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Abstract
Background Statistic scripts are often made by mathematicians and cryptic for clinicians or non-mathematician scientists. 
Nevertheless, almost all research projects necessitate the application of some statistical tests or at least an understanding 
thereof. The present review aims on giving an overview of the most common statistical terms and concepts. It further ensures 
good statistical practice by providing a five-step approach guiding the reader to the correct statistical test.
Methods and results First, different types of variables and measurements to describe a data set with means of descriptive 
statistics are introduced. The basic thoughts and tools of interferential statistics are presented, and different types of bias are 
discussed. Then in the final paragraph, the most commonly used statistical tests are described. A smartphone app accessible 
via QR code finally guides the reader in five steps to the correct statistical test, depending on the data used in order to avoid 
commonly performed mistakes.
Conclusions The five-step approach sets a new minimal standard for good statistical practice.

Keywords Statistics · Statistical test · Statistical analysis · Smartphone application · Five-step approach · Good statistical 
practice

Introduction

Statistic scripts are often made by mathematicians and cryp-
tic for clinicians and or non-mathematician scientists. Never-
theless, almost all research projects necessitate the applica-
tion of statistical tests. Medical practitioners and researchers 
are often confronted with statistical tests, be it as readers, 
authors, or peer reviewers of scientific publications. Misuse 
of statistical tests and wrongful data analyses are common 
and often remain unnoticed [1–7]. Reporting guidelines for 

main study types as e.g. presented by the equator network 
(https:// www. equat or- netwo rk. org) intend to improve health 
research literature by using stringent reporting recommen-
dations. As many scientific journals adapted these guide-
lines as a minimal standard, there is currently no readily 
available guide to tackle the problems of incorrect use of 
statistical tests. The aim of the present article is to support 
scientists in understanding the most frequently used statis-
tical expressions and to perform the most commonly used 
statistical tests independently and correct. The accompany-
ing smartphone app furthermore intends to avoid commonly 
performed statistical mistakes in health-related research by 
guiding the reader in five short steps to the correct statistical 
test depending on the data used.

1. Five-step approach for statistical analysis

Attempting to tackle the problems of inadequate statisti-
cal analyses in research, a five-step procedure was created 
consisting of five key questions that will lead the researcher 
to the correct statistical test:
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 I) What kind of data do you have?

a. Qualitative data
b. Quantitative data

 II) Do you have different observations of one single 
group of patients or is each observation from a dif-
ferent patient?

a. Paired observations
b. Non-paired observations

 III) Is your data normally distributed?

a. Normal data: parametric tests
b. Non-normal data: non-parametric tests

 IV) Do you want to know if groups are generally differ-
ent or specifically if one group is bigger/taller/higher 
than the other(s) and not the other way around?

a. One-tailed p value of a specific test
b. Two-tailed p value of a specific test

 V) How many groups do you compare: 2 or more?

a. Tests for two groups
b. Tests for more than two groups
  Find the according steps in the application, freely 

accessible through the following QR code:

Variables

A variable relates to everything that is measured in a study. 
A dependent variable represents the outcome or effect that 
is measured during an experiment, whereas the independent 
variable describes its cause or input. If an investigator, e.g., 
examines the effect of smoking on lung cancer incidence, 
“smoking” reflects the independent and “lung cancer” the 
dependent variable. More importantly variables are catego-
rized into qualitative and quantitative variables.

Qualitative variables

Qualitative variables can be categorized in either two 
(= binary, e.g., gender: male and female) or more catego-
ries (= nominal, where the variables nominate a condition, 
e.g., blood types). [8] Important to know: It is not allowed to 
calculate nominal variables; neither if numbers are assigned 
to nominal variables (e.g., male = 0, female = 1). Ordinal 
variables are a special subgroup of nominal variables where 
the groups can be arranged in a logic order. Often applied 

examples of ordinal variables are the stage of cancer or pain 
scores such as the visual analogue scale (VAS). There is 
a natural order: A VAS of 10 is worse than a 9. And even 
though a pain rating between zero and ten inveigles to say 
that a pain reduction from ten to eight is equal to a pain 
reduction from five to three, this might be incorrect as we 
cannot assume that all patients confronted with the VAS 
interpret each unit of increment similar to the previous or the 
following one. A tumor stage 3 is worse than a tumor stage 
1 of course, but one cannot say how much worse.

Quantitative variables

Quantitative variables describe measurable factors (such as 
age and height) that might be calculated similar to numbers 
in mathematics, which is why they are also called numeri-
cal. Quantitative variables are typically associated with units 
(e.g., years, cm).

