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Background: Immunotherapy has become a new direction of current research

because the effect of traditional radiotherapy and chemotherapy on clear cell

renal cell carcinoma (ccRCC) is not satisfactory. T cell proliferation-related

genes (TRGs) play a pivotal role in tumor progression by regulating the

proliferation, activity, and function of immune cells. The purpose of our

study is to construct and verify a prognostic model based on TRGs and to

identify tumor subtypes that may guide treatment through comprehensive

bioinformatics analyses.

Methods: RNA sequencing data, clinical information, and somatic mutation

data of ccRCC are obtained from The Cancer Genome Atlas (TCGA) database.

We identified the prognosis-related TRGs which were differentially expressed

between normal and tumor tissues. After dividing the patients into a train set and

a test set according to proportion 1:1 randomly, the least absolute shrinkage and

selection operator (LASSO) and multivariate Cox regression analysis were

performed to construct a risk-stratified model. Its prediction performance

was verified. Then, Gene Set Enrichment Analysis (GSEA), principal

component analysis (PCA), tumor microenvironment (TME) analysis, and the

half-maximal inhibitory concentration (IC50) prediction were performed

between the different groups of patients. To further discuss the

immunotherapy between hot and cold tumors, we divided all patients into

two clusters based on TRGs through unsupervised learning. Analyzing the gene

mutation and calculating the tumor mutation burden (TMB), we further

explored the relationship between somatic mutations and grouping or

clustering.

Results: Risk-stratified model and nomogram predict the prognosis of ccRCC

patients accurately. Functional enrichment analyses suggested that TRGs

mainly focused on the biological pathways related to tumor progression and
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immune response. Different tumor microenvironment, drug resistance, and

TMB can be distinguished clearly according to both risk stratification and tumor

subtype clustering.

Conclusion: In this study, a new stratification model of ccRCC based on TRGs

was established, which can accurately predict the prognosis of patients.

IC50 prediction may guide the application of anti-tumor drugs. The

distinction between hot and cold tumors provides a reference for clinical

immunotherapy.

KEYWORDS

clear cell renal cell carcinoma, T cell proliferation, prognostic model, immune, tumor
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Introduction

The histological subtypes of renal cell carcinoma include

clear cell renal cell carcinoma (ccRCC), papillary renal cell

carcinoma (pRCC), chromophobe renal cell carcinoma

(chRCC), and some other rare subtypes. As the most common

type of renal cell carcinoma, ccRCC accounts for more than 70%

of all renal cell carcinomas. With the development of targeted

therapy and immunotherapy, more and more immune

checkpoint inhibitors (ICIs) have been used in clinics. For

example, anti-programmed cell death protein 1(PD1)

combined with anti-cytotoxic T lymphocyte antigen 4

(CTLA4) has become the first-line treatment of metastatic

renal cell carcinoma. Although new targeted and immune

agents continue to emerge and improve the prognosis of some

patients, these drugs are still not suitable for all patients (Linehan

and Ricketts, 2019; Samstein, et al., 2019; Kim, et al., 2021;

Klumper, et al., 2021; Wu, et al., 2021; Wu, et al., 2022).

Antineoplastic drugs are less effective in immunosuppressive

tumor microenvironment (TME) (Lai, et al., 2021). The tumor

immune microenvironment has become the focus of renal cell

carcinoma research. Therefore, it is necessary to further study the

immune landscape of ccRCC in order to promote the

development of immunotherapy and improve the prognosis of

patients.

Related to the proliferation and function of immune cells or

tumor progression, T cell proliferation-related genes (TRGs)

