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Abstract

Background Statistic scripts are often made by mathematicians and cryptic for clinicians or non-mathematician scientists.
Nevertheless, almost all research projects necessitate the application of some statistical tests or at least an understanding
thereof. The present review aims on giving an overview of the most common statistical terms and concepts. It further ensures
good statistical practice by providing a five-step approach guiding the reader to the correct statistical test.

Methods and results First, different types of variables and measurements to describe a data set with means of descriptive
statistics are introduced. The basic thoughts and tools of interferential statistics are presented, and different types of bias are
discussed. Then in the final paragraph, the most commonly used statistical tests are described. A smartphone app accessible
via QR code finally guides the reader in five steps to the correct statistical test, depending on the data used in order to avoid

commonly performed mistakes.

Conclusions The five-step approach sets a new minimal standard for good statistical practice.

Keywords Statistics - Statistical test - Statistical analysis - Smartphone application - Five-step approach - Good statistical

practice

Introduction

Statistic scripts are often made by mathematicians and cryp-
tic for clinicians and or non-mathematician scientists. Never-
theless, almost all research projects necessitate the applica-
tion of statistical tests. Medical practitioners and researchers
are often confronted with statistical tests, be it as readers,
authors, or peer reviewers of scientific publications. Misuse
of statistical tests and wrongful data analyses are common
and often remain unnoticed [1-7]. Reporting guidelines for
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main study types as e.g. presented by the equator network
(https://www.equator-network.org) intend to improve health
research literature by using stringent reporting recommen-
dations. As many scientific journals adapted these guide-
lines as a minimal standard, there is currently no readily
available guide to tackle the problems of incorrect use of
statistical tests. The aim of the present article is to support
scientists in understanding the most frequently used statis-
tical expressions and to perform the most commonly used
statistical tests independently and correct. The accompany-
ing smartphone app furthermore intends to avoid commonly
performed statistical mistakes in health-related research by
guiding the reader in five short steps to the correct statistical
test depending on the data used.

1. Five-step approach for statistical analysis
Attempting to tackle the problems of inadequate statisti-
cal analyses in research, a five-step procedure was created

consisting of five key questions that will lead the researcher
to the correct statistical test:
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I) What kind of data do you have?

a. Qualitative data
b. Quantitative data

II) Do you have different observations of one single
group of patients or is each observation from a dif-
ferent patient?

a. Paired observations
b. Non-paired observations

III) Is your data normally distributed?

a. Normal data: parametric tests
b. Non-normal data: non-parametric tests

IV) Do you want to know if groups are generally differ-
ent or specifically if one group is bigger/taller/higher
than the other(s) and not the other way around?

a. One-tailed p value of a specific test
b. Two-tailed p value of a specific test

V) How many groups do you compare: 2 or more?

a. Tests for two groups
b. Tests for more than two groups
Find the according steps in the application, freely
accessible through the following QR code:

Variables

A variable relates to everything that is measured in a study.
A dependent variable represents the outcome or effect that
is measured during an experiment, whereas the independent
variable describes its cause or input. If an investigator, e.g.,
examines the effect of smoking on lung cancer incidence,
“smoking” reflects the independent and “lung cancer” the
dependent variable. More importantly variables are catego-
rized into qualitative and quantitative variables.

Qualitative variables

Qualitative variables can be categorized in either two
(=binary, e.g., gender: male and female) or more catego-
ries (=nominal, where the variables nominate a condition,
e.g., blood types). [8] Important to know: It is not allowed to
calculate nominal variables; neither if numbers are assigned
to nominal variables (e.g., male =0, female =1). Ordinal
variables are a special subgroup of nominal variables where
the groups can be arranged in a logic order. Often applied
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examples of ordinal variables are the stage of cancer or pain
scores such as the visual analogue scale (VAS). There is
a natural order: A VAS of 10 is worse than a 9. And even
though a pain rating between zero and ten inveigles to say
that a pain reduction from ten to eight is equal to a pain
reduction from five to three, this might be incorrect as we
cannot assume that all patients confronted with the VAS
interpret each unit of increment similar to the previous or the
following one. A tumor stage 3 is worse than a tumor stage
1 of course, but one cannot say how much worse.

Quantitative variables

Quantitative variables describe measurable factors (such as
age and height) that might be calculated similar to numbers
in mathematics, which is why they are also called numeri-
cal. Quantitative variables are typically associated with units
(e.g., years, cm).