Paired versus non‑paired observations

After defining the type of variable, the researcher needs 
to define whether his observation is paired or unpaired. 
Paired observations examine the same variable at two dif-
ferent conditions or measured repeatedly at different times. 
For example, the patient’s weight (quantitative variable) is 
measured before and after a specific diet; this would be a 
paired set of variables (pre- and post-intervention). More 
commonly, data are non-paired, where different independent 
groups are compared [9]. If we compare the weight of soc-
cer players versus basketball players, we compare unpaired 
data. Roughly, paired observations arise from the same indi-
vidual, whereas unpaired observations arise from different 
individuals. Important exceptions are natural pairs such as 
twins or—depending on the outcome—siblings, couples, or 
matched cohorts.

Parametric versus non‑parametric statistical 
procedures

To finally analyze the data, the correct statistical test needs 
to be chosen. Data distribution is therefore of great relevance 
(see Distribution of data): Parametric statistical procedures 
rely on assumptions about the shape of the distribution (i.e., 
assume a normal distribution) [10]. Non-parametric test rely 
on no or few assumptions about the shape or parameters of 
the population distribution [11].

Non-parametric tests are less powerful than their para-
metric counterparts. To assess if data is (likely) normally 
distributed, different tests for normality (including the 
Kolmogorov–Smirnov test or the Shapiro–Wilk test) may 
be applied [12, 13]. More important, there are some situ-
ations where it is evident that non-parametric tests MUST 
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be applied. These include data with outliers/extreme val-
ues, imprecise data, when the outcome has clear limits of 
detection (e.g,. a scale measuring the weight only up to 
150 kg), or skewed data (discordance of mean and median 
(see descriptive statistics)). In cases where ordinal data, such 
as the numeric rating scale (NRS) or ranked outcomes, are 
analyzed, the evidence is not that clear: Especially scores 
with many values, such as the Karnofsky performance sta-
tus scale [14, 15] (ranging from 0 to 100 percent) are often 
analyzed using parametric methods. With increasing sample 
size, the assumption of normality gets less important for 
basic parametric tests, such as the t-test, and these analyses 
deliver valid results. [11]

Descriptive statistics

Descriptive statistics are used to describe data with text, 
using tables and/or figures. The objective of descriptive sta-
tistics is to integrate and communicate the data to the reader 
without interpreting it. So the descriptive statistic describes 
our own data set, not the general population.

Median, mean, and mode

The median describes the 50% percentile, meaning that 50% 
of values are above and 50% are below to the median [16]. 
The median weight of five different patients weighting 50 kg, 
60 kg, 70 kg, 100 kg, and 110 kg is 70 kg. Interestingly, if 
the two heaviest patients are exchanged, the median weight 
of five patients weighting 50 kg, 60 kg, 70 kg, 200 kg, and 
300 kg remains 70 kg. Hence, the median is stable against 
outliers. Even if the heaviest patient was 3000  kg, the 
median remained 70 kg. Of note, the median may be used for 
ordinal (tumor stage, pain score, etc.) and for non-normally 

distributed quantitative (age, height, etc.) data. But again, a 
median VAS of 3 does not give us as much information as 
the count and percentage of each category.

The mean describes the average and is easily calculated 
by adding all measured values dividing by the total number 
of values [17]. Using our experiment above, the mean of the 
first cohort of patients is (50 kg + 60 kg + 70 kg + 100 kg + 
110 kg) = 390 kg / 5 = 78 kg. Exchanging the heaviest two 
patients again (as above), the mean would change to (50 k
g + 60 kg + 70 kg + 200 kg + 300 kg) = 680 kg / 5 = 136 kg. 
The mean is much less robust to outliers than the median. 
For normally distributed data (i.e., 50 kg, 60 kg, 70 kg, 
80 kg, 90 kg) mean and median are the same (70 kg). If the 
data is skewed (i.e., asymmetrically distributed around its 
mean), then mean and median differ from each other (see 
Distribution of data). This simple assessment can be used to 
get a first impression of our data and may already imply for 
which data non-parametric tests might be needed (Fig. 1). 
Finally, the mode is the most frequently occurring value 
within a set of numbers.

Range, interquartile range, variance, and standard 
deviation

One way to describe the distribution of data is the range 
that describes the difference between the highest and the 
lowest value (i.e., the difference between the 100th and the 
0th percentile). The range may be used for ordinal and for 
quantitative variables.

