p < 0.05 were considered statistically significant.

Results

Comparative analysis of microarchitecture and bone remodelling in STB
between HD-OA and OP

OP patients did not differ significantly from HD-OA patients in age
(p ¼ 0.104) and male/female ratio (p ¼ 0.695).



G. Li et al. Journal of Orthopaedic Translation 24 (2020) 190–197
In the W region, there were significant differences between HD-OA
and OP for all the microarchitecture parameters (Table 1, Figure 2). In
HD-OA, there were higher values of BV/TV, Tb.Th, Tb.N, Conn.D and
BMD, but lower values of Tb.Sp, SMI and DA. All the bone remodelling
parameters were also significantly higher in HD-OA, compared with OP
(Table 1, Figure 3). There were higher values of O.Th, OV/BV, OS/BS and
OS/BV, indicating a more active bone formation status. Bone resorption
activity was also higher, as suggested by higher erosion indexes including
ES/BS, ES/BV and ES/TV.

In the N region, none of the microarchitecture parameters differed
significantly between HD-OA and OP, with the exception of Tb.N and DA
Table 1
Comparison of microarchitecture and bone remodelling parameters in STB be-
tween HD-OA and OP.

Region Variables HD-OA (n ¼ 20) OP (n ¼ 20) P

W Microarchitecture
BV/TV (%) 60.21 (55.49,

64.92)
20.50 (16.72,
24.28)

<0.001*

Tb.Th (μm) 355.79 (333.82,
377.77)

187.14 (169.60,
204.69)

<0.001*

Tb.Sp (μm) 358.89 (305.63,
412.15)

703.42 (650.10,
756.75)

<0.001*

Tb.N (1/mm) 1.69 (1.60, 1.78) 1.07 (0.94, 1.19) <0.001*
SMI �0.88 (�1.47,

�0.29)
1.28 (1.02, 1.53) <0.001

DA 1.51 (1.38, 1.65) 1.87 (1.74, 2.00) <0.001
Conn.D (1/
mm3)

19.74 (15.55,
23.94)

8.71 (7.43, 10.00) <0.001

BMD (mg/cm3) 580.65 (539.94,
621.36)

204.88 (161.53,
248.22)

<0.001*

Histology
O.Th (μm) 11.71 (9.97,

13.46)
3.86 (3.21, 4.50) <0.001*

OV/BV (%) 6.17 (4.66, 7.69) 0.99 (0.69, 1.28) <0.001*
OS/BS (%) 66.51 (60.33,

72.69)
14.90 (10.93,
18.87)

<0.001*

OS/BV (mm2/
mm3)

5.20 (4.50, 5.91) 2.12 (1.55, 2.68) <0.001*

ES/BS (%) 15.98 (12.27,
19.69)

3.17 (2.19, 4.15) <0.001

ES/BV (mm2/
mm3)

1.26 (0.96, 1.57) 0.46 (0.30, 0.62) <0.001

ES/TV (mm2/
mm3)

0.59 (0.45, 0.72) 0.08 (0.06, 0.12) <0.001

N Microarchitecture
BV/TV (%) 20.17 (15.06,

25.27)
21.28 (18.88,
23.68)

0.234

Tb.Th (μm) 207.80 (177.65,
237.94)

193.99 (179.47,
208.51)

0.665

Tb.Sp (μm) 725.13 (635.95,
814.31)

686.02 (641.35,
730.69)

0.419*

Tb.N (1/mm) 0.95 (0.79, 1.11) 1.10 (1.01, 1.19) 0.048
SMI 1.55 (1.26, 1.85) 1.31 (1.14, 1.47) 0.135*
DA 1.61 (1.44, 1.77) 2.05 (1.88, 2.21) <0.001*
Conn.D (1/
mm3)

11.11 (7.97,
14.24)

8.85 (7.53, 10.17) 0.534

BMD (mg/cm3) 202.35 (146.01,
258.69)