Paired versus non-paired observations

After defining the type of variable, the researcher needs
to define whether his observation is paired or unpaired.
Paired observations examine the same variable at two dif-
ferent conditions or measured repeatedly at different times.
For example, the patient’s weight (quantitative variable) is
measured before and after a specific diet; this would be a
paired set of variables (pre- and post-intervention). More
commonly, data are non-paired, where different independent
groups are compared [9]. If we compare the weight of soc-
cer players versus basketball players, we compare unpaired
data. Roughly, paired observations arise from the same indi-
vidual, whereas unpaired observations arise from different
individuals. Important exceptions are natural pairs such as
twins or—depending on the outcome—siblings, couples, or
matched cohorts.

Parametric versus non-parametric statistical
procedures

To finally analyze the data, the correct statistical test needs
to be chosen. Data distribution is therefore of great relevance
(see Distribution of data): Parametric statistical procedures
rely on assumptions about the shape of the distribution (i.e.,
assume a normal distribution) [10]. Non-parametric test rely
on no or few assumptions about the shape or parameters of
the population distribution [11].

Non-parametric tests are less powerful than their para-
metric counterparts. To assess if data is (likely) normally
distributed, different tests for normality (including the
Kolmogorov—Smirnov test or the Shapiro—Wilk test) may
be applied [12, 13]. More important, there are some situ-
ations where it is evident that non-parametric tests MUST
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be applied. These include data with outliers/extreme val-
ues, imprecise data, when the outcome has clear limits of
detection (e.g,. a scale measuring the weight only up to
150 kg), or skewed data (discordance of mean and median
(see descriptive statistics)). In cases where ordinal data, such
as the numeric rating scale (NRS) or ranked outcomes, are
analyzed, the evidence is not that clear: Especially scores
with many values, such as the Karnofsky performance sta-
tus scale [14, 15] (ranging from 0 to 100 percent) are often
analyzed using parametric methods. With increasing sample
size, the assumption of normality gets less important for
basic parametric tests, such as the t-test, and these analyses
deliver valid results. [11]

Descriptive statistics

Descriptive statistics are used to describe data with text,
using tables and/or figures. The objective of descriptive sta-
tistics is to integrate and communicate the data to the reader
without interpreting it. So the descriptive statistic describes
our own data set, not the general population.

Median, mean, and mode

The median describes the 50% percentile, meaning that 50%
of values are above and 50% are below to the median [16].
The median weight of five different patients weighting 50 kg,
60 kg, 70 kg, 100 kg, and 110 kg is 70 kg. Interestingly, if
the two heaviest patients are exchanged, the median weight
of five patients weighting 50 kg, 60 kg, 70 kg, 200 kg, and
300 kg remains 70 kg. Hence, the median is stable against
outliers. Even if the heaviest patient was 3000 kg, the
median remained 70 kg. Of note, the median may be used for
ordinal (tumor stage, pain score, etc.) and for non-normally

distributed quantitative (age, height, etc.) data. But again, a
median VAS of 3 does not give us as much information as
the count and percentage of each category.

The mean describes the average and is easily calculated
by adding all measured values dividing by the total number
of values [17]. Using our experiment above, the mean of the
first cohort of patients is (50 kg + 60 kg +70 kg+ 100 kg +
110 kg) =390 kg / 5="78 kg. Exchanging the heaviest two
patients again (as above), the mean would change to (50 k
g+60 kg+70 kg+200 kg +300 kg) =680 kg / 5=136 kg.
The mean is much less robust to outliers than the median.
For normally distributed data (i.e., 50 kg, 60 kg, 70 kg,
80 kg, 90 kg) mean and median are the same (70 kg). If the
data is skewed (i.e., asymmetrically distributed around its
mean), then mean and median differ from each other (see
Distribution of data). This simple assessment can be used to
get a first impression of our data and may already imply for
which data non-parametric tests might be needed (Fig. 1).
Finally, the mode is the most frequently occurring value
within a set of numbers.

Range, interquartile range, variance, and standard
deviation

One way to describe the distribution of data is the range
that describes the difference between the highest and the
lowest value (i.e., the difference between the 100th and the
Oth percentile). The range may be used for ordinal and for
quantitative variables.

Often, researchers use the interquartile range (IQR), i.e.,
the difference between the 75th and the 25th percentile to
describe distribution of data. One possibility to display per-
centiles (i.e., 25th percentile, median, and 75th percentile)
are box plots that are commonly used by clinicians (Fig. 1).