Often, researchers use the interquartile range (IQR), i.e., 
the difference between the 75th and the 25th percentile to 
describe distribution of data. One possibility to display per-
centiles (i.e., 25th percentile, median, and 75th percentile) 
are box plots that are commonly used by clinicians (Fig. 1).

Fig. 1  Box plot and columns displaying the height in a cohort of n = 9 
people. Boxplot representation (a): The line within the box repre-
sents the median, while the upper and lower part of the box display 
the 75th and the 25th percentile. The meaning of the whiskers has to 

be defined by the authors and may represent maximum and minimum 
values (example here), 5th and 95th percentile, or other values. The 
same data is represented as columns showing mean and SD (b). c 
Age according to body height in a scatterplot
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The distribution of data (around the mean) can be given 
as standard deviation (SD) or standard error of the mean 
(SEM), with the latter being calculated by dividing the SD 
by the square root of the number of values (n) (SEM = SD / 
√n) [17–19]. For normally distributed data, 68% of values 
lie within one SD, and 95.5% lie within two SDs from the 
mean. In general, quantitative variables which are normally 
distributed are reported as mean + SD and non-normal quan-
titative data are reported as median + range or median + IQR.

Qualitative variables on the other hand are typically 
reported as count and percentages.

Mean, median, and mode are considered measurements of 
the central tendency of a data set, while variance, standard 
deviation, range, and interquartile range are called measure-
ments of dispersion.

Distribution of data

One possibility to represent the distribution of data is a 
graph showing all possible values (or intervals) of the data 
(x-axis) and how often they occur (y-axis) (Fig. 2). The most 
well-known data distribution is the normal or Gaussian dis-
tribution, where the data builds a bell-shaped curve. We are 
often confronted with limited sample sizes, and therefore the 
assumption of normality is not satisfied. A simple indicator 
of a non-normal distribution is a large disconcordance of 
the mean and the median of a population. In cases where 
the same variable was used in a previous, larger study (e.g., 
age of patients undergoing laparoscopic appendectomy in a 
cohort of 2000 patients) and we know it was normally dis-
tributed, we may assume a normal distribution in our data 

set as well (only 20 patients undergoing laparoscopic appen-
dectomy), even if it is significantly smaller.

Relative risk and odds ratio

Often confusing, but easily understandable are the relative 
risk and the odds ratio. Taking a normal dice, the risk of 
throwing a “6” is 1/6 = 16.6% (i.e., the number of positive 
events (6) divided by all possible events (1, 2, 3, 4, 5, 6)), 
whereas the odds of dicing a “6” is 1/(6–1) = 1/5 = 20% (i.e., 
the number of positive events (6) divided by all negative 
events (1, 2, 3, 4, 5)). If we take two populations (e.g., 100 
smokers vs. 100 non-smokers) and we intend to calculate 
the incidence of lung cancer, both, the relative risk and the 
odds ratio may be applied. If 20 smokers and 5 non-smok-
ers sicken from lung cancer, the risk for smokers to sicken 
is 20/100 = 20%, and the risk for non-smokers to sicken is 
5/100 = 5%. Hence, the relative risk is 20/100 divided by 
5/100, which is 0.2/0.05 = 4, meaning that the risk to sicken 
from lung cancer is 4 times higher in smokers than in non-
smokers. Applying the same example, the odds to sicken 
for smokers is 20/(100–20) = 20/80 = 0.25, and the odds to 
sicken for non-smokers is 5/(100–5) = 5/95 = 0.052. Hence, 
the odds ratio is 0.25/0.052 = 4.75. Odds ratios are typically 
reported with the corresponding 95% confidence intervals.

Correlation

The concept of correlation describes the relationship 
between two variables. When one increases, we want to 
know whether the other one increases or decreases as well. 