222.38 (193.93,
250.82)

0.267

Histology
O.Th (μm) 5.41 (4.69, 6.14) 3.40 (2.95, 3.85) <0.001*
OV/BV (%) 2.10 (1.35, 2.86) 0.76 (0.51, 1.02) <0.001
OS/BS (%) 23.94 (18.60,

29.29)
13.87 (10.03,
17.70)

0.002

OS/BV (mm2/
mm3)

3.44 (2.49, 4.40) 1.88 (1.25, 2.50) 0.002

ES/BS (%) 4.90 (3.31, 6.49) 3.05 (1.19, 4.92) 0.005
ES/BV (mm2/
mm3)

0.69 (0.45, 0.93) 0.39 (0.19, 0.60) 0.008

ES/TV (mm2/
mm3)

0.15 (0.08, 0.22) 0.08 (0.03, 0.13) 0.002

Data are expressed as means (95% CI). Bold indicates statistically significant
difference. * indicates the data which are normally distributed.
W ¼ weight-bearing; N ¼ non–weight-bearing; HD-OA ¼ osteoarthritis second-
ary to hip dysplasia; OP ¼ osteoporosis; STB ¼ subchondral trabecular bone.
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(Table 1, Figure 2). However, all the bone remodelling parameters were
significantly different between HD-OA and OP (Table 1, Figure 3). There
were higher values of bone formation parameters in HD-OA, including
O.Th, OV/BV, OS/BS and OS/BV. Bone resorption parameters, including
ES/BS, ES/BV and ES/TV, were also higher in HD-OA.

Comparative analysis of microarchitecture and bone remodelling in STB
between W and N region

In HD-OA, all the microarchitecture parameters were significantly
different between the W and N region, except for DA (Table 2, Figure 2).
In STB from the W region, there were higher values of BV/TV, Tb.Th,
Tb.N, Conn.D and BMD, but lower values of Tb.Sp and SMI, compared
with that from the N region. Concerning bone remodelling, all the pa-
rameters were also significantly higher in the W region (Table 2,
Figure 3). There were higher values of bone formation parameters,
including O.Th, OV/BV, OS/BS and OS/BV. Bone resorption was also
more active in the W region, as indicated by higher values of ES/BS, ES/
BV and ES/TV.

In OP, none of the microarchitecture parameters were significantly
different between the W and N region, which was reciprocal to the sit-
uation in HD-OA (Table 2, Figure 2). Similarly, there were no significant
differences for all bone remodelling parameters between the W and N
region, except for ES/TV (Table 2, Figure 3).

Pathological alterations in subchondral bone

A variety of histologic features were detected in subchondral bone
(Table 3, Figure 4), including SBC, metaplastic cartilaginous tissue, bone
marrow oedema, fibrous tissue and normal bone marrow.

Specimens from the OA-W group exhibited the highest incidence of
SBC, metaplastic cartilage, and fibrous tissue. A small proportion was
detected with bone marrow oedema, and no specimen was identified
with normal bone marrow. Specimens from the OA-N group showed the
highest incidence of bone marrow oedema, together with relatively
lower frequency of SBC, fibrous tissue and normal bone marrow. No
metaplastic cartilage was detected in this group. Specimens from the OP-
W and OP-N groups manifested similar histological characteristics, with
high frequency of normal bone marrow and high incidence of bone
marrow oedema. No other pathological lesions were found in the two OP
groups.

Discussion

In this study, we analysed simultaneously the microarchitecture, bone
remodelling and pathological alterations in subchondral bone from both
weight-bearing and non–weight-bearing regions in HD-OA and OP. Our
results indicated that the weight-bearing subchondral bone exhibited a
more sclerotic microarchitecture and higher bone remodelling level in
HD-OA as compared with OP. In the non–weight-bearing region, the two
diseases shared similar microarchitectural characteristics, but higher
bone remodelling level was detected in HD-OA. Distinct regional differ-
ences were only observed in HD-OA, whereas the two regions exhibited
similar characteristics in OP. In addition, HD-OA displayed more serious
pathological alterations, especially in the weight-bearing region.

