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Abstract

Pulmonary fibrosis is a chronic and generally fatal disorder characterized by progressive formation 

of scar-like tissue in the lungs. Sialic acids are often found as the terminal sugar on extracellular 

glycoconjugates such as protein glycosylations. Sialidases, also known as neuraminidases, 

desialylate glycoconjugates. Serum amyloid P (SAP), a pentameric serum glycoprotein that has 

two sialic acids on each polypeptide, inhibits the differentiation of monocytes into fibrocytes 

and promotes human PBMCs to accumulate high extracellular levels of IL-10. When SAP is 

desialylated with sialidase, the effects of SAP on fibrocyte differentiation and IL-10 accumulation 

are strongly inhibited. Intriguingly, in patients with pulmonary fibrosis, there are increased levels 

of sialidase activity in the bronchoalveolar lavage fluid, increased levels of sialidases in the 

lungs, and decreased levels of SAP in the sera. To elucidate the role of SAP desialylation 

in idiopathic pulmonary fibrosis (IPF) pathogenesis, we purified SAP from the serum of IPF 

patients and healthy controls and measured the extent of sialylation and bioactivity of the 

purified SAP. We find that some IPF patients have abnormally high levels of the sialidase 

NEU3 in their sera and that the SAP in the sera of IPF patients has an abnormally high extent 

of desialylation and an abnormally low ability to inhibit fibrocyte differentiation and induce 

extracellular IL-10 accumulation by PBMC. These results suggest that SAP desialylation may play 

a role in IPF pathogenesis and that inhibiting NEU3 could be a potential therapeutic target for IPF. 

ImmunoHorizons, 2020, 4: 352–362.

INTRODUCTION

Fibrosing diseases, such as idiopathic pulmonary fibrosis (IPF), cirrhosis, and end-stage 

kidney disease, involve a progressive formation of scar tissue in internal organs that replaces 
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the normal tissue, causing organ failure and 30–45% of deaths in the United States (1). 

Fibrosis involves prolonged or recurrent structural cell injury, infiltration of blood leukocytes 

into the affected organs, activation and/or appearance of fibroblasts and fibroblast-like cells, 

and deposition of extracellular matrix proteins such as collagen (2). The mechanisms that 

allow fibrosis to continue to form scar tissue, rather than to stop as in normal wound healing, 

are poorly understood.

Sialic acids are often found as the terminal sugar on extracellular glycoconjugates such 

as protein glycosylations (3, 4). Sialidases (also known as neuraminidases) remove sialic 

acid from glycoconjugates. Serum amyloid P (SAP), a pentameric serum glycoprotein that 

has two sialic acids on each polypeptide, inhibits the differentiation of monocytes into 

fibroblast-like cells called fibrocytes (5, 6), potentiates cultures of PBMCs to accumulate 

high extracellular levels of the anti-inflammatory cytokine IL-10 (7, 8), and inhibits 

fibrosis in animal models and a phase 2 clinical trial in patients with IPF (9–12). In part 

because of its sialylation, SAP binds to the lectin receptor DC-SIGN (13). When SAP 

is desialylated with sialidase, there is decreased SAP binding to macrophages, dendritic 

cells, and monocytes, and the effects of SAP on fibrocyte differentiation and pro–IL-10 

accumulation are strongly inhibited (13). In addition, desialylated SAP is rapidly cleared 

from the circulation in humans (14, 15). Intriguingly, in patients with pulmonary fibrosis, 

there are increased levels of sialidase activity in the bronchoalveolar lavage fluid, increased 

levels of sialidases in the lungs (16–19), and decreased levels of SAP in the sera (7). Mice 

lacking the sialidase NEU3 develop very little fibrosis in the standard bleomycin model, 

suggesting that NEU3 plays a role in fibrosis (19). In this report, we find that some IPF 

patients have abnormally high levels of NEU3 in their sera and that the SAP in the serum of 

IPF patients has an abnormally high extent of desialylation and an abnormally low ability to 

inhibit fibrocyte differentiation and induce extracellular IL-10 accumulation by PBMC.