Fig. 2  Frequency distribution 
of the heights of n = 60 patients. 
The black overlying curve 
represents the standard normal 
distribution and helps us to 
visually assess for normality. In 
our case, we see how difficult 
the visual assessment can be
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The correlation coefficient (r) ranges from − 1 to 1 indicating 
there is a strength (a value between 0 and 1) and a direction 
(- or +) of the correlation. In case of perfect linear correla-
tion, the direction and the quantity of the change are similar; 
both variables move with the same slope into the same direc-
tion (correlation coefficient equals 1). In case one variable 
behaves exactly opposite to the other, we have a negative 
correlation (with a maximum of − 1 as correlation coeffi-
cient). Depending on the distribution of our data, two main 
types of correlation analysis are used [20]: Pearson corre-
lation which can be applied on normally distributed data 
to describe a linear correlation in continuous data. Linear 
correlation means that an increase in one variable results 
in a proportional change (increase or decrease) of the other 
variable. And Spearman rank-order correlation which com-
pares ranks (and not the actual numbers) is applied in case 
of non-normal data and detects monotonic correlation in 
continuous or ordinal data. Monotonic correlation describes 
the change of one variable leading to a change in the other 
variable but not always to the same extent; the direction 
remains similar, but the proportion of change may vary. The 
translation from a correlation coefficient into words depends 
on the application and the research field. For further guid-
ance, we recommend the following publications by Evans 
[21] and Akoglu [22].

A fundamental aspect of correlation is that it has nothing 
to do with causation. Correlation describes a dependence of 
two variables not an actual causation. A famous and very 
memorable example is the correlation of stork populations 
and human birth rates across Europe [23]. There is a statisti-
cally significant linear correlation, but as we know, there is 
no causality. One changes with the other, but not necessarily 
because of the other. Another important aspect is that with 
Spearman correlation only monotonic and with and Pearson 
correlation only linear correlation are measured but other 
non-linear, very strong relationships may exist even if both 
correlation coefficients are 0.

Inferential statistics

If we want to know how many people in the world have 
brown eyes, we are unlikely to actually meet each person 
and note the eye color. What we can do is to look at a sub-
set of people (e.g., everyone in the same room), count the 
brown-eyed subgroup within this sample, and estimate the 
prevalence of brown eyes. The objective of inferential sta-
tistics is to infer the likelihood that the observed results can 
be generalized to other samples of individuals/to the general 
population [18]. The aim of a statistical analysis is usually 
to examine a set of data from a sample population and to 
extrapolate the findings to the complete population. There-
fore, the analyzed sample needs to be representative of the 
population. But as we do not know the complete population, 

we can only estimate how generalizable the results found in 
the sample are for the population.

Confidence interval

Generally, the 95% confidence interval is used in clinical 
(and other) studies [24]. The 95% confidence interval of the 
sample mean for five game scores 86, 95, 99, 106, and 120 
ranges from 85 to 117, meaning that the interval from 85 to 
117 includes the (unknown) population mean with a prob-
ability of 95%. Which means that the 95% CI of the sam-
ple mean game score states that if we repeat the complete 
experiment 100 times (selection of 5 individuals, observing 
their game score), 95 times the CI will overlie the population 
mean game score. And, 5 times it will not!

To calculate the 95% CI of a normally distributed sample 
mean, we use the standard error of the sample. The mean of 
this sample follows the normal distribution, and the standard 
error is a measure of dispersion of the normal distribution. 
For normally distributed data, 95% lies within the sample 
mean ± 1.96 dispersion (standard error). So, in case of a 
normal distribution, the sample mean ± 1.96 standard error 
reflects the 95% CI for the sample mean.

Null hypothesis and alternative hypothesis

H0 states that there is no relationship between two meas-
ured phenomena (e.g., smoking and lung cancer). Results 
are obtained by chance alone. The alternative hypothesis 
(H1) is the rival hypothesis (that there is a relationship). The 
H0 and H1 are mutually exclusive. They cover all possibili-
ties. In statistics, the researcher either rejects the H0 (In this 
case H1 is found to be true) or fails to reject the H0 (in case 
the H1 cannot be proven to be correct). The H0 cannot be 
proven. Our analyses focus on H1, which can be proven or 
fails to be proven.

Type I and type II errors

Since we can only approximate the truth with statistics, there 
is always a chance of error. A type I error is a false-positive 
finding, e.g., a positive pregnancy test in a man. It is the 
rejection of a true null hypothesis (i.e., one assumes a rela-
tionship in case there is no relationship), also called a rejec-
tion error. The probability of a type I error is described with 
the significance level alpha (α). The significance level has 
to be determined prior to the analysis of our data. Typically, 
a significance level of 0.05 is chosen. This means that if we 
repeat our hypothesis test 100 times and alpha is set at 0.05, 
we would falsely reject a true H0 in 5 cases or 5% of the 
times we repeated the hypothesis testing. Hence, choosing 
an alpha of 0.05, we tolerate false-positive findings (e.g., 
pregnancy tests in men) in 5% of cases.
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A type II error is a false-negative result, e.g., a negative 
pregnancy test in a pregnant woman. The probability of a 
type II error is denoted beta (β) or acceptance failure. If beta 
is set at e.g. 0.2, we would tolerate false-negative results 
(negative pregnancy tests in pregnant women) in 20% of 
cases.