= Boxplot b Column & Column
(median + IQR + whiskers) (mean + SEM) (mean + SD)
2 5 3 2.5+
i I 2.04 2.0+
__ 20 — |
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2 104 1.04 1.0
T
0.54 0.54 0.5+
0.0 0.0 0.0

Fig. 1 Box plot and columns displaying the height in a cohort of n=9
people. Boxplot representation (a): The line within the box repre-
sents the median, while the upper and lower part of the box display
the 75th and the 25th percentile. The meaning of the whiskers has to

be defined by the authors and may represent maximum and minimum
values (example here), Sth and 95th percentile, or other values. The
same data is represented as columns showing mean and SD (b). ¢
Age according to body height in a scatterplot
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The distribution of data (around the mean) can be given
as standard deviation (SD) or standard error of the mean
(SEM), with the latter being calculated by dividing the SD
by the square root of the number of values (n) (SEM=SD /
\/ n) [17-19]. For normally distributed data, 68% of values
lie within one SD, and 95.5% lie within two SDs from the
mean. In general, quantitative variables which are normally
distributed are reported as mean + SD and non-normal quan-
titative data are reported as median +range or median +IQR.

Qualitative variables on the other hand are typically
reported as count and percentages.

Mean, median, and mode are considered measurements of
the central tendency of a data set, while variance, standard
deviation, range, and interquartile range are called measure-
ments of dispersion.

Distribution of data

One possibility to represent the distribution of data is a
graph showing all possible values (or intervals) of the data
(x-axis) and how often they occur (y-axis) (Fig. 2). The most
well-known data distribution is the normal or Gaussian dis-
tribution, where the data builds a bell-shaped curve. We are
often confronted with limited sample sizes, and therefore the
assumption of normality is not satisfied. A simple indicator
of a non-normal distribution is a large disconcordance of
the mean and the median of a population. In cases where
the same variable was used in a previous, larger study (e.g.,
age of patients undergoing laparoscopic appendectomy in a
cohort of 2000 patients) and we know it was normally dis-
tributed, we may assume a normal distribution in our data

Fig.2 Frequency distribution

of the heights of n=60 patients.

The black overlying curve 10.0
represents the standard normal

distribution and helps us to

visually assess for normality. In

our case, we see how difficult 8.0
the visual assessment can be

6.0
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set as well (only 20 patients undergoing laparoscopic appen-
dectomy), even if it is significantly smaller.

Relative risk and odds ratio

Often confusing, but easily understandable are the relative
risk and the odds ratio. Taking a normal dice, the risk of
throwing a “6” is 1/6 =16.6% (i.e., the number of positive
events (6) divided by all possible events (1, 2, 3, 4, 5, 6)),
whereas the odds of dicing a “6” is 1/(6-1)=1/5=20% (i.e.,
the number of positive events (6) divided by all negative
events (1, 2, 3, 4, 5)). If we take two populations (e.g., 100
smokers vs. 100 non-smokers) and we intend to calculate
the incidence of lung cancer, both, the relative risk and the
odds ratio may be applied. If 20 smokers and 5 non-smok-
ers sicken from lung cancer, the risk for smokers to sicken
is 20/100=20%, and the risk for non-smokers to sicken is
5/100=5%. Hence, the relative risk is 20/100 divided by
5/100, which is 0.2/0.05 =4, meaning that the risk to sicken
from lung cancer is 4 times higher in smokers than in non-
smokers. Applying the same example, the odds to sicken
for smokers is 20/(100-20)=20/80=0.25, and the odds to
sicken for non-smokers is 5/(100-5) =5/95=0.052. Hence,
the odds ratio is 0.25/0.052 =4.75. Odds ratios are typically
reported with the corresponding 95% confidence intervals.

Correlation

The concept of correlation describes the relationship
between two variables. When one increases, we want to
know whether the other one increases or decreases as well.

N =60

Mean = 167.98

Standard deviation = 15.94
Median = 167

Minimum =134

Maximum = 198

160 180 200 220

Height in cm
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The correlation coefficient (r) ranges from— 1 to 1 indicating
there is a strength (a value between 0 and 1) and a direction
(- or+) of the correlation. In case of perfect linear correla-
tion, the direction and the quantity of the change are similar;
both variables move with the same slope into the same direc-
tion (correlation coefficient equals 1). In case one variable
behaves exactly opposite to the other, we have a negative
correlation (with a maximum of — 1 as correlation coeffi-
cient). Depending on the distribution of our data, two main
types of correlation analysis are used [20]: Pearson corre-
lation which can be applied on normally distributed data
to describe a linear correlation in continuous data. Linear
correlation means that an increase in one variable results
in a proportional change (increase or decrease) of the other
variable. And Spearman rank-order correlation which com-
pares ranks (and not the actual numbers) is applied in case
of non-normal data and detects monotonic correlation in
continuous or ordinal data. Monotonic correlation describes
the change of one variable leading to a change in the other
variable but not always to the same extent; the direction
remains similar, but the proportion of change may vary. The
translation from a correlation coefficient into words depends
on the application and the research field. For further guid-
ance, we recommend the following publications by Evans
[21] and Akoglu [22].