involve hundreds of protein-coding genes which include

CTLA4, HHLA2, PRKCQ, IL4I1, IL20RB, HOMER1, DHPS,

and so on. The ccRCC subgroup with hypomethylated

CTLA4 promoter was characterized by increased infiltration

of immune cells, especially CD8+T cells (Klumper, et al.,

2021). IL4I1 inhibited the proliferation of T cells including

CD8 + anti-tumor T cells and recruited suppressor immune

cells such as Tregs by activating Aryl hydrocarbon receptor

(AHR). IL4I1 promoted tumor progression by regulating TME

(Lasoudris, et al., 2011; Cousin, et al., 2015; Sadik, et al., 2020). In

ccRCC, HHLA2 was significantly correlated with necrosis and

microvascular invasion. HHLA2/PD-L1 co-expression was

significantly correlated with a high density of CD8 + and CD4

+ tumor-infiltrating lymphocyte (TIL). Combined with

KIR3DL3, HHLA2 inhibited T cells and NK cells. Targeting

HHLA2-KIR3DL3 alone to inhibit the checkpoint pathway or in

combination with PD1 blockade is a potential treatment (Zhou,

et al., 2020; Bhatt, et al., 2021). After knocking down the

expression of HHLA2 in human ccRCC, viability, migration,

and invasion of tumor cells were significantly inhibited and the

cell cycle was stagnated (Chen, et al., 2019). The function of Treg

can be inhibited by PRKCQ, while PRKCQ can activate Teff

(Zanin-Zhorov, et al., 2010). By inducing insulin resistance

phenotype, activated PRKCQ limited the access of tumor cells

to glucose. Therefore, PRKCQ has an anti-tumor effect on

tumors with high glycolysis including ccRCC (Sourbier, et al.,

2013). The expression of IL20RB is up-regulated in renal cell

carcinoma and IL20RB had crosstalk with neutrophils (Guo,

et al., 2022). In vitro, HOMER1 promoted the proliferation,

migration, and invasion of colorectal cancer cells by up-

regulating G3BP1 (Cui, et al., 2020). ERK-mediated Ser-233

phosphorylation of DHPS can affect cell proliferation, and

high expression of DHPS was associated with poor prognosis

of lung adenocarcinoma (Wang, et al., 2020). According to Kai-Li

Liu et al., DHPS inhibitors inhibited the invasion and migration

of melanoma cells (Liu, et al., 2021). TME consists of tumor cells,

stromal cells, infiltrating immune cells, cytokines and other

nontumour components. Positive and negative regulators of

T cell proliferation, such as CTLA4, can regulate TME by

affecting the clustering and number of T cells (Lai, et al.,

2021). Paying attention to these regulatory genes may

generate a new understanding of TME and classify tumor

subtypes according to immune infiltration.

The construction of a prognostic signature has been proved

to be a feasible strategy for predicting disease outcomes (Wu,

et al., 2021; Wu, et al., 2022). Recently, Mateusz Legut et al.

discovered some new positive regulators of T cell proliferation. It

is worth noting that most of these regulators can also enhance

T cell function and cytokine secretion. We found that there were

25 new TRGs (Legut, et al., 2022). Although there were many

prognostic models for ccRCC patients, the prediction effect of
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TRGs ensemble modeling based on the fusion of 25 new genes

and known TRGs is not reported. Therefore, we constructed a

prognostic model based on 8 TRGs by analyzing the data of

ccRCC patients in the TCGA database. Importantly, these eight

genes contain the key gene CTLA4. Homer scaffold protein 1

(HOMER1), which is one of 25 newly discovered TRGs, was also

contributed to the signature. What’s more, we also discussed the

immune landscape and drug therapy for patients with ccRCC.

The results of this study may provide alternative signature to

predict the prognosis and therapeutic effect of ccRCC.

Materials and methods

Data and genes collected

RNA transcriptome datasets and clinical data of ccRCC

patients are the latest releases from The Cancer Genome Atlas

(TCGA) database (http://tcga.cancer.gov/; 29 March 2022)

(Linehan and Ricketts, 2019).Somatic mutation data of ccRCC

patients obtained from the TCGA database were downloaded

through the University of California Santa Cruz Xena (UCSC

Xena; https://xena.ucsc.edu/). (Navarro Gonzalez, et al., 2021)

RNA-seq data included 541 tumor tissue samples and 72 normal

tissue samples. After excluding patients with a follow-up of fewer

than 30 days and missing data, we extracted clinical information

from 485 patients for our survival-related study. The raw count

data and TPM data from “STAR-Counts” were used for

differential analysis and subsequent analyses, respectively.

There were 1793 immune-related genes in the ImmPort

database (https://www.immport.org/). We searched the

AmiGO2 database (http://amigo.geneontology.org/amigo/) to

select human protein-coding genes involved in T cell

proliferation by keyword “regulation of T cell proliferation”

and removed duplicates. New T cell proliferation regulators

were extracted from the study performed by Mateusz Legut

et al. and incorporated with the TRGs from the

AmiGO2 database (Legut, et al., 2022).

Selection of differentially expressed TRGs

Using “edgeR” and “data.table” R packages, all

differentially expressed genes (DEGs) between normal and

tumor tissues were selected by setting: | Log2(fold change) | >
1 and false discovery rate (FDR) <0.05. R packages “ggplot2”

and “pheatmap” were used to plot volcano diagram and

heatmap. Protein-protein interaction (PPI) of differentially

expressed TRGs were generated through the STRING

database (https://www.string-db.org/) (Szklarczyk, et al.,

2021). The result was imported into Cytoscape (v3.9.0) for

visualization (Shannon, et al., 2003).