Mechanical loading is widely reported to play a vital role in bone
metabolism and structural adaption [26,41]. Interrupted load distribution
and high contact stress might contribute to the abnormal subchondral
bone alterations in HD-OA, especially in the weight-bearing region [18,
29,42]. In concordance with the limited studies concerning subchondral
bone in HD-OA [29,30], our results showed that the weight-bearing
subchondral bone in HD-OA was more sclerotic in microarchitecture
when compared with OP, with higher bone volume fraction, narrower
trabecular space, more and thicker trabeculae, and higher BMD. In addi-
tion, as indicated by higher Conn.D, lower SMI and DA, the
weight-bearing subchondral bone in HD-OA exhibited a more



Figure 3. Representative bone remodelling photomicrographs of STB from the W and N regions in femoral heads from patients with HD-OA (A, B) and patients with
OP (C, D). Stain: Goldner's Trichrome; magnification: � 100. W: weight-bearing; N: non–weight-bearing; HD-OA: osteoarthritis secondary to hip dysplasia; OP:
osteoporosis; STB: subchondral trabecular bone.

Table 2
Comparison of microarchitecture and bone remodelling parameters in STB between W and N regions.

Variables HD-OA (n ¼ 20) OP (n ¼ 20)

W N P W N P

Microarchitecture
BV/TV (%) 60.21 (55.49, 64.92) 20.17 (15.06, 25.27) <0.001 20.50 (16.72, 24.28) 21.28 (18.88, 23.68) 0.636*
Tb.Th (μm) 355.79 (333.82, 377.77) 207.80 (177.65, 237.94) <0.001 187.14 (169.60, 204.69) 193.99 (179.47, 208.51) 0.502*
Tb.Sp (μm) 358.89 (305.63, 412.15) 725.13 (635.95, 814.31) <0.001* 703.42 (650.10, 756.75) 686.02 (641.35, 730.69) 0.405*
Tb.N (1/mm) 1.69 (1.60, 1.78) 0.95 (0.79, 1.11) <0.001* 1.07 (0.94, 1.19) 1.10 (1.01, 1.19) 0.765
SMI �0.88 (�1.47, �0.29) 1.55 (1.26, 1.85) <0.001 1.28 (1.02, 1.53) 1.31 (1.14, 1.47) 0.772*
DA 1.51 (1.38, 1.65) 1.61 (1.44, 1.77) 0.391 1.87 (1.74, 2.00) 2.05 (1.88, 2.21) 0.052*
Conn.D (1/mm3) 19.74 (15.55, 23.94) 11.11 (7.97, 14.24) 0.001 8.71 (7.43, 10.00) 8.85 (7.53, 10.17) 0.847*
BMD (mg/cm3) 580.65 (539.94, 621.36) 202.35 (146.01, 258.69) <0.001 204.88 (161.53, 248.22) 222.38 (193.93, 250.82) 0.346*

Histology
O.Th (μm) 11.71 (9.97, 13.46) 5.41 (4.69, 6.14) <0.001* 3.86 (3.21, 4.50) 3.40 (2.95, 3.85) 0.233*
OV/BV (%) 6.17 (4.66, 7.69) 2.10 (1.35, 2.86) <0.001 0.99 (0.69, 1.28) 0.76 (0.51, 1.02) 0.052
OS/BS (%) 66.51 (60.33, 72.69) 23.94 (18.60, 29.29) <0.001* 14.90 (10.93, 18.87) 13.87 (10.03, 17.70) 0.627
OS/BV (mm2/mm3) 5.20 (4.50, 5.91) 3.44 (2.49, 4.40) 0.019 2.12 (1.55, 2.68) 1.88 (1.25, 2.50) 0.332
ES/BS (%) 15.98 (12.27, 19.69) 4.90 (3.31, 6.49) <0.001 3.17 (2.19, 4.15) 3.05 (1.19, 4.92) 0.079
ES/BV (mm2/mm3) 1.26 (0.96, 1.57) 0.69 (0.45, 0.93) 0.010 0.46 (0.30, 0.62) 0.39 (0.19, 0.60) 0.044
ES/TV (mm2/mm3) 0.59 (0.45, 0.72) 0.15 (0.08, 0.22) <0.001 0.08 (0.06, 0.12) 0.08 (0.03, 0.13) 0.145