A fundamental aspect of correlation is that it has nothing
to do with causation. Correlation describes a dependence of
two variables not an actual causation. A famous and very
memorable example is the correlation of stork populations
and human birth rates across Europe [23]. There is a statisti-
cally significant linear correlation, but as we know, there is
no causality. One changes with the other, but not necessarily
because of the other. Another important aspect is that with
Spearman correlation only monotonic and with and Pearson
correlation only linear correlation are measured but other
non-linear, very strong relationships may exist even if both
correlation coefficients are 0.

Inferential statistics

If we want to know how many people in the world have
brown eyes, we are unlikely to actually meet each person
and note the eye color. What we can do is to look at a sub-
set of people (e.g., everyone in the same room), count the
brown-eyed subgroup within this sample, and estimate the
prevalence of brown eyes. The objective of inferential sta-
tistics is to infer the likelihood that the observed results can
be generalized to other samples of individuals/to the general
population [18]. The aim of a statistical analysis is usually
to examine a set of data from a sample population and to
extrapolate the findings to the complete population. There-
fore, the analyzed sample needs to be representative of the
population. But as we do not know the complete population,

we can only estimate how generalizable the results found in
the sample are for the population.

Confidence interval

Generally, the 95% confidence interval is used in clinical
(and other) studies [24]. The 95% confidence interval of the
sample mean for five game scores 86, 95, 99, 106, and 120
ranges from 85 to 117, meaning that the interval from 85 to
117 includes the (unknown) population mean with a prob-
ability of 95%. Which means that the 95% CI of the sam-
ple mean game score states that if we repeat the complete
experiment 100 times (selection of 5 individuals, observing
their game score), 95 times the CI will overlie the population
mean game score. And, 5 times it will not!

To calculate the 95% CI of a normally distributed sample
mean, we use the standard error of the sample. The mean of
this sample follows the normal distribution, and the standard
error is a measure of dispersion of the normal distribution.
For normally distributed data, 95% lies within the sample
mean + 1.96 dispersion (standard error). So, in case of a
normal distribution, the sample mean + 1.96 standard error
reflects the 95% CI for the sample mean.

Null hypothesis and alternative hypothesis

HO states that there is no relationship between two meas-
ured phenomena (e.g., smoking and lung cancer). Results
are obtained by chance alone. The alternative hypothesis
(H1) is the rival hypothesis (that there is a relationship). The
HO and H1 are mutually exclusive. They cover all possibili-
ties. In statistics, the researcher either rejects the HO (In this
case H1 is found to be true) or fails to reject the HO (in case
the H1 cannot be proven to be correct). The HO cannot be
proven. Our analyses focus on H1, which can be proven or
fails to be proven.

Type | and type Il errors

Since we can only approximate the truth with statistics, there
is always a chance of error. A type I error is a false-positive
finding, e.g., a positive pregnancy test in a man. It is the
rejection of a true null hypothesis (i.e., one assumes a rela-
tionship in case there is no relationship), also called a rejec-
tion error. The probability of a type I error is described with
the significance level alpha (). The significance level has
to be determined prior to the analysis of our data. Typically,
a significance level of 0.05 is chosen. This means that if we
repeat our hypothesis test 100 times and alpha is set at 0.05,
we would falsely reject a true HO in 5 cases or 5% of the
times we repeated the hypothesis testing. Hence, choosing
an alpha of 0.05, we tolerate false-positive findings (e.g.,
pregnancy tests in men) in 5% of cases.
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A type II error is a false-negative result, e.g., a negative
pregnancy test in a pregnant woman. The probability of a
type Il error is denoted beta (p) or acceptance failure. If beta
is set at e.g. 0.2, we would tolerate false-negative results
(negative pregnancy tests in pregnant women) in 20% of
cases.

In summary, whereas type I errors describe false findings,
type II errors describe misses.

p Value

The p value (or probability value) tells us how well our data
fits to the null hypothesis (0, not fit at all; 1, fits very well).
It reflects the probability to get the current (or even a more
extreme) result, given that the null hypothesis is true. As
a probability, the p value ranges between 0 and 1. A low p
value indicates strong evidence against the null hypothesis.
If the p value is less than (or equal to) alpha (0.05, 0.01, or
0.001, etc.), then the null hypothesis is rejected. The alterna-
tive hypothesis is then accepted [24].

Statistical power

We learned that beta (P) is the probability to make a type II
error (=acceptance error; false-negative result). Statistical
power of a hypothesis test is defined as 1-p, the probability
to reject a false HO (true negative result), which is in fact
the probability of what we would like to achieve with our
hypothesis test. In other words, 1-f is the probability of NOT
committing a type II error [24, 25].