In summary, whereas type I errors describe false findings, 
type II errors describe misses.

p Value

The p value (or probability value) tells us how well our data 
fits to the null hypothesis (0, not fit at all; 1, fits very well). 
It reflects the probability to get the current (or even a more 
extreme) result, given that the null hypothesis is true. As 
a probability, the p value ranges between 0 and 1. A low p 
value indicates strong evidence against the null hypothesis. 
If the p value is less than (or equal to) alpha (0.05, 0.01, or 
0.001, etc.), then the null hypothesis is rejected. The alterna-
tive hypothesis is then accepted [24].

Statistical power

We learned that beta (β) is the probability to make a type II 
error (= acceptance error; false-negative result). Statistical 
power of a hypothesis test is defined as 1-β, the probability 
to reject a false H0 (true negative result), which is in fact 
the probability of what we would like to achieve with our 
hypothesis test. In other words, 1-β is the probability of NOT 
committing a type II error [24, 25].

Sample size calculation

Intuitively, we know that the more eyes we are able check 
for color, or the more IQs we measure (= the bigger our 
sample from the world population), the better our estima-
tion of the truth about the prevalence of brown eyes or the 
mean IQ within the world population will be. This is one 

of the fundamentals in power and sample size calculation: 
This also explains that we sometimes find a statistically 
significant difference which has no clinical significance 
(e.g., a difference of one IQ point between two groups 
can be statistically significant but will not influence any 
clinical decisions).

Usually, we want to know how many individuals have 
to be included in a study to get a certain power in detec-
tion of a difference at a predefined significance level. 
There are several tools for sample size calculations with 
the G*Power calculation program (Version 3.1.9.3, http:// 
www. gpower. hhu. de/) being the one used by the present 
authors. Other freely available online tools are https:// 
www. statm ethods. net/ stats/ power. html, https:// www. stat. 
ubc. ca/ ~rollin/ stats/ ssize/, https:// clinc alc. com/ stats/ sampl 
esize. aspx, https:// www. gigac alcul ator. com/ calcu lators/ 
power- sample- size- calcu lator. php, and https:// select- stati 
stics. co. uk/ calcu lators/ sample- size- calcu lator- two- means/, 
just to name a few. To perform a sample size calculation, 
5 points need to be defined in advance: the significance 
level alpha, the power, the expected difference between 
the two compared groups, the expected standard devia-
tion, and the statistical test. Whereas the significance level 
alpha is typically set at 0.05, and the power at (no less 
then) 80%, we need to anticipate the latter two measures 
(from literature review or previous experiments) and then 
calculate the effect size (d). Let us say we plan to compare 
two operation methods, and our primary outcome is the 
duration of surgery, which means that we calculate the 
power for a t-test which we will apply to compare mean 
surgery time between the two groups. We know from the 
literature review or from pilot studies that mean operation 
time of operation method A is around 50 min, whereas 
mean operation method B takes about 35 min. Standard 
deviation is 18 min. The effect size is calculated as dif-
ference of the means (50 min – 35 min = 15 min) divided 
by the standard deviation (15 min / 18 min = 0.83). Effect 
sizes of 0.2, 0.5, and 0.8 correspond to small, moderate, 
and large effects, respectively. Figure 3 should help us to 

Fig. 3  Sample size calculation: 
Significance level alpha is set 
at 0.05. Power is set at 0.8. The 
effect size (calculated from 
expected difference between 
groups and standard deviation) 
is given on the x-axis, and the 
calculated sample size is given 
on the y-axis. Decreasing the 
effect size drastically increases 
the sample size needed for the 
experiment
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better understand the importance of the effect size on the 
calculated sample size.

When sample size calculation is conducted the same five 
parameters should be reported: the significance level alpha 
(usually 0.05), the power (usually ≥ 80%), the expected dif-
ference between the two compared groups, the expected 
standard deviation, and the statistical test. For the latter 
two, the source of information should be reported in order 
to make the power calculation replicable.

Possible consequences of an underpowered study and 
their impact on the false discovery rate have been widely 
discussed in the literature [26–28].