MATERIALS AND METHODS

Serum samples

Serum samples from deidentified healthy controls, stable IPF, and progressive IPF patients 

were collected at the Yale School of Medicine with approval from the Yale Institutional 

Review Board and with written consent from the donors. For IPF patients, inclusion and 

exclusion criteria were as described in the European Respiratory Society/American Thoracic 

Society consensus statement (20). Comprehensive clinical data (21), including age, sex, race 

and ethnicity, comorbidities, medications, and physiologic impairment as measured by the 

percentage of predicted forced vital capacity (FVC%) and percentage of diffusion capacity 

of carbon monoxide (DLCO%), were collected. IPF subjects were considered “progressive” 

if they died of any cause within 2 y of blood draw. Subjects were designated as “stable” if 

they were alive after 2 y (22, 23). Moreover, we also used the Gender, Age, and Physiology 

(GAP) index score as a check for IPF disease severity. This is a widely used measure of 

IPF severity that provides validated prognostic data on IPF subjects (21). Not surprisingly, 

the progressive subjects had an elevated GAP index score, indicating that they had severe 

disease with a higher risk of mortality. Age-matched normal controls were recruited from 

the local community. The serum samples were stored at −80°C.
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Serum protein, SAP, and NEU3 quantitation

Serum samples were thawed overnight at 4°C. Serum protein concentration was measured 

by OD 280/260 with a Synergy Mx plate reader (BioTek, Winooski, VT) with a Take3 

Multi-Volume Plate insert and Gen5 Take3 software module and reading at 260, 280, and 

320 nm to correct for nucleic acids and particulate matter, with 0.9% saline as a blank. 

Serum SAP concentration was measured as described previously (5). Serum NEU3 was 

measured as described previously (18), with the following modifications. Sera were diluted 

to a final concentration of 100 μg protein/well in 50 μl of PBS in a 96-well MaxiSorp 

Immune Plate (no. 442402; Thermo Fisher Scientific, Waltham, MA) and incubated at 

4°C overnight. Serial dilutions of recombinant human NEU3 (no. TP316537; OriGene, 

Rockville, MD) were also incubated and used for a standard curve. The solutions were 

removed, and the wells were blocked with 200 μl 2% BSA in PBS for 2 h at room 

temperature with shaking. Anti-human NEU3 Abs (no. 21630002; Novus Biologicals, 

Littleton, CO) were then added in 2% BSA/PBS for 3 h at room temperature, following 

the manufacturer’s directions. After washing, 1:1000 HRP-conjugated donkey anti-rabbit 

IgG (The Jackson Laboratory, Philadelphia, PA) in 2% BSA/PBS was added for 2 h. After 

washing, bound Abs were detected using a TMB Color Development Kit (BioLegend, San 

Diego, CA), and the reaction was stopped with 1 N HCl. Absorbances at 450 and 550 nm 

were measured using a Synergy Mx plate reader (BioTek).

SAP purification, SAP desialylation, and SAP resialylation

SP Sepharose Fast Flow beads (GE Healthcare Life Sciences, Piscataway, NJ) were washed 

three times with 10-bead volumes of binding buffer (20 mM Tris [pH 8.0], 140 mM NaCl, 

and 2 mM CaCl2) before use (24–26). Then, 1 ml of serum, 200 μl of binding buffer, and 

300 μl of SP Sepharose Fast Flow beads were mixed overnight at 4°C with gentle shaking. 

The beads were collected by centrifugation at 300 × g for 1 min, and the supernatant was 

removed. Three milliliters of binding buffer was added to the beads and mixed on a rotator 

for 5 min at room temperature. The beads were then washed four times with 3 ml wash 

buffer (20 mM Tris [pH 8], 400 mM NaCl, and 2 mM CaCl2) by mixing for 5 min and 

centrifugation at 300 × g for 1 min. After removing the supernatant from the fourth wash, 

300 μl of elution buffer (20 mM Tris [pH 8], 140 mM NaCl, and 50 mM EDTA [pH 8]) was 

added to the beads and mixed for 1 h at room temperature. After centrifugation at 300 × g 
for 1 min, the supernatant (first elution), which contained SAP, was collected. The elution 

step was repeated once by adding 300 μl fresh elution buffer and mixing for 30 min at room 

temperature. The second elution was collected and combined with the first elution. The 

combined elutions were buffer exchanged and concentrated five times at 10,000 × g with a 

100-kDa cutoff of Amicon Ultra-0.5 mL Centrifugal Filter (MilliporeSigma), following the 

manufacturer’s instructions. The SAP used for mass spectrometry was buffer exchanged into 

water, whereas the SAP used for cell experiments was buffer exchanged to 20 mM sodium 

phosphate buffer (pH 7.4). The SAP concentration was measured as described above for 

serum protein concentrations. SAP was incubated with sialidase from Arthrobacter (Sigma, 