Sample size calculation

Intuitively, we know that the more eyes we are able check
for color, or the more 1Qs we measure (=the bigger our
sample from the world population), the better our estima-
tion of the truth about the prevalence of brown eyes or the
mean IQ within the world population will be. This is one

Fig.3 Sample size calculation: Q
S . 3000 4
Significance level alpha is set 1
at 0.05. Power is set at 0.8. The 2500 4 @
effect size (calculated from 8 1
. [ Q
expected difference between 2 2000 Y
groups and standard deviation) g‘ .
is given on the x-axis, and the & 1500 -
calculated sample size is given ‘_.6‘2 .
on the y-axis. Decreasing the = 1000 -
effect size drastically increases :
the sample size needed for the 500 -
experiment ’
0

of the fundamentals in power and sample size calculation:
This also explains that we sometimes find a statistically
significant difference which has no clinical significance
(e.g., a difference of one IQ point between two groups
can be statistically significant but will not influence any
clinical decisions).

Usually, we want to know how many individuals have
to be included in a study to get a certain power in detec-
tion of a difference at a predefined significance level.
There are several tools for sample size calculations with
the G*Power calculation program (Version 3.1.9.3, http://
www.gpower.hhu.de/) being the one used by the present
authors. Other freely available online tools are https://
www.statmethods.net/stats/power.html, https://www.stat.
ubc.ca/~rollin/stats/ssize/, https://clincalc.com/stats/sampl
esize.aspx, https://www.gigacalculator.com/calculators/
power-sample-size-calculator.php, and https://select-stati
stics.co.uk/calculators/sample-size-calculator-two-means/,
just to name a few. To perform a sample size calculation,
5 points need to be defined in advance: the significance
level alpha, the power, the expected difference between
the two compared groups, the expected standard devia-
tion, and the statistical test. Whereas the significance level
alpha is typically set at 0.05, and the power at (no less
then) 80%, we need to anticipate the latter two measures
(from literature review or previous experiments) and then
calculate the effect size (d). Let us say we plan to compare
two operation methods, and our primary outcome is the
duration of surgery, which means that we calculate the
power for a z-test which we will apply to compare mean
surgery time between the two groups. We know from the
literature review or from pilot studies that mean operation
time of operation method A is around 50 min, whereas
mean operation method B takes about 35 min. Standard
deviation is 18 min. The effect size is calculated as dif-
ference of the means (50 min — 35 min= 15 min) divided
by the standard deviation (15 min / 18 min=0.83). Effect
sizes of 0.2, 0.5, and 0.8 correspond to small, moderate,
and large effects, respectively. Figure 3 should help us to
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better understand the importance of the effect size on the
calculated sample size.

When sample size calculation is conducted the same five
parameters should be reported: the significance level alpha
(usually 0.05), the power (usually >80%), the expected dif-
ference between the two compared groups, the expected
standard deviation, and the statistical test. For the latter
two, the source of information should be reported in order
to make the power calculation replicable.

Possible consequences of an underpowered study and
their impact on the false discovery rate have been widely
discussed in the literature [26-28].

Hoenig and Heisey and Zhang and colleagues wrote inter-
esting articles on post hoc power analysis, which describes
the calculation of statistical power after data collection and
analysis of the data (post hoc =made or happening after
an event, neither planned nor decided a priori) [29] [30].
However, in general, post hoc power analyses cannot be
recommended and remain the subject of extensive debates.
We refer the interested reader to the following references
[29-33].

Bias

Bias is the tendency to over- or underestimate a parameter.
It describes (confounding) factors that falsify an interpreta-
tion of an experiment [34]. For researchers, it is important to
realize that bias can occur at any stage of a research project:
during research planning (e.g., selection bias), during data
analysis (e.g., detection bias), and during research report-
ing (e.g., reporting or publication bias) [35, 36]. Further-
more, researchers should be aware how they can avoid bias
[37, 38]. We summarized the most important types of bias
with examples and possible measures for their prevention
in Table 1.