Hoenig and Heisey and Zhang and colleagues wrote inter-
esting articles on post hoc power analysis, which describes 
the calculation of statistical power after data collection and 
analysis of the data (post hoc = made or happening after 
an event, neither planned nor decided a priori) [29] [30]. 
However, in general, post hoc power analyses cannot be 
recommended and remain the subject of extensive debates. 
We refer the interested reader to the following references 
[29–33].

Bias

Bias is the tendency to over- or underestimate a parameter. 
It describes (confounding) factors that falsify an interpreta-
tion of an experiment [34]. For researchers, it is important to 
realize that bias can occur at any stage of a research project: 
during research planning (e.g., selection bias), during data 
analysis (e.g., detection bias), and during research report-
ing (e.g., reporting or publication bias) [35, 36]. Further-
more, researchers should be aware how they can avoid bias 
[37, 38]. We summarized the most important types of bias 
with examples and possible measures for their prevention 
in Table 1.

The most common statistical tests

Statistical mistakes in health-related research are common 
(probably more common than expected) and often go unde-
tected. These errors e.g. consist of using multiple t-tests for 
multiple group comparisons, using paired tests for unpaired 
data (and vice versa), using a t-test under non-parametric 
conditions, etc. and hence base on misunderstanding and/
or neglecting of basic statistical concepts [3]. As good sta-
tistical practice guidelines and recommendations in health-
related research are currently lacking, a five-step approach to 
the correct statistical test (depending on the used data) was 
created by the presenting authors that can be freely used as 
smartphone app by scanning the QR code attached. Depend-
ing on the type of data (i.e., parametric vs. non-parametric, 
paired vs. unpaired, etc.) are hereby assessed by five spe-
cific questions leading the reader to the correct statistical Ta
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analysis. As mentioned above, the first step includes the type 
of data we have. When we look at a typical surgical publi-
cation, we have typical outcome data such as length of stay 
at the hospital, numeric rating scale for postoperative pain 
levels or duration of a procedure (quantitative data), and 
binary data such as did the patient have a complication, was 
a chest tube inserted, and ordinal data (e.g., Clavien-Dindo 
classification of postoperative complications [39]). Depend-
ing on the data type, different statistical tests are applied.

Qualitative data analysis: crosstables 
and Chi‑squared test

For comparison of proportions of a qualitative variable, a 
simple crosstable (2 × 2 table) with a Chi-squared test can 
be used (Table 2). A crosstable typically includes 2 or more 

groups and the according proportions of a variable of inter-
est per group. Comparing e.g. the proportion of females in 
two groups (A and B), the H0 is that no difference between 
group A and B exists. H0 = proportion of females in group 
A = proportion of females in group B. The alternative 
hypothesis is that there is a different proportion of females 
in group A compared to B. This hypothesis can be tested 
with a Chi-squared test.

In cases of small sample sizes (in a 2 × 2 table, if one of 
the fields expected value is < 5; in larger tables, if > 20% of 
the fields have an expected value < 5), a Fishers exact test 
should be used [8]. The Fishers exact test is less powerful, 
but it does not require a minimal number of entries for each 
field. Some statistical programs automatically recommend 
the Fishers exact test for a certain sample size (e.g., SPSS, 
IBM corp., Armonk, NY) [40–42].

Quantitative data and ordinal data analysis

Figure 4 summarizes the most common statistical test and 
when they can or cannot be used.

t‑Test

For comparison of two means (and the according standard 
deviations) of a normally distributed,sample a Student t-test 

Table 2  Example of a crosstable (2 × 2)

The proportion of males and females within two groups of a sample 
population are compared

N (%) Group A Group B

Males 2 (20%) 4 (40%)
Females 8 (80%) 6 (60%)
Total 10 (100%) 10 (100%)

Fig. 4  Decision-making when a statistical test is applied
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can be used. In cases of paired comparisons (within group), 
a paired t-test is applied; for independent comparisons 
(between groups), an independent t-test is used. A t-test can 
be one-tailed or two-tailed. Whereas in one-tailed t-tests, 
the question is only one-directional (i.e., is group B bigger/
faster/larger than group A?), it is two-directional in two-
tailed t-tests (i.e., is there a difference between groups A 
and B, e.g. bigger or smaller?). If we perform a one-tailed 
t-test, we will not be able to say if group A is smaller/slower/
shorter than group B. Most of the time, a two-tailed t-test 
should be used. As Kwak and colleagues pointed out, the 
assumption of normality becomes less important with the 
increasing sample size for the t-test [43]. Generally, the 
assumption of equal variances needs to be fulfilled for a 
Student t-test; if not, the Welch’s t-test should be applied. 
A commonly used statistical software, such as SPSS (IBM 
corp., Armonk, NY), automatically delivers both results 
(Student t-test and Welch’s t-test along with the analysis of 
variance); the user simply needs to read the output correctly 
(Fig. 5).