St. Louis, MO) at 37°C for 24 h, following the manufacturer’s protocol. The desialylated 

SAP (a 127 kDa pentamer) was buffer exchanged as above with a 100 kDa cutoff spin 

filter into 20 mM sodium phosphate (pH 7.4) or water to remove the 88 kDa sialidase and 

reaction products. SAP was sialylated or resialylated with CMP-NANA (Sigma) and α (2, 
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6) sialyltransferase (Sigma) at 37°C for 4 h following the manufacturer’s protocol and then 

buffer exchanged as above into 20 mM sodium phosphate or water to remove the 50 kDa 

sialyltransferase and the CMP-NANA.

Western blots and silver staining

Serum samples were diluted 1:100 in 20 mM sodium phosphate (pH 7.4). Then, 5 μl of 

diluted serum was mixed with 5 μl of 2× protein sample buffer and heated at 95°C for 

10 min. SDS-PAGE was done following (5). For analysis of biotinylated peanut agglutinin 

(PNA; Vector Laboratories, Burlingame, CA) and biotinylated Sambucus nigra lectin (SNA; 

Vector Laboratories) staining, Western blots were preincubated with Carbo-Free Blocking 

Solution (Vector Laboratories) and then incubated with biotinylated PNA or SNA diluted in 

the same carbo-free solution at 2 μg/ml for 30 min at room temperature. For SAP staining, 

Western blots were incubated with 1 μg/ml rabbit anti-SAP Ab (Sigma) overnight at 4°C. 

Labeling was detected with streptavidin–HRP (BioLegend), as described previously (27). 

Purified and modified SAP samples were stained with silver nitrate (28) after SDS-PAGE.

Mass spectrometry

Commercially available purified human SAP (Fitzgerald Industries, Acton, MA) or SAP 

purified as described above were buffer exchanged into water and diluted with organic 

electrospray solvent to a final ratio of 50% acetonitrile (Thermo Fisher Scientific, Fair 

Lawn, NJ) and 1% formic acid (Agilent Technologies, Santa Clara, CA) at a concentration 

of ~10 μM SAP monomer for mass spectrometry. Three microliters of SAP samples were 

loaded into a single-use glass tip (Sutter Health, Novato, CA) and delivered to the mass 

spectrometer via Nano-electrospray. Voltage of 1300 V was applied through a platinum wire 

insert. The ion transfer tube temperature was set to 250°C. Mass spectrometric analysis was 

carried out on an Orbitrap Fusion instrument (Thermo Fisher Scientific, Bremen, Germany) 

equipped with a Nanospray Flex offline static spray source (Thermo Fisher Scientific). All 

SAP samples were analyzed in the Orbitrap at a resolution of 120,000 at m/z 400. The 

monitored m/z range was 1200–2000; the quadrupole was set to isolation mode in the same 

m/z range to improve the signal-to-noise ratio of the peaks of interest. Ten microscans were 

summed per scan. Data were acquired for a minimum of 3 min. Deconvolution of mass 

spectra was performed by the use of UniDec software (29) in the 24,600–25,600 Da mass 

range. Sialic acids on SAP monomer were quantified based on the relative absorbance at 

25,462 Da (with two sialic acids), 25,171 Da (with one sialic acid), and 24,880 Da (with no 

sialic acid).

PBMC isolation and culture, fibrocyte counts, and IL-10 assay

Human peripheral blood was collected into heparin tubes (BD Biosciences, San Jose, 

CA) from healthy adult volunteers who gave written consent and with specific approval 

from the Texas A&M University human subjects Institutional Review Board. PBMCs were 

isolated from the blood using Ficoll Paque Plus (GE Healthcare) and cultured, as described 

previously (6). Then, 5 × 105 cells/ml PBMCs were cultured in serum-free medium in the 

presence or absence of purified SAP or raw serum from healthy controls and IPF patients 

for 5 d at 37°C. Culture supernatants were removed and stored at −20°C, cells were fixed 

and stained, and fibrocytes were counted, as described previously (30). The day 5 culture 
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supernatants were analyzed with a human IL-10 ELISA kit (BioLegend), following the 

manufacturer’s directions. The IC50 of SAP and raw serum on fibrocyte differentiation 

was generated by fitting a sigmoidal dose-response curve with variable Hill coefficient 

to the combined data from three separate assays for each patient. SAP- and raw serum–

induced IL-10 concentrations were fitted to a second-order polynomial curve, using only 

the data from the control up to the first data point that was higher than twice the control 

value, defining EC2 as the concentration (in percentage) of serum needed to double the 

concentration of extracellular IL-10, and the EC2 was calculated according to the equation 

of the curve.