The most common statistical tests

Statistical mistakes in health-related research are common
(probably more common than expected) and often go unde-
tected. These errors e.g. consist of using multiple #-tests for
multiple group comparisons, using paired tests for unpaired
data (and vice versa), using a #-test under non-parametric
conditions, etc. and hence base on misunderstanding and/
or neglecting of basic statistical concepts [3]. As good sta-
tistical practice guidelines and recommendations in health-
related research are currently lacking, a five-step approach to
the correct statistical test (depending on the used data) was
created by the presenting authors that can be freely used as
smartphone app by scanning the QR code attached. Depend-
ing on the type of data (i.e., parametric vs. non-parametric,
paired vs. unpaired, etc.) are hereby assessed by five spe-
cific questions leading the reader to the correct statistical

Table 1 Types of bias

Prevention

Example

Description

Type of bias

Unemployed people more likely to participate in a time- Allocation concealment, sequence generation

Some participants are more likely to be selected for a

Selection bias

consuming study

study. Included participants are not representative of

the population

Blinding of outcome assessment

Detection of appendicitis by ultrasound in thin versus

A certain condition is more likely to be detected in a

Detection bias

obese patients

subgroup of participants due to systematic differences

in how outcomes are determined

Non-finding or negative finding is not published Preemptive determination of outcomes of interest

Positive results and correlations are more likely to be

Reporting bias

reported

A certain population is more likely to be excluded from Pregnancy, vulnerable patients such as small children or Preemptive definition of exclusion criteria and considera-

Exclusion bias

tion of these during discussion of the results found

elderly are not included

a study

Reporting of incomplete outcome data, intention to treat

Elderly people not reachable via email

Loss of follow-up of a certain subgroup of participants

Attrition bias

analysis
Double blinding

Group receiving a drug gets more frequent blood

Performance bias Systematic differences between the groups regarding

examinations

the exposure or care other than the intervention

Adapted from [38]
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analysis. As mentioned above, the first step includes the type
of data we have. When we look at a typical surgical publi-
cation, we have typical outcome data such as length of stay
at the hospital, numeric rating scale for postoperative pain
levels or duration of a procedure (quantitative data), and
binary data such as did the patient have a complication, was
a chest tube inserted, and ordinal data (e.g., Clavien-Dindo
classification of postoperative complications [39]). Depend-
ing on the data type, different statistical tests are applied.

Qualitative data analysis: crosstables
and Chi-squared test

For comparison of proportions of a qualitative variable, a

simple crosstable (2 x 2 table) with a Chi-squared test can
be used (Table 2). A crosstable typically includes 2 or more

Table 2 Example of a crosstable (2 x2)

N (%) Group A Group B
Males 2 (20%) 4 (40%)
Females 8 (80%) 6 (60%)
Total 10 (100%) 10 (100%)

The proportion of males and females within two groups of a sample
population are compared

groups and the according proportions of a variable of inter-
est per group. Comparing e.g. the proportion of females in
two groups (A and B), the HO is that no difference between
group A and B exists. HO =proportion of females in group
A =proportion of females in group B. The alternative
hypothesis is that there is a different proportion of females
in group A compared to B. This hypothesis can be tested
with a Chi-squared test.

In cases of small sample sizes (in a 2 X2 table, if one of
the fields expected value is < 5; in larger tables, if >20% of
the fields have an expected value <5), a Fishers exact test
should be used [8]. The Fishers exact test is less powerful,
but it does not require a minimal number of entries for each
field. Some statistical programs automatically recommend
the Fishers exact test for a certain sample size (e.g., SPSS,
IBM corp., Armonk, NY) [40-42].

Quantitative data and ordinal data analysis

Figure 4 summarizes the most common statistical test and
when they can or cannot be used.

t-Test

For comparison of two means (and the according standard
deviations) of a normally distributed,sample a Student z-test

What kind of data do | have?

Ordinal (ASA, VAS) versus quantitative (age, weight) variables?
Normal distribution versus non-normal distribution?
Paired versus unpaired observations?

Two or more groups to compare?

[

Parametric statistical test
Normal distribution
Mean (SD)

Independent sample t-

Paired-samples t-test

* Assess for homoscedasticity
(Levene test)

test
> 2 groups:
> 2 groups: Repeated measures
One-way ANOVA ANOVA

* Assess for homoscedasticity
(Levene test)

Fig.4 Decision-making when a statistical test is applied
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Non-parametric test
Non-normal distribution

Median (IQR)

Mann Whitney U Wilcoxon signed rank

(=Wilcoxon rank sum test) test
> 2 groups:
Kruskal-Wallis > 2 groups:

* Assumes same shape
* Can be used for ordinal data
as well

Friedman




Langenbeck's Archives of Surgery (2022) 407:529-540

537

can be used. In cases of paired comparisons (within group),
a paired t-test is applied; for independent comparisons
(between groups), an independent #-test is used. A #-test can
be one-tailed or two-tailed. Whereas in one-tailed #-tests,
the question is only one-directional (i.e., is group B bigger/
faster/larger than group A?), it is two-directional in two-
tailed z-tests (i.e., is there a difference between groups A
and B, e.g. bigger or smaller?). If we perform a one-tailed
t-test, we will not be able to say if group A is smaller/slower/
shorter than group B. Most of the time, a two-tailed #-test
should be used. As Kwak and colleagues pointed out, the
assumption of normality becomes less important with the
increasing sample size for the #-test [43]. Generally, the
assumption of equal variances needs to be fulfilled for a
Student #-test; if not, the Welch’s #-test should be applied.
A commonly used statistical software, such as SPSS (IBM
corp., Armonk, NY), automatically delivers both results
(Student #-test and Welch’s 7-test along with the analysis of
variance); the user simply needs to read the output correctly
(Fig. 5).