ANOVA

The analysis of variance is helpful in cases where we want 
to examine the means of more than two independent groups.

One-way ANOVA can be used for comparison of the 
means of more than two independent groups [9].

Each level of the independent variable needs to be 
approximately normal distributed and homoscedastic. 
Homoscedasticity in one-way ANOVA is the assumption of 
homogeneity of variance, and most statistical software (e.g. 
SPSS) automatically assesses for homoscedasticity when a 
one-way ANOVA is performed. Homoscedasticity can be 
assessed with a Brown-Forsythe test or the more popular 
Levene test.

Repeated measures ANOVA can be used to compare 
the means of more than two dependent groups. It is the 
equivalent of a paired t-test for more than two groups. The 

assumptions are similar as for the one-way ANOVA: approx-
imately normal distributed variables and homoscedasticity.

When we use an ANOVA to compare a variable between 
more than two groups, we will get a single p value, stating 
that there is, or is not, a statistically significant difference 
somewhere between the groups we compare. But we will 
not yet know which groups are significantly different from 
each other. For example, when we analyze the preoperative 
stress levels of a patient depending on his mother tongue 
(English, Spanish, German, Italian or French). The analysis 
of variance might tell us that there is a significant difference 
somewhere within our data (the result of the ANOVA will 
be a single p value below 0.05), but we will not know which 
two groups are statistically significant different from each 
other: We have to compare group by group (e.g., English 
versus Spanish, English versus German, English versus Ital-
ian, English versus French, Spanish versus German, Spanish 
versus Italian, Spanish versus French, German versus Italian, 
German versus French, and Italian versus French). This is 
done with a post hoc analysis, which means that we “re-
examine” the same data to detect which groups are statisti-
cally significant different from each other. Again, software 
such as SPSS has automated tools for post hoc analyses after 
ANOVA; we advise the interested reader to consult the IBM 
homepage for further guidance [44].

Mann Whitney U test

Mann Whitney U test is also called the Wilcoxon rank sum 
test [45] which is used for comparison of non-normally dis-
tributed data between two independent groups [8].

It is the non-parametric equivalent of an independent 
t-test. It is not just a simple comparison of two medians; 
it is a test of location and shape. That is why it is possible 
that you find statistically significant differences between two 
groups with a (numerically) identical median. There is one 
important assumption that should be fulfilled when a Mann 
Whitney U test is used to compare medians: the assumption 
of same shapes of the distributions of the different groups.

Fig. 5  SPSS output for the comparison of the mean age between two 
groups. Framed in green, we see the Levene test for equality of vari-
ances, which SPSS automatically applies when we compare means 
with a t-test. A significant p Value for the Levene test means that 
homogeneity of variance cannot be assumed. Therefore, the second 
line from the SPSS output (framed in dark blue) “equal variances not 

assumed” contains the p value from the correct t-test (Welch’s t-test). 
In Fig. 5, the p value for the Levene Test is > 0.05, which means that 
homogeneity of the variance can be assumed: The upper line, framed 
in orange, contains the correct t-test (Student’s t-test); the p value we 
are looking for is p = 0.129
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Kruskal–Wallis test

If we want to compare more than two groups and the depend-
ent variable is ordinal or the dependent variable is continu-
ous but the assumptions for an ANOVA are not fulfilled, 
we can use a Kruskal–Wallis test. It is the non-parametric 
equivalent of a one-way ANOVA. It is an extension of the 
Wilcoxon rank sum test or Mann Whitney U test to examine 
more than two groups.

So this test is used for comparison of non-normally dis-
tributed, independent data of more than two groups.

Again, the assumption of same shapes of the distributions 
of the different groups should be fulfilled. In cases where 
we cannot use a one-way ANOVA due to heteroscedastic-
ity, the assumption of same shapes is not fulfilled either; 
the Kruskal Wallis is not a good option. In these cases, a 
Welch’s ANOVA can be used instead if your data is approxi-
mately normal distributed. In cases with heteroscedasticity 
and non-normally distributed data, there is no simple answer 
on which test should be performed; there are however some 
very useful publications on this matter [46, 47].