Data are expressed as means (95% CI). Bold indicates statistically significant difference. * indicates the data which are normally distributed.
W ¼ weight-bearing; N ¼ non–weight-bearing; HD-OA ¼ osteoarthritis secondary to hip dysplasia; OP ¼ osteoporosis; STB ¼ subchondral trabecular bone.
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honeycomb-like structure, with plate-like trabeculae oriented along a
preferred direction [30,43]. In the present study, there was also an
abnormally high bone remodelling level in HD-OA. The active bone
remodelling might be a manifestation of reparative processes within the
areas of abnormally high stress [44,45]. Bone formation activity probably
outweighs that of bone resorption, culminating in a more sclerotic
microarchitecture in HD-OA [21]. Dysregulated osteoblast, osteoclast and
osteocyte phenotype might contribute to the abnormal alterations in
osteoarthritic subchondral bone [46–48]. In OP, the weight-bearing sub-
chondral bone showed a low bone remodelling level, which was consis-
tent with previous histomorphometric studies undertaken on transiliac
bone biopsies [49–52]. In these studies, no significant difference was
found in bone remodelling between OP and normal controls. However,
the existing low bone remodelling rate could not explain the poor
microarchitecture in OP. It has been proposed that elevated bone turnover
and high bone loss rate in OP may occur earlier in life, which is long
before the manifestation of osteoporotic fracture in later stage [50,51].
194
The inferior non–weight-bearing region is an habitual non-contact
area, without high compressive stress from the acetabulum [35]. In a
study by Crane et al. [53], patients with primary OA showed similar bone
volume fraction in the non–weight-bearing subchondral bone, compared
with old normal control (age>50 years). In the present study, HD-OA and
OP also demonstrated similar microarchitecture characteristics in this
region. Despite the structural similarity, elevated bone remodelling,
including bone formation and resorption, was observed in HD-OA. This
phenomenon indicated that the osteoarthritic alteration of subchondral
bone induced by hip dysplasia might involve the whole joint, although
the non–weight-bearing subchondral bone deterioration was not as
serious as that in the weight-bearing region. Our result was consistent
with previous studies [45,54], in which the non–weight-bearing sub-
chondral bone also showed elevated remodelling activity in OA than
normal. The increased bone formation activity may counteract the
simultaneously elevated resorption activity in HD-OA, leading to the
structural similarity between the two diseases.



Table 3
Histological findings in the bone marrow.

Histologic finding HD-OA (n ¼ 20) OP (n ¼ 20)

W N W N

SBC 16 (80%)*,** 2 (10%) 0 0
Metaplastic cartilaginous
tissue

14 (70%)*,** 0 0 0

Bone marrow oedema 5 (25%)*,** 13 (65%) 12
(60%)

10
(50%)

Fibrous tissue 20
(100%)*,**

5
(25%)***

0 0

Normal bone marrow 0*,** 6 (30%) 8 (40%) 10
(50%)