Statistics

All assays were done at least three independent times. For assays with cells, three different 

donors were used. Parameters used for correlation analysis are listed in Supplemental Table 

I. For values corresponding to groups of patients, the mean for each patient was calculated. 

These means (8 controls, 10 stable, and 10 progressive IPF patients, or 20 combined IPF 

patients) were then averaged to get the final mean, and the SEM of the 8, 10, or 20 values 

was then calculated and is presented as the SEM. Data were analyzed by t test or ANOVA 

using Prism software (GraphPad, La Jolla, CA).

RESULTS

Serum from IPF patients contains more NEU3 and more desialylated proteins

Sialic acid is a monosaccharide located at the terminal positions of glycoconjugates (3, 31). 

Sialidases, also known as neuraminidases, remove the terminal sialic acid (desialylation) 

from these glycoconjugates (17, 32). The desialylation of glycoproteins induces multiple 

functional changes in immunity (4, 33, 34). Sialidases such as NEU3 are elevated in the 

lungs of patients with pulmonary fibrosis (16–18). To determine if NEU3 can be detected 

in the serum of pulmonary fibrosis patients, serum samples from 8 healthy controls, 10 

stable IPF patients, and 10 progressive IPF patients (Table I) were assayed for NEU3 by 

ELISA. There were no significant differences between stable and progressive IPF patients in 

FVC%, DLCO%, and GAP index. The serum protein concentrations of patients and controls 

ranged from 44.7 ± 10.2 to 58.9 ± 0.5 mg/ml (mean ± SEM, n = 3), with no serum protein 

concentrations significantly different from any other (one-way ANOVA, both Tukey test 

and Bonferroni test). Coomassie Blue–stained gels of these serum samples also indicated 

that there were approximately equal serum protein concentrations (Fig. 1A). There were 

also no significant differences in the mean serum protein concentrations of the three groups 

(stable, progressive, and control; one-way ANOVA, both Tukey test and Bonferroni test). 

NEU3 increased in the serum of some IPF patients compared with healthy controls (Fig. 

1B). Serum NEU3 inversely correlated with DLCO% (Supplemental Fig. 1) but not FVC% 

(Supplemental Fig. 1) or GAP (Supplemental Fig. 1).

To determine if there is abnormal sialylation of serum components in pulmonary fibrosis, 

the above serum samples were electrophoresed on SDS-PAGE gels, and Western blots were 

stained with PNA and SNA, which detects nonsialylated carbohydrates (35) and sialylated 

carbohydrates (36) (Fig. 1A). Sera from IPF patients tended to show more PNA staining and 
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less SNA staining (integrated over all the bands in the gel) than healthy controls, and sera 

from patients with progressive IPF showed more PNA staining than sera from patients with 

stable IPF (Fig. 1A, 1C, 1D). For the IPF patients, the integrated PNA staining intensity 

of serum samples inversely correlated with FVC% (Supplemental Fig. 1) and correlated 

with serum NEU3 concentrations (Supplemental Fig. 1). SNA staining intensity correlated 

with FVC% (Supplemental Fig. 1), DLCO% (Supplemental Fig. 1), and total serum protein 

levels (Supplemental Fig. 1) and inversely correlated with serum NEU3 concentrations 

(Supplemental Fig. 1) and PNA staining intensity (Supplemental Fig. 1).

Serum from IPF patients has less SAP, and the SAP is more desialylated

The serum glycoprotein SAP, which has two α (2, 6)-linked terminal sialic acids on each 

~26 kDa monomer and thus 10 sialic acids on the pentamer (15), appears to have a calming 

effect on the innate immune system and inhibits fibrosis in animal models and in clinical 

trials (9, 37–39). The terminal sialic acid on SAP plays a key role in its ability to regulate 

the innate immune system, and when SAP is desialylated with sialidases, the effects of SAP 

are largely abrogated (13). Patients with measles, systemic sclerosis, mixed connective tissue 

disease, primary myelofibrosis, hepatitis, liver fibrosis, and IPF tend to have less SAP in the 

serum compared with healthy controls (7, 24, 40–42). In addition, a decrease of serum SAP 

was found in progressive diastolic dysfunction patients compared with more stable patients 

(43). In agreement with the previous results, using an ELISA with Abs against specific 

peptide domains SAP, and thus unaffected by the sialylation state of SAP, IPF patient sera 

contained less SAP than healthy controls (Fig.2A).