Establishment and validation of the
prognostic model

Using “caret” R package, we randomly divided samples into

train set and test set according to proportion 1:1. R packages

“survival”, “glmnet”, and “survminer” were used for modeling

and visualization. TRGs related to prognosis were screened by

univariate Cox proportional hazard regression analysis. We

utilized cross-validated LASSO regression to screen overall

survival (OS)-related TRGs without multicollinearity. Then, a

risk model based on TRGs was established by multivariate Cox

regression. Each patient’s risk score can be calculated according

to the model, and the formula is as follows:

risk score � ∑
n

x�1
(coef (mRNAx) × expr(mRNAx))

Coef(mRNAx) and expr(mRNAx) are the survival correlation

coefficient and expression of TRG involved in the construction of

the model, respectively. Patients were divided into low-risk group

and high-risk group according to the median risk score of all

patients (Wu, et al., 2022). Univariate Cox and multivariate Cox

regression analyses were performed to identify independent

variables of risk score and clinical information. Besides, we

visualized the accuracy of the model prediction by using

“survival”, “survminer”, “pheatmap”, and “timeROC” R

packages.

Nomogram and calibration

To illustrate that the predicted results have good consistency

with the actual situation, we utilized “survival”, “regplot”, and

“rms” R packages to establish the nomogram and calibration

curves of 1-, 2-and 3-year OS. Nomogram and calibration curves

were drawn based on prognostic risk score, age, pathological

grade, and tumor stage obtained from multivariate analysis.

Function and pathway enrichment
analysis

To determine the main biological properties, we use Gene

Ontology (GO) to annotate the functions of TRGs, including

molecular functions, cellular components, and biological

pathways. Kyoto Encyclopedia of Genes and Genomes

(KEGG) was used to analyze TRGs function and related high-

level genome function information. We also used Gene Set

Enrichment Analysis (GSEA) software (v4.2.3) to distinguish

the function and pathway enrichment between high- and low-

risk groups. | normalized enrichment score (NES) | > 1.5 and

FDR q-value < 0.05 were considered screening conditions.

“ClusterProfiler”, “org.Hs.eg.db”, “enrichplot”, “GOplot”,
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“ggplot2”, “grid”, “gridExtra”, and “plyr” R packages were used

for visualization.

Immune microenvironment-related
research

According to the results of the GSEA analysis, we

analyzed and visualized the immune microenvironment of

patients in high- and low-risk groups by using “scales”,

“tidyverse”, “ggpubr”, “ggExtra”, “reshape2”, “ggplot2”,

“ggtext”, and “limma” R packages. Combined with the

profile of infiltration estimation for all TCGA tumors

downloaded from the TCGA dataset, different software

including XCELL, TIMER, QUANTISEQ, MCPCOUNTER,

EPIC, CIBERSORT-ABS, CIBERSORT were utilized to

estimate the patients’ immune infiltration statuses. Besides,

using “GSVA”, “GSEABase”, “limma”, “ggpubr”, and

“reshape2” R packages, we calculated and visualized

immune cell score and immune function score by single-

sample gene set enrichment analysis (ssGSEA). Then, we

compared the TME score and immune checkpoint

activation between high- and low-risk groups by using

“estimate” R package.

Drug sensitivity

In addition, to evaluate the chemotherapeutic effect of ccRCC

patients, we used “pRRophetic” R package to calculate the half-

maximal inhibitory concentration (IC50) of chemotherapeutic

drugs. The result may guide individualized treatment.

Somatic mutation analysis and tumor
mutation burden

The somatic mutations of TRGs involved in constructing the

prognostic model were obtained from the cBioPortal database

(https://www.cbioportal.org/). According to the

“VarScan2 Variant Aggregation and Masking” data

downloaded through UCSC Xena, the differentially expressed

TRGs mutations of patients in high- and low-risk groups were

analyzed and visualized by using “GenVisR” R package.

Representing the number of mutations per million bases in

tumor tissue, TMB was associated with the prognosis of

patients (Samstein, et al., 2019). We showed the mutation

landscape of ccRCC patients in the TCGA database and

calculated the TMB score for each patient by using

“maftools”, “AnnotationDbi”, “SummarizedExperiment”,

“tidyverse”, “TCGAbiolinks”, and “org.Hs.eg.db”R packages.

Then we assessed the correlation between TMB score and risk

score based on the stratified model.

Clusters based on 8 prognostic TRGs

To explore the potential molecular subsets, we used the

“ConensusClusterPlus”, “Rtsne”, and “scatterplot3d” R

packages to identify the subgroups and performed 3D

principal component analysis (PCA), t-distributed stochastic

neighbor embedding (t-SNE), and Kaplan-Meier survival

analysis. We also performed immune microenvironment-

related analysis, calculated the TMB scores, and investigated

the drug sensitivities between different clusters to explore the

similarities and differences between clusters and high- and low-

risk groups.