ANOVA

The analysis of variance is helpful in cases where we want
to examine the means of more than two independent groups.

One-way ANOVA can be used for comparison of the
means of more than two independent groups [9].

Each level of the independent variable needs to be
approximately normal distributed and homoscedastic.
Homoscedasticity in one-way ANOVA is the assumption of
homogeneity of variance, and most statistical software (e.g.
SPSS) automatically assesses for homoscedasticity when a
one-way ANOVA is performed. Homoscedasticity can be
assessed with a Brown-Forsythe test or the more popular
Levene test.

Repeated measures ANOVA can be used to compare
the means of more than two dependent groups. It is the
equivalent of a paired -test for more than two groups. The

Levene's Test for Equality ‘

of Variances

assumptions are similar as for the one-way ANOVA: approx-
imately normal distributed variables and homoscedasticity.

When we use an ANOVA to compare a variable between
more than two groups, we will get a single p value, stating
that there is, or is not, a statistically significant difference
somewhere between the groups we compare. But we will
not yet know which groups are significantly different from
each other. For example, when we analyze the preoperative
stress levels of a patient depending on his mother tongue
(English, Spanish, German, Italian or French). The analysis
of variance might tell us that there is a significant difference
somewhere within our data (the result of the ANOVA will
be a single p value below 0.05), but we will not know which
two groups are statistically significant different from each
other: We have to compare group by group (e.g., English
versus Spanish, English versus German, English versus Ital-
ian, English versus French, Spanish versus German, Spanish
versus Italian, Spanish versus French, German versus Italian,
German versus French, and Italian versus French). This is
done with a post hoc analysis, which means that we “re-
examine” the same data to detect which groups are statisti-
cally significant different from each other. Again, software
such as SPSS has automated tools for post hoc analyses after
ANOVA; we advise the interested reader to consult the IBM
homepage for further guidance [44].

Mann Whitney U test

Mann Whitney U test is also called the Wilcoxon rank sum
test [45] which is used for comparison of non-normally dis-
tributed data between two independent groups [8].

It is the non-parametric equivalent of an independent
t-test. It is not just a simple comparison of two medians;
it is a test of location and shape. That is why it is possible
that you find statistically significant differences between two
groups with a (numerically) identical median. There is one
important assumption that should be fulfilled when a Mann
Whitney U test is used to compare medians: the assumption
of same shapes of the distributions of the different groups.

Independent Samples Test

t-test for Equality of Means
95% Confidence Interval of the

Sig. (2- Mean Std. Error Difference
F Sig. t df tailed) Difference Difference Lower Upper
Age Equal variances assumed .800 373 -1.525 139 .129 = -2.145205 1.406272 -4.925654 .635245
Equal variances not assumed | -1.687 44.768 .098 | -2.145205 1.271301 -4.706104 415694

Fig.5 SPSS output for the comparison of the mean age between two
groups. Framed in green, we see the Levene test for equality of vari-
ances, which SPSS automatically applies when we compare means
with a #-test. A significant p Value for the Levene test means that
homogeneity of variance cannot be assumed. Therefore, the second
line from the SPSS output (framed in dark blue) “equal variances not

assumed” contains the p value from the correct 7-test (Welch’s #-test).
In Fig. 5, the p value for the Levene Test is> (.05, which means that
homogeneity of the variance can be assumed: The upper line, framed
in orange, contains the correct 7-test (Student’s #-test); the p value we
are looking for is p=0.129
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Kruskal-Wallis test

If we want to compare more than two groups and the depend-
ent variable is ordinal or the dependent variable is continu-
ous but the assumptions for an ANOVA are not fulfilled,
we can use a Kruskal-Wallis test. It is the non-parametric
equivalent of a one-way ANOVA. It is an extension of the
Wilcoxon rank sum test or Mann Whitney U test to examine
more than two groups.

So this test is used for comparison of non-normally dis-
tributed, independent data of more than two groups.