As a partial test of the hypothesis that the high levels of sialidases observed in pulmonary 

fibrosis cause SAP desialylation, we purified SAP from the serum samples (Supplemental 

Fig. 2) and measured the sialic acid on each SAP monomer by mass spectrometry 

(Supplemental Fig. 3). The mass of SAP with two sialic acids is 25,462 Da (44). SAP 

masses of 25,171 and 24,880 Da have also been observed (15), corresponding to the loss 

of one or both of the terminal sialic acids: one N-acetylneuraminic acid removed and one 

hydroxyl (−OH) added, leading to a net 291 Da loss for each sialic acid removed. In 

agreement with the previously published results, we also observed by mass spectrometry 

material at 24,880, 25,171, and 25,462 Da in samples of SAP purified from human serum 

(Supplemental Fig. 3).

To verify that the peaks identified as being sialylated SAP are indeed sialylated, commercial 

human SAP or SAP purified from the sera of four healthy control patients was desialylated 

with sialidase, and we observed that the 25,462 and 25,171 Da peaks identified as sialidated 

SAP decreased or disappeared (Supplemental Figs. 2B, 2C, 3). Treatment of the desialylated 

commercial SAP or SAP purified from five IPF patients with sialyltransferase and sialic 

acid caused a reappearance or increase of the sialidated SAP peaks, further verifying the 

identification of the 25,462 and 25,171 Da peaks as being sialidated (Supplemental Figs. 2B, 

2D, 3).

Compared with the SAP purified from the sera of healthy controls, SAP from the sera 

of IPF patients tended to have less sialic acid (Supplemental Figs. 2E, 3). Together, these 

results indicate that the SAP in the sera of IPF patients tends to have less sialylation 
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than the SAP in the sera of control patients. Serum SAP concentration correlated with 

FVC% (Supplemental Fig. 1), DLCO% (Supplemental Fig. 1), and SNA staining intensity 

(Supplemental Fig. 1) and inversely correlated with serum NEU3 (Supplemental Fig. 1) and 

PNA staining (Supplemental Fig. 1). SAP sialylation correlated with FVC% (Supplemental 

Fig. 1), SNA staining intensity (Supplemental Fig. 1), and serum SAP concentration 

(Supplemental Fig. 1) and inversely correlated with DLCO% (Supplemental Fig. 1), serum 

NEU3 (Supplemental Fig. 1), and PNA staining (Supplemental Fig. 1).

SAP from IPF patients has abnormally low bioactivity

Fibrocytes are CD45+/collagen I+ fibroblast-like cells that share characteristics of both 

hematopoietic and stromal cells (45). Fibrocytes are found in healing dermal wounds and 

fibrotic lesions and secrete collagen and enzymes that modify the extracellular matrix (46). 

In serum-free media, some blood monocytes differentiate into fibrocytes, and SAP inhibits 

this differentiation (5, 30). IL-10 is an anti-inflammatory cytokine, and SAP promotes 

the accumulation of extracellular IL-10 by macrophages (8, 13). To determine if SAP 

purified from the sera of IPF patients has an abnormal bioactivity, we treated human PBMCs 

from healthy volunteers for 5 d with the SAP that we purified from controls and patients. 

Fibrocyte numbers were counted, and IL-10 levels in the culture supernatants were assayed 

by ELISA. A commercial human SAP purchased from Fitzgerald Industries (Fitz-SAP) was 

used as a positive control in the assays. In the fibrocyte differentiation and IL-10 assays, 

SAP purified from the sera of healthy controls showed effects similar to the effects of the 

commercially available SAP and to previously published data (13, 30, 39), whereas the SAP 

from IPF patients showed a less inhibitory effect on fibrocyte differentiation and inducedless 

IL-10 accumulation than SAP from healthy controls (Fig. 3A, 3B). The IC50 of SAP purified 

from IPF sera on fibrocyte differentiation was higher than that of SAP purified from healthy 

controls (0.84 ± 0.05 versus 0.38 ± 0.03 μg/ml; mean ± SEM, n = 3, p < 0.0001 [t test]), and 

Fitz-SAP showed a similar IC50 to control serum SAP (0.33 ± 0.02 μg/ml). Defining EC2 as 

the concentration of SAP needed to double the concentration of extracellular IL-10, the EC2 

of IPF serum SAP on IL-10 accumulation was higher than that of control serum SAP (2.61 

± 0.25 versus 0.28 ± 0.06 μg/ml; mean ± SEM, n = 3, p < 0.0001 [t test]), and Fitz-SAP 

showed a similar EC2 to control serum SAP (0.25 ± 0.04 μg/ml; mean ± SEM, n = 3).