Statistical analysis

All statistical analyses were carried out in R language (v4.1.3).

Single-factor analysis of variance was utilized to compare gene

expression between normal tissues and tumor tissues of ccRCC,

and FDR was calculated by Benjamini–Hochberg method.

Univariate Cox, cross-validated LASSO, and multivariate Cox

regression analyses were used to screen overall survival (OS)-

related TRGs which contributed to the risk model. The overall

survival rates of different groups and clusters were estimated by

Kaplan-Meier method, and the significance was tested by log-

rank. The independent prognostic value of the risk signature

regarding OS was evaluated by univariate and multivariate Cox

regression analyses. Wilcoxon rank-sum test was used for the

inter-group comparisons. Spearman rank correlation was used to

calculate the correlations between TMB and risk scores, between

TMB and expression of TRGs, and between immune cells

infiltration scores and risk scores, respectively. All statistical

tests take p < 0.05 as statistically significant.

Results

Identification and analyses of differentially
expressed TRGs

The main process of this study is shown in Figure 1. A total of

207 TRGs with protein-coding functions were obtained from

databases and an article (Legut, et al., 2022) (Figure 2A;

Supplementary Table S1). A total of 104 differentially

expressed TRGs were obtained by the intersection of all DEGs

with the TRGs gene set. Ninety up-regulated TRGs and fourteen

down-regulated TRGs were found in the differential analysis

between ccRCC and normal kidney tissues (Figure 2B;

Supplementary Table S2). We drew a volcano diagram to

show the differentially expressed TRGs (Figure 2C). Using the

analysis function of the STRING database, we constructed a PPI

network of differentially expressed TRGs. The top 10 hub genes

and pivotal modules were obtained through the “cytohubba”
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plugin and “MCODE” plugin of Cytoscape, respectively (Figures

2D,E). We found that the top 10 hub genes included CTLA4,

FOXP3, CD28, CD80, CD86, and IL2/4/6/10. According to the

previous study, CD28 can activate the PI3K/Akt/mTOR

pathway, which is closely related to the promotion of T cell

growth and proliferation. CTLA-4 and PD-1 can affect T cell

proliferation and function by inhibiting signal molecules in this

pathway (Maciver, et al., 2013).

Construction, validation, and evaluation of
the model

It was found that 39 mRNAs related to T cell proliferation

were significantly correlated with OS through univariate Cox

regression analysis (Figure 3A). We drew a heatmap based on the

expression of 39 TRGs (Figure 3B). Performing LASSO

regression, 14 TRGs were extracted when the first-rank value

of Log(λ) was the minimum possibility of deviation (Figures

3C,D). Then we performed multivariate Cox regression analysis

and got 8 TRGs to construct a risk-stratified model.

The risk scores were calculated as follows: risk score =

CTLA4 × (0.2337) + HOMER1 × (0.2690) + Protein kinase C

theta (PRKCQ) × (−0.2833) + Transmembrane 131 like

(TMEM131L) × (−0.3749) + Interleukin 4 induced 1(IL4I1) ×

(0.4199) + Deoxyhypusine synthase (DHPS) × (0.3211) +HERV-

H LTR-associating 2 (HHLA2) × (−0.2633) + Interleukin

20 receptor subunit beta (IL20RB) × (0.1564).

According to the risk score formula, we divided the patients

into high- and low-risk groups on average. To evaluate the

difference in survival time and survival state between the two

groups of patients, we drew survival curves, heatmaps, and so on

(Figures 4A–L). As can be seen from the figures, the prognosis of

the high-risk group was significantly worse than that of the low-

risk group, and there was a significant difference in the

expression of 8 TRGs participating in the building model

between these two groups. Importantly, the model is suitable

not only for patients with early tumor staging but also for patients

with advanced stages (Figures 4M,N).