Wilcoxon signed‑rank test

It can be used for comparison of two non-normally distrib-
uted, paired measurements (e.g., median of a preoperatively 
measured characteristic compared to the median of the same 
characteristic measured postoperatively).

The Wilcoxon signed-rank test ranks the differences 
between the samples of interest. It includes the magnitude 
of the difference and the sign (positive or negative differ-
ence). An alternative is the sign test, which does not take 
into account the magnitude of the differences, only the signs. 
It is therefore less powerful and not used very often.

Friedman test

If more than two groups of paired data that are not normally 
distributed are compared, a Friedman test should be used. 
An example would be the patient’s quality of life (with a 
score from 1 to 100) at three different points in time.

Multiple testing: the Bonferroni correction

Researchers may have an outcome at several time points 
and hence perform multiple tests. To consider the problem 
of multiple comparisons, certain corrections are performed. 
Different correction methods tests have been described [10] 
with the Bonferroni correction being the most well-known: 
hereby, to achieve a global alpha-level of 5%, each indi-
vidual hypothesis is tested at α = 0.05/x, with x = the num-
ber of comparisons performed during the experiment [48]. 
The problem with multiple testing is that with each test we 

run, the probability of a type I error (false-positive find-
ing) increases. If we run 100 tests, the likelihood that at 
least one test will show a ‘significant’ (p < 0.05) difference 
between groups just by chance will be extremely high. To 
overcome this problem, a correction is applied. If we com-
pare pain scores (numeric rating scale, NRS) at different 
time points post-surgery with preoperative NRS, we repeat 
the same statistical test and must take the repeated measure-
ments into account. Hence, if we compare 10 postoperative 
NRS from different timeslots to the preoperative NRS of 
the same patient, we will have to divide alpha (0.05) by 10 
(0.05/10 = 0.005). Only p values of 0.005 or less would then 
be considered statistically significant differences. A clear 
disadvantage of the Bonferroni correction (and likely the 
reason why it is not performed routinely) is its stringency. 
By using the Bonferroni correction, we not only decrease the 
number of false positive but also of true positive findings. 
Hence, the Bonferroni correction is often considered too 
conservative. A less strict (but technically more difficult) 
correction is the Holm-Bonferroni method. Hereby, the com-
parisons with p values of < 0.05 are grouped with the lowest 
value being the first and the highest being the last compari-
son. The significance level alpha is decreasing from each 
comparison to the other (alpha/n, alpha/(n-1), alpha/(n-2)). 
Whenever a p value is higher than alpha, no further com-
parisons can be made. Applying our example above again, 
let us say we find that NRS on postoperative day 1 (POD 
1) compared to preoperative NRS are significantly higher 
(p = 0.0001), also on POD 5 compared to preoperative NRS 
values (p = 0.0003), and still higher on POD 10 (p = 0.03), 
and finally, lower on POD 30 (p = 0.04). Our first p value 
(0.0001) is lower than alpha/10 (0.005) and hence consid-
ered significant. Our second p value (0.0003) is lower than 
alpha/(10–1) = alpha/9 = 0.0056 and likewise considered 
significant. Our third p value (0.03) is higher than alpha/
(10–2) = alpha/8 = 0.0063. It is hence not a significant find-
ing. Furthermore, we have to stop here and are not allowed 
to do any further comparisons.

The five-step approach for statistical analysis can be 
accessed as smartphone application by scanning the follow-
ing QR code:

Limitations

The five-step approach includes some of the most basic and 
commonly applied statistical tests, and this manuscript aims 
to explain some of the basic concepts of statistical analysis. 
However, the application only covers common tests used 
in surgical publications, which is in fact only a small sam-
ple within a multitude of statistical concepts and tests. This 
manuscript cannot replace a book on statistical methods or 
the help of a statistician with a complex data set.
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Further development of the application

As we included a contact form in the app, we hope to col-
lect some real-life examples of statistical problems which 
might help and guide other clinicians when analyzing their 
own data. We plan a frequently asked question section 
where we publish (with the authors consent) some of the 
most frequent and important questions we receive.

The use of the application is meant to be freely avail-
able; we do not plan to commercialize the app, as we also 
do not offer professional statistical support but rather an 
exchange of thoughts and perspectives among colleagues.

Conclusion

We hereby present an easily accessible and straight for-
ward method for basic statistical analyses. The applica-
tion enables any non-mathematician to decide what sta-
tistical test might be applied to the data and especially 
what test should not be used and why. The five-step 
approach sets a new minimal standard for good statisti-
cal practice.
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