The IC50 of SAP on fibrocyte differentiation correlated with serum NEU3 (Supplemental 

Fig. 1) and PNA staining (Supplemental Fig. 1) and inversely correlated with DLCO% 

(Supplemental Fig. 1), SNA staining (Supplemental Fig. 1), serum SAP (Supplemental Fig. 

1), and SAP sialylation (Supplemental Fig. 1). The EC2 of SAP on IL-10 accumulation 

correlated with serum NEU3 (Supplemental Fig. 1), PNA staining (Supplemental Fig. 

1), and IC50 of SAP on fibrocyte differentiation (Supplemental Fig. 1) and inversely 

correlated with FVC% (Supplemental Fig. 1), DLCO% (Supplemental Fig. 1), SNA 

staining (Supplemental Fig. 1), serum SAP (Supplemental Fig. 1), and SAP sialylation 

(Supplemental Fig. 1).
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Desialylation of SAP from healthy controls and resialylation of SAP from IPF patients 
reverse their effects on fibrocyte differentiation and IL-10 accumulation

To test the hypothesis that the abnormally low bioactivity of SAP from IPF patients is 

due to its abnormally high desialylation, we desialylated SAP from healthy controls (De­

Con-SAP), resialylated some of this SAP, sialylated SAP from IPF patients, and tested 

their effects on PBMCs. Compared with SAP from healthy controls, desialylated control 

SAP showed less of an effect on inhibiting fibrocyte differentiation and promoting IL-10 

accumulation (Fig. 4A, 4B). Resialylation of the desialylated control SAP restored the SAP 

bioactivity (Fig. 4A, 4B). Conversely, sialylation of IPF patient SAP increased the ability 

of this SAP to inhibit fibrocyte differentiation and to promote IL-10 accumulation (Fig. 4C, 

4D). There was no discernable effect of any of the materials added to cells on viability 

or cell numbers during the experiments. These results suggest that the abnormally low 

bioactivity of IPF patient SAP is due to its abnormally low level of sialylation.

Serum from IPF patients has abnormally low bioactivity

A concentration of 0.1% or higher of human serum significantly decreases fibrocyte 

differentiation, and this effect is lost when SAP is depleted from the serum (5). Consistent 

with the previous results showing that IPF patients have abnormally low levels of serum 

SAP (7), raw sera from IPF patients showed less of an inhibitory effect on fibrocyte 

differentiation than control sera (Fig. 5A), and IPF patient sera induced less extracellular 

IL-10 accumulation than control sera (Fig. 5B). The IC50 of IPF patient sera on fibrocyte 

differentiation was higher than that of control sera (0.102 ± 0.004% versus 0.037 ± 0.003%; 

mean ± SEM, n = 3, p < 0.0001 [t test]). Defining EC2 as the concentration (in percentage) 

of serum needed to double the concentration of extracellular IL-10, the EC2 of raw IPF 

serum on IL-10 accumulation was higher than the raw control serum (0.16 ± 0.02% versus 

0.015 ± 0.003%; mean ± SEM, n = 3, p < 0.001 [t test]).

The IC50 of raw serum on fibrocyte differentiation correlated with serum NEU3 

(Supplemental Fig. 1), PNA staining (Supplemental Fig. 1), the IC50 of SAP on fibrocyte 

differentiation (Supplemental Fig. 1), and the EC2 of SAP on IL-10 accumulation 

(Supplemental Fig. 1) and inversely correlated with FVC% (Supplemental Fig. 1), SNA 

staining (Supplemental Fig. 1), serum SAP (Supplemental Fig. 1), and SAP sialylation 

(Supplemental Fig. 1). The EC2 of raw serum on IL-10 accumulation correlated with serum 

NEU3 (Supplemental Fig. 1), PNA staining (Supplemental Fig. 1), the IC50 of SAP on 

fibrocyte differentiation (Supplemental Fig. 1), the EC2 of SAP on IL-10 accumulation 

(Supplemental Fig. 1), and the IC50 of raw serum on fibrocyte differentiation (Supplemental 

Fig. 1) and inversely correlated with SNA staining (Supplemental Fig. 1), serum SAP 

(Supplemental Fig. 1), and SAP sialylation (Supplemental Fig. 1).