The results of univariate Cox and multivariate Cox

regression analysis of clinical information were consistent

(Figures 5A,B). There was no significant correlation

between gender and prognosis, while age, pathological

grade, tumor stage, and risk score were negatively

correlated with good prognosis. Among the univariate Cox

analysis results, the hazard ratios (HR) and 95% confidence

interval (CI) of the risk score were 1.167 and 1.136–1.200 (p <
0.001), respectively. In multivariate Cox regression analysis,

the HRs of risk score, age, tumor stage, and pathological grade

were 1.107, 1.030, 1.614, and 1.296, respectively (p < 0.05). As

independent prognostic factors, risk score, age, tumor stage,

and pathological grade were used to create nomogram plots

that predicted 1-, 3-, and 5-year OS (Figure 5C). In addition,

the 1-, 2-, and 3-year calibration plots proved that the OS

predicted by the nomogram was consistent with actual

conditions (Figure 5D). We plotted 1-, 3-, and 5-year time-

FIGURE 1
The flowchart of this study.
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dependent receiver operating characteristics ROC curves to

assess the sensitivity and specificity of the prognosis of our

model (Figures 5E–G). The area under the ROC curve (AUC)

of the risk score in the training group was as high as 0.831, and

the AUC values of the test group were also greater than 0.7.

The AUC values of the entire set for 1-, 3-, and 5-year were

0.805, 0.778, and 0.785, respectively. This shows that the

prediction accuracy of our model is relatively high. In

addition, ROC curves for risk score, clinical information,

and nomogram score were plotted (Figures 5H–J). The 1-,

3-, and 5-year AUC values of the nomogram score were 0.878,

0.828, and 0.796, respectively, which showed high accuracy.

FIGURE 2
Analysis of the differentially expressed TRGs. (A) The Venn diagram depicting intersecting genes in the newly found TRGs and different
databases; (B) the Venn diagram depicting intersecting genes in TRGs and DEGs; (C) the volcano plot of differentially expressed TRGs; (D) the
interconnection of 10 hub differentially expressed TRGs, darker color represented higher scores; (E) the visualized PPI network of differentially
expressed TRGs obtained by using “MCODE” plugin of Cytoscape.
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Function and pathway enrichment
analysis

We analyzed the pathway and function enrichment of

differentially expressed TRGs by KEGG and GO, which

suggested that it was mainly enriched in immune-related

pathways and T cell proliferation and activation

(Supplementary Figure S1). Using GSEA software, we

analyzed the pathway and function by

“c2.cp.kegg.v7.5.1.symbols.gmt” and “c5.go.v7.5.1.symbols.gmt”

of gene sets database in patients with high- and low-risk groups.

Interestingly, GSEA enrichment was mainly concentrated in the

low-risk group, while the FDR values of the high-risk group were

all greater than 0.25. Therefore, we selected the results of interest

in the low-risk group to display (p < 0.05; FDR < 0.05; |NES| >
1.5). Compared with the high-risk group, the low-risk group

mainly enriched tumor-related and metabolic-related pathways

and functions (Figure 6A).

Estimation of intratumoral immune cell
infiltration

By using different software for immune cell correlation

analysis, we found that immune score, microenvironment

score, and cytotoxicity score have a stronger correlation in the

high-risk group than the low-risk group (Figure 6B;

Supplementary Table S3). The high-risk group had more types

of immune-associated cells than the low-risk group. For example,

Macrophage M0, Macrophage M1, plasmacytoid dendritic cell,

and cancer-associated fibroblast are positively correlated with the

risk score. However, eosinophil and endothelial cells were

FIGURE 3
The construction of a prognostic model. (A) 39 prognostic TRGs extracted by univariate Cox regression analysis from 104 differentially
expressed TRGs; (B) the heatmap of these 39 prognostic TRGs; (C) the LASSO coefficient profiles of these 39 prognostic TRGs; (D) the 10-fold cross-
validation for variable selection in the LASSO model.
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negatively correlated with the risk score (p < 0.05). Interestingly,

we found that resting CD4+ memory T cells and resting NK cells

were more correlated with low-risk scores. However, activated

NK cells and activated CD4+ memory T cells were more closely

associated with high-risk scores. Importantly, CD8+T cells and

Tregs were strongly associated with high-risk scores (Figure 6C).

Therefore, we speculated that the high-risk patients may have a

higher state of immune cell infiltration. Boxplots were created to

show differences in immune cells, immune-related functions,

and TME in the high- and low-risk groups (Figure 6D). We

calculated the TME scores of patients (Supplementary Table S4).

Although there was no significant difference in stromal score in

high- and low-risk groups, immune cell score and estimate score

were different significantly (p < 0.05) (Figure 7A). Given the

differences in immune cell correlations, we also analyzed

immune checkpoints in these two groups. The results

indicated that there were significant differences at 32 immune

checkpoints in the high-low risk group, with 23 of them with p <

FIGURE 4
Prognosis value of the risk-stratified model in the train, test, and entire sets. (A–C) The risk-stratified model was based on 8 TRGs of the train,
test, and entire sets, respectively; (D–F) the exhibition of survival time and survival status between low- and high-risk groups in the train, test, and
entire sets, respectively; (G–I) the heatmap of 8 TRGs in the train, test, and entire sets, respectively; (J–L) Kaplan–Meier survival curves of OS of
patients between low- and high-risk groups in the train, test, and entire sets, respectively. (M,N) Kaplan–Meier survival curves of OS of patients
between low- and high-risk groups stratified by tumor stage.
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0.001 (Figure 7B). This suggested that we can group ccRCC

patients and select appropriate checkpoint inhibitors.