Again, the assumption of same shapes of the distributions
of the different groups should be fulfilled. In cases where
we cannot use a one-way ANOVA due to heteroscedastic-
ity, the assumption of same shapes is not fulfilled either;
the Kruskal Wallis is not a good option. In these cases, a
Welch’s ANOVA can be used instead if your data is approxi-
mately normal distributed. In cases with heteroscedasticity
and non-normally distributed data, there is no simple answer
on which test should be performed; there are however some
very useful publications on this matter [46, 47].

Wilcoxon signed-rank test

It can be used for comparison of two non-normally distrib-
uted, paired measurements (e.g., median of a preoperatively
measured characteristic compared to the median of the same
characteristic measured postoperatively).

The Wilcoxon signed-rank test ranks the differences
between the samples of interest. It includes the magnitude
of the difference and the sign (positive or negative differ-
ence). An alternative is the sign test, which does not take
into account the magnitude of the differences, only the signs.
It is therefore less powerful and not used very often.

Friedman test

If more than two groups of paired data that are not normally
distributed are compared, a Friedman test should be used.
An example would be the patient’s quality of life (with a
score from 1 to 100) at three different points in time.

Multiple testing: the Bonferroni correction

Researchers may have an outcome at several time points
and hence perform multiple tests. To consider the problem
of multiple comparisons, certain corrections are performed.
Different correction methods tests have been described [10]
with the Bonferroni correction being the most well-known:
hereby, to achieve a global alpha-level of 5%, each indi-
vidual hypothesis is tested at «=0.05/x, with x=the num-
ber of comparisons performed during the experiment [48].
The problem with multiple testing is that with each test we
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run, the probability of a type I error (false-positive find-
ing) increases. If we run 100 tests, the likelihood that at
least one test will show a ‘significant’ (p <0.05) difference
between groups just by chance will be extremely high. To
overcome this problem, a correction is applied. If we com-
pare pain scores (numeric rating scale, NRS) at different
time points post-surgery with preoperative NRS, we repeat
the same statistical test and must take the repeated measure-
ments into account. Hence, if we compare 10 postoperative
NRS from different timeslots to the preoperative NRS of
the same patient, we will have to divide alpha (0.05) by 10
(0.05/10=0.005). Only p values of 0.005 or less would then
be considered statistically significant differences. A clear
disadvantage of the Bonferroni correction (and likely the
reason why it is not performed routinely) is its stringency.
By using the Bonferroni correction, we not only decrease the
number of false positive but also of true positive findings.
Hence, the Bonferroni correction is often considered too
conservative. A less strict (but technically more difficult)
correction is the Holm-Bonferroni method. Hereby, the com-
parisons with p values of < 0.05 are grouped with the lowest
value being the first and the highest being the last compari-
son. The significance level alpha is decreasing from each
comparison to the other (alpha/n, alpha/(n-1), alpha/(n-2)).
Whenever a p value is higher than alpha, no further com-
parisons can be made. Applying our example above again,
let us say we find that NRS on postoperative day 1 (POD
1) compared to preoperative NRS are significantly higher
(»p=0.0001), also on POD 5 compared to preoperative NRS
values (p=0.0003), and still higher on POD 10 (p =0.03),
and finally, lower on POD 30 (p =0.04). Our first p value
(0.0001) is lower than alpha/10 (0.005) and hence consid-
ered significant. Our second p value (0.0003) is lower than
alpha/(10-1) =alpha/9 =0.0056 and likewise considered
significant. Our third p value (0.03) is higher than alpha/
(10-2)=alpha/8 =0.0063. It is hence not a significant find-
ing. Furthermore, we have to stop here and are not allowed
to do any further comparisons.

The five-step approach for statistical analysis can be
accessed as smartphone application by scanning the follow-
ing QR code:

Limitations

The five-step approach includes some of the most basic and
commonly applied statistical tests, and this manuscript aims
to explain some of the basic concepts of statistical analysis.
However, the application only covers common tests used
in surgical publications, which is in fact only a small sam-
ple within a multitude of statistical concepts and tests. This
manuscript cannot replace a book on statistical methods or
the help of a statistician with a complex data set.
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Further development of the application

As we included a contact form in the app, we hope to col-
lect some real-life examples of statistical problems which
might help and guide other clinicians when analyzing their
own data. We plan a frequently asked question section
where we publish (with the authors consent) some of the
most frequent and important questions we receive.

The use of the application is meant to be freely avail-
able; we do not plan to commercialize the app, as we also
do not offer professional statistical support but rather an
exchange of thoughts and perspectives among colleagues.

Conclusion

We hereby present an easily accessible and straight for-
ward method for basic statistical analyses. The applica-
tion enables any non-mathematician to decide what sta-
tistical test might be applied to the data and especially
what test should not be used and why. The five-step
approach sets a new minimal standard for good statisti-
cal practice.
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