*p < 0.05 compared with OP-W.
**p < 0.05 compared with OA-N.
***p < 0.05 compared with OP-N.
W ¼ weight-bearing; N ¼ non–weight-bearing; HD-OA ¼ osteoarthritis second-
ary to hip dysplasia; OP ¼ osteoporosis; STB ¼ subchondral trabecular bone.
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Different regions within a joint might differ in the microarchitectural
pattern, reflecting different types and magnitudes of mechanical loadings
[35,55]. In the normal joint, a moderate higher bone volume fraction has
been observed in the weight-bearing subchondral bone, compared with
the non–weight-bearing region [53,56,57]. In primary OA, the regional
difference was highly significant, with more sclerotic microarchitecture,
elevated bone remodelling activity, higher apparent and mineral density
in the weight-bearing region [28,35,44,45,53,57,58]. In HD-OA, our
study also suggested a significant regional difference in both micro-
architecture and bone remodelling. This distinct regional variation might
be due to the abnormal metabolic response of relevant cells trying to
Figure 4. Representative histological findings in subchondral bone. (A) Subchondra
marrow oedema with swollen adipocytes (indicated by ★) and accumulation of extra
collagen texture and thin-walled blood vessels (indicated by arrows). (E) Normal bo
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maintain the load-bearing capability, resulting in a greater sensitivity to
the pathologically high mechanical stress in the weight-bearing region
[28,35]. However, in OP, no significant regional difference was found in
either microarchitecture or bone remodelling. This might be attributed to
the more serious bone deterioration in the weight-bearing region than in
non–weight-bearing region in OP, which offsets the original regional
difference observed in normal joint. It has been reported that bone loss in
OP was more severe in weight-bearing skeletal sites, compared with
non–weight-bearing counterparts [59–61].

A variety of pathological lesions, including SBC, metaplastic carti-
laginous tissue, bone marrow oedema and fibrous tissue, were observed
in subchondral bone. The pathology severity was lowest in both weight-
bearing and non–weight-bearing regions of OP, greater in the non–-
weight-bearing region of HD-OA, and highest in the weight-bearing re-
gion of HD-OA. The altered/disrupted biomechanical milieu may
contribute to these changes [37,62]. The pathological lesions may give
rise to the upregulation of proinflammatory cytokines and matrix met-
alloproteinases, subsequently leading to the bone remodelling and
structural alterations in osteoarthritic subchondral bone [63–65].

One limitation of the present study is the absence of normal subjects.
The old age of patients with terminal-staged HD-OA and OP undergoing
hip replacement makes the acquisition of age-matched normal specimens
difficult. Cadaveric specimens are not satisfactory, as the degenerative
changes with ageing process are often observed in “normal” hip joint
[66]. Another limitation of our study is the lack of inclusion of early-stage
patients with both diseases. This was unavoidable, because hip joint
replacement is not the treatment of choice in the early stage. In this sense,
the reflection of subchondral bone characteristics observed in the study is
not representative for the whole progression of both diseases. The third
limitation was the cross-sectional design and lack of dynamic bone
l bone cyst. (B) Metaplastic cartilaginous tissue (indicated by arrows). (C) Bone
cellular fluid (indicated by arrowheads). (D) Fibrous tissue (indicated by F) with
ne marrow. Stain: Goldner's Trichrome.
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remodelling assessment. A prospective study with both static and dy-
namic bone remodelling parameters is needed in the future. Finally, no
comparative study was conducted between patients with primary OA and
patients with HD-OA in the present study. Subchondral bone difference
between OA patients with different etiologies could be illuminated in
future studies.

In conclusion, we observed highly significant differences in the
microarchitecture, bone remodelling, and pathological alterations in the
weight-bearing subchondral bone, between HD-OA and OP. In the
non–weight-bearing region, the two diseases shared similar micro-
architecture characteristics, but higher bone remodelling level and
higher pathology severity were observed in HD-OA. These phenomena
suggest that the osteoarthritic deteriorations of subchondral bone
induced by hip dysplasia spread throughout the whole joint, but exhibit
region-dependent variations, with the weight-bearing region more seri-
ously affected. Biomechanical stress might exert a pivotal impact on
subchondral bone homeostasis.
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