Previous studies have proved that tumors divided into

different subtypes often have different immune

microenvironments and respond differently to

immunotherapy. For the subtypes of ccRCC, the increased

infiltration of immune cells suggests that these tumors are

immune “hot tumors”, otherwise they are called “cold

tumors” (Galon and Bruni, 2019; Klumper, et al., 2021). To

distinguish cold and hot tumors in ccRCC, patients were

regrouped into two clusters by R package

“ConensusClusterPlus” based on the expression levels of the

8 TRGs involved in modeling (Figure 8A; Supplementary Table

S6). For different clusters, the curves in the Kaplan-Meier

analysis showed significant differences (p < 0.001)

(Figure 8B). To compare the similarities and differences

between clusters and risk groups, we drew the Sankey

diagram and performed PCA and t-SNE. Cluster1 had a

better prognosis, while Cluster2 had a poor prognosis.

Patients in Cluster1 mostly belong to the low-risk group,

while patients in Cluster2 were mostly part of the high-risk

group. We can clearly distinguish these two clusters by t-SNE.

The differences between clusters can be seen more clearly

through 3-dimensional PCA than 2-dimensional PCA

FIGURE 5
Nomogram and assessment of the risk-stratifiedmodel. (A,B)Univariate Cox andmultivariate Cox regression analyses of clinical factors and risk
score with OS, respectively; (C) the probability of the 1-, 3-, and 5-year OS predicted by the nomogram which integrated the risk score, age, tumor
grade, and tumor stage; (D) the calibration curves for 1-, 3-, and 5-year OS; (E–G) the 1-, 3-, and 5-year ROC curves of the train, test, and entire sets,
respectively; (H–J) the 1-, 3-, and 5-year ROC curves of risk score, nomogram score, and clinical characteristics.
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(Figures 8C–E). Patients with subtypes were able to distinguish

TME significantly. Cluster1 and cluster2 had significant

differences in the stromal score, immune score, and estimate

score (p < 0.001) (Figure 8F). In the analysis of 47 immune

checkpoints, 38 checkpoints showed heterogeneity between

different clusters (p < 0.05). Importantly, the p values of

FIGURE 6
The investigation of function and pathway enrichment and tumor immunemicroenvironment between the high- and low-risk groups. (A)GSEA
of the top 10 functions and pathways significantly enriched in the low-risk group; (B) the immune cell bubble of risk groups; (C) the correlation
between risk score and some of the tumor immune cells; (D) the comparison of ssGSEA score including immune cell score and immune-related
function score between risk groups. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
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27 checkpoints were less than 0.001 (Figure 8G). The score on

immunity and microenvironment of cluster2 was higher than

that of cluster1. Analysis of immune cell infiltration by different

software showed that neutrophil, endothelial cell, B cell,

monocyte, fibroblast associated with cancer, myeloid

dendritic cell, NK cell, and T cell were significantly different

between different clusters (p < 0.05) (Figure 9A; Supplementary

Table S7).

FIGURE 7
The investigation of tumor immune microenvironment and drug sensitivity between the high- and low-risk groups. (A) The comparison of the
stromal score, immune score, and estimate score between risk groups; (B) the difference of checkpoints expression between risk groups; (C) some
of the drug sensitivity predictions of risk groups. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
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Drug sensitivity

Using “pRRophetic” R package, we screened potential

therapeutic drugs. The results suggested that the high-risk

group had a lower IC50 value (indicating higher sensitivity) in

33 targeted agents (e.g., A.443654) and a higher IC50 value in

26 targeted agents (e.g., AS601245) (p < 0.05) (Figure 7C;

Supplementary Table S5; Supplementary Figure S2). As for

the first-line agents of ccRCC, patients in the high-risk group

were sensitive to Sunitinib, while patients in the low-risk group

were sensitive to Pazopanib and Sorafenib. Unlike the risk

grouping, it was found that 56 targeted agents such as

FIGURE 8
Distinction between risk groups and clusters. (A) Patients were divided into two clusters according to tumor subtypes; (B) Kaplan–Meier survival
curves of OS in clusters; (C) the Sankey diagram of risk groups and clusters; (D) the t-SNE of risk groups and clusters; (E) the 3D PCA of risk groups and
clusters; (F) the comparison of the stromal score, immune score, and estimate score between clusters; (G) the difference of checkpoints expression
between clusters. * means p < 0.05; ** means p < 0.01; *** means p < 0.001.
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Sunitinib had significant differences between these two clusters

(p < 0.05). Interestingly, 42 targeted agents had lower IC50 in

Cluster2, while there were only 14 targeted agents had lower

IC50 in Cluster1 (Figure 9B; Supplementary Table S8;

Supplementary Figure S3). For clusters based on 8 TRGs,

precise drug therapy and immunotherapy may be more likely

to contribute to the treatment outcome and prognosis of patients.