Because the major inhibitor of fibrocyte differentiation in serum is SAP (5), for each patient, 

the IC50 for purified SAP inhibiting fibrocyte differentiation, divided by the serum SAP 

concentration for that patient, should be roughly equal to the IC50 for the raw serum from 

that patient, inhibiting fibrocyte differentiation. As shown in Supplemental Fig. 1, this 

rough correlation appears to hold. Similarly, for each patient, the EC2 of SAP on IL-10 
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accumulation/serum SAP showed a rough correlation to the EC2 of raw serum on IL-10 

accumulation (Supplemental Fig. 1).

DISCUSSION

In this report, we observed abnormally high levels of NEU3 in the sera of some IPF patients. 

NEU3 is present on the extracellular side of the plasma membrane and can be released 

from cells (47–49). Combined with our previous observation of high levels of NEU3 in the 

fibrotic lesions of IPF patients (18), this suggests that in some IPF patients, NEU3 from 

fibrotic lesions can leak into the blood. Whether this NEU3 in the serum is bioactive is, 

however, unknown.

IPF patients tended to have increased levels of serum protein desialylation and increased 

levels of SAP desialylation. Both of these showed some, but not perfect, correlation with 

serum NEU3 levels, suggesting that the serum protein and serum SAP desialylation is due 

to a combination of the elevated NEU3 in fibrotic lesions and the serum. Other sialidases 

are also upregulated in pulmonary fibrosis, so these sialidases may also be responsible for 

desialylating SAP (16, 18, 19). Whether the desialylation of SAP occurs in the lungs, in the 

circulation, or in some other tissue is unknown. Because desialylated SAP is rapidly cleared 

from the blood in humans (14, 15), the low serum SAP levels in IPF patients (7) that we also 

observed may be due to SAP desialylation.

Compared with healthy donor SAP, IPF patient SAP had a poor ability to inhibit fibrocyte 

differentiation or increase IL-10 accumulation, and this could be reversed by sialylating the 

IPF patient SAP and mimicked by desialylating control SAP. The poor ability to inhibit 

fibrocyte differentiation and increase IL-10 accumulation was also observed for the sera of 

IPF patients. With the assumption that fibrocytes are profibrotic and IL-10 is antifibrotic, 

this indicates that IPF patients experience two parallel profibrotic mechanisms: low levels 

of SAP and the SAP that is there has poor bioactivity. Together, these results suggest SAP 

desialylation may play a role in IPF pathogenesis.

We previously found that the profibrotic cytokine TGF-β1 upregulates NEU3 and that 

NEU3 upregulates TGF-β1, suggesting the existence of a potential positive feedback loop 

in fibrosis (18, 19). From engineering principles, positive feedback loops can dramatically 

increase the response time and sensitivity of a system. To upregulate NEU3, instead of 

a conventional increase in transcription, cells responsive to TGF-β1 already have NEU3 
mRNA in their cytosol but keep much of it out of polysomes and, in response to TGF-β1, 

increase the translation of the existing NEU3 mRNA, suggesting a rapid response (50). We 

previously found that NEU3 inactivates SAP bioactivity (18) and that SAP inhibits wound 

healing (26). One effect of this rapid TGF-β1–NEU3–TGF-β1 feedback loop would thus be 

to inactivate SAP. Together, these effects may have evolved to potentiate a rapid response to 

wounding or other damage and a rapid initiation of wound healing.

Fibrosis appears to involve this feedback loop and other feedback loops, stuck in a gain >1 

state, in which the pathway components are continuously activating each other. Given the 

success of SAP therapy in inhibiting IPF in phase 2 trials and the observed deleterious effect 
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of IPF-associated desialylation on SAP, inhibiting NEU3 to inhibit SAP desialylation could 

be a potential therapeutic target for IPF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. The sera of some IPF patients contains more NEU3 and more desialylated 
glycoprotein.
(A) Top, Western blots of 1:100 diluted serum samples were stained with biotinylated PNA, 

which binds to desialylated glycoconjugates. Middle, Western blots of 1:100 diluted serum 

samples were stained with biotinylated SNA, which binds to sialylated glycoconjugates. 