We will further investigate the possibility of different drug

treatments for tumor subtypes.

Research of somatic mutation and TMB

We used the cBioPortal database to analyze the mutations of

eight TRGs involved in the modeling. However, we found that

there were no significant mutations in these eight genes

(Figure 10A). Thus, we analyzed all somatic mutations and

visualized the information. The missense mutation was the

most common variant classification and VHL is the gene with

the highest mutation rate (Figure 10B). VHL and AKAP9 are

FIGURE 9
Distinction between risk groups and clusters. (A) The heatmap of immune cells in clusters from different platforms; (B) some of the drug
sensitivity prediction of clusters.
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mutually exclusive mutants, whileVHL and PBRM1 are often co-

mutated (Figure 10C). The variant allele frequencies (VAF) were

mostly at a low level (Figure 10D). Compared with other tumors,

the TMB of ccRCC was lower than the moderate level

(Figure 10E). Besides, we studied all the differentially

expressed TRGs and compared their mutations in high- and

FIGURE 10
Gene mutation analysis of ccRCC patients. (A)The mutation of 8 modeling TRGs obtained from the cBioPortal database; (B) the mutation
landscape of ccRCC patients in the TCGA database; (C) genes with mutually exclusive mutation or simultaneous mutation; (D) the Variant Allele
Frequencies (VAF) boxplot of mutated genes; (E) the comparison of TMB among ccRCC and other tumors in TCGA database.
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low-risk groups (Figure 11A). The results showed that the first

four mutant genes, VHL, PBRM1, TTN, and SETD2, were the

same between these two groups. The result was consistent with

the report of previous studies (Braun, et al., 2020; Kim, et al.,

2021). As a tumor suppressor gene, the mutation of Von Hippel-

Lindau (VHL) interferes with the normal development and

function of Follicular helper T (Tfh) cells by affecting

glycolysis through the VHL-HIF-1 α axis (Zhu, et al., 2019).

As for VHL-deficient T cells, the normal differentiation of

Th17 cells was impaired in vitro (Chitrakar, et al., 2020). We

FIGURE 11
TMB and immunotherapy prediction of ccRCC patients. (A) The comparison of mutations of differentially expressed TRGs in high- and low-risk
groups; (B) the comparison of TMB between low- and high-risk groups, *means p < 0.05; (C) the comparison of TMB between clusters, ** means p <
0.01; (D) the correlation of risk score and TMB score; (E) the correlation of TRGs and TMB scores; (F) Kaplan–Meier survival curves of OS of patients
among different groups based on risk scores and TMB scores; (G) Kaplan–Meier survival curves of OS of patients among different groups based
on clusters and TMB scores.
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calculated the TMB scores of ccRCC patients and compared

them between high- and low-risk groups and between different

clusters (Supplementary Table S9). The results suggested that

patients with high-risk scores and patients belonging to

Cluster2 have higher TMB scores (Figures 11B,C). Besides, the

TMB score was positively correlated with the risk score

(Figure 11D). Among the 8 TRGs participating in modeling,

only the expression of IL4I1 and IL20RB was positively correlated

with TMB scores (Figure 11E). In addition, we also analyzed the

prognosis of the patients. Interestingly, patients with high-risk

scores and high TMB scores had the worst prognosis. Similarly,

patients belonging to Cluster2 with high TMB scores had the

worst prognosis (Figures 11F,G).

Discussion

As we all know, immune cells, especially T cells, play an

irreplaceable role in the occurrence and development of tumors.

For ccRCC, modern medical treatments such as targeted therapy

and immunotherapy are carried out around immune cells. The

importance of TRGs in anti-tumor is self-evident because of the

function of regulating immune cell proliferation. In this study, we

established a prognostic signature based on the TRGs found

so far.

Our stratified model consists of eight TRGs (CTLA4, IL4I1,

HHLA2, PRKCQ, IL20RB, HOMER1, DHPS, and TMEM131L).

There were significant differences in prognosis and functional

enrichment among the patients who were divided into high- and

low-risk groups based on the stratified model. The prediction of

immune cell infiltration shows that the TME of high-risk

patients may enrich more Tregs and CD8+cells, which have

been proved to inhibit tumor immune response in previous

studies, thus helping tumor cells escape immune monitoring

(Shang, et al., 2015; Tanaka and Sakaguchi, 2017; Dai, et al.,

2021; Gao, et al., 2022). Of note, Tregs have the function of

regulating T cells, B cells, NK cells, dendritic cells (DCs), and

macrophages. It can deprive costimulatory signals of responder

T cells by expressing CTLA4 and depriving the surrounding IL2.

Importantly, Tregs also produce immunosuppressive cytokines

such as TGF-β and IL10 which can inhibit the function of DCs

and CD8+ effector T cells (Teffs) and promote the

transformation of CD4+T cells into Tregs. Higher

FOXP3+Tregs infiltration was found to be significantly

associated with shorter OS in renal cell carcinoma (Shang,

et al., 2015; Tanaka and Sakaguchi, 2017; Gao, et al., 2022).

The decrease of Tregs can inhibit the growth of tumors and

improve the effectiveness of tumor immunotherapy (Martin,

et al., 2010). A higher Teff/Treg ratio in ccRCC was associated

with a lower postoperative recurrence rate (Ghatalia, et al.,

2019). Besides, Siyuan Dai et al. reported that excessive

infiltration of CXCL13+CD8+T cells in tumors of ccRCC

patients impaired the immune function of total CD8+T cells,

which was associated with poor prognosis (Dai, et al., 2021).

According to previous research, targeted therapy can often bring

some adverse reactions and the therapeutic effects were different

among individuals. Sometimes patients needed help with

immunotherapy. However, tumors with different immune

microenvironments had different sensitivities to

immunotherapy. Highly invasive tumors with high immune

scores were generally considered hot tumors, while non-

invasive tumors with low immune scores were considered

cold tumors. The distinction between hot and cold tumors

can provide a reference for individualized immunotherapy

based on tumor subtype clustering (Galon and Bruni, 2019;

Kim, et al., 2021). Based on risk stratification, we couldn’t

distinguish the difference in immune microenvironment

between these two groups well. Therefore, we re-group

patients with ccRCC according to tumor subtypes based on

risk scores. After clustering, it can be seen that there were

significant differences in the scores of immune

microenvironments. Cluster2 has a higher stromal score,

immune score, and estimate score than Cluster1. For hot

tumors of Cluster2, we can use T-cell-targeting

immunotherapies or other methods to treat patients.

However, cold tumors often have a low mutation burden and

rare invasive immune effector cells, which are resistant to a

variety of immune checkpoint blocking drugs. We need to find

ways to transform cold tumors into hot tumors. For instance,

activating innate immune sensing pathways related to cancer is a

potential method (Duan, et al., 2020; Liu, et al., 2020).

It is a pity that there are few immunotherapy data on

ccRCC patients in the TCGA database. According to the latest

research, TMB was significantly related to the efficacy of

immunotherapy in tumor patients. There is increasing

evidence that TMB is expected to become a predictive

biomarker for immunotherapy of solid tumors such as

lung cancer (Klein, et al., 2021; Vega, et al., 2021; Kim,

et al., 2022). Therefore, we used TMB scores instead of

immunotherapy data to validate our stratified model and

hot and cold tumor subtypes. The results showed that

there were significant differences in TMB scores between

high- and low-risk groups and between tumor subtypes.

We validated the stratified model internally through the

test group and all samples. But it is difficult to verify the

prognosis externally because there are few data containing

both gene expression and survival data of ccRCC patients in

external databases such as the Gene Expression Omnibus

database. We used multiple platforms to analyze the immune

microenvironment, which may be regarded as external

verification in a sense. Our results have some limitations.

More experiments are needed to verify and explore the

possibility of new-found TRGs as new targets for

immunotherapy in the future. We believed that our model

is reasonable and can be verified by future clinical data and

basic trials.
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Glossary

AHR Aryl hydrocarbon receptor

AUC area under the ROC curve

ccRCC clear cell renal cell carcinoma

CD4/8/28/80/86 CD4/8/28/80/86 molecule

chRCC chromophobe renal cell carcinoma

CI confidence interval

CTLA4 cytotoxic T lymphocyte antigen 4

DC dendritic cell

DEG differentially expressed gene

DHPS Deoxyhypusine synthase

FDR false discovery rate

FOXP3 Forkhead box P3

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

HHLA2 HERV-H LTR-associating 2

HOMER1 Homer scaffold protein 1

HR hazard ratio

IC