Bottom, Total serum proteins were stained with Coomassie Blue. Images are representative 

of three independent experiments. P1-P10 are progressive IPF, S1-S10 are stable IPF, and 

C1–C8 are controls. (B) Serum NEU3 was measured by ELISA. (C) The PNA-stained bands 

in (A) were measured by densitometry. (D) The SNA-stained bands in (A) were measured by 

densitometry. For (B)–(D), each plot symbol is the average of three independent experiments 

from a patient or control. Lines and error bars represent the mean ± SEM of the averages 

in the indicated category. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (one-way 

ANOVA, Tukey test).
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FIGURE 2. Sera from IPF patients has less SAP, and the SAP is more desialylated.
(A) Serum SAP was measured by ELISA. (B) Sialic acids on a commercial human SAP 

purchased from Fitzgerald Industries (Fitz-SAP) were enzymatically removed with sialidase 

to generate desialylated Fitz-SAP (De-Fitz-SAP). Some of the De-Fitz-SAP was resialylated 

with sialyltransferase to generate resialylated De-Fitz-SAP (Re-Fitz-SAP). Sialic acids on 

the SAPs were detected by mass spectrometry. (C) Sialic acids were removed from the SAP 

purified from four randomly selected healthy controls (De-Control). The sialic acids on the 

SAPs were measured by mass spectrometry. (D) Sialic acids were enzymatically added to 

the SAP purified from five randomly selected IPF patients (Re-IPF). The sialic acids on the 

SAPs were measured with mass spectrometry. (E) Sialic acids on the SAP purified from 

serum samples were measured by mass spectrometry. For all panels, each plot symbol is 

the average of three independent experiments from a patient or control. Lines and error bars 

represent the mean ± SEM of the averages in the indicated category. (A, B, and E), **p < 

0.01, ***p < 0.001, ****p < 0.0001 (one-way ANOVA, Tukey test). (C and D), *p < 0.05, 

****p < 0.0001 (t test).
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FIGURE 3. SAP from IPF patients has abnormally low bioactivities.
(A) The Fitz-SAP and SAP purified from serum samples were added to PBMCs for 

5 d. Cells were stained with methylene blue, and fibrocytes were counted. (B) Culture 

supernatants were collected from (A) before staining. IL-10 in the supernatants was detected 

by ELISA. In (A) and (B), each Fitz-SAP value is the mean ± SEM of three independent 

assays. For control and IPF, assays were done three independent times for each serum donor, 

and an average was calculated for each donor. Values are mean ± SEM of the averages for 

the 8 controls or the 20 IPF patients. *p < 0.05, **p < 0.01, control versus IPF (t test).
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FIGURE 4. Desialylation of SAP from healthy controls and resialylation of SAP from IPF 
patients reverse their effects on fibrocyte differentiation and IL-10 accumulation.
(A) Purified SAP from four randomly selected healthy controls was enzymatically 

desialylated (De-Con-SAP), and some of the De-Con-SAP was then enzymatically 

resialylated (Re-Con-SAP). The different SAPs were added to PBMCs for 5 d. Cells were 

stained with methylene blue, and fibrocytes were counted. (B) Culture supernatants were 

collected from (A) before staining. IL-10 in the supernatants was detected by ELISA. For 

(A) and (B), assays were done three independent times for each of the four donors, and 

an average was calculated for each donor. Values are mean ± SEM of the four averages. 

*p < 0.05, **p < 0.01, control SAP versus De-Con-SAP (t test). (C) Purified SAP from 

five randomly selected IPF patients (IPF-SAP) was enzymatically sialylated (Re-IPF-SAP), 

and the SAPs were added to PBMCs for 5 d. Cells were stained with methylene blue, and 

fibrocytes were counted. (D) Culture supernatants were collected from (A) before staining. 
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IL-10 in the supernatants was detected by ELISA. For (C) and (D), assays were done three 

independent times for each of the five donors, and an average was calculated for each donor. 

Values are mean ± SEM of the five averages. *p < 0.05, **p < 0.01 (t test).
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FIGURE 5. Sera from IPF patients have abnormally low bioactivity.
(A) Raw sera from healthy controls and IPF patients were diluted and added to PBMCs. 

After 5 d, cells were stained, and fibrocytes were counted. (B) Culture supernatants were 

collected from (A) before staining. IL-10 in the supernatants was detected by ELISA. In (A) 

and (B), assays were done three independent times for each serum donor, and an average 

was calculated for each donor. Values are mean ± SEM of the averages for the 8 controls or 

the 20 IPF patients. *p < 0.05, ** p < 0.01, control versus IPF (t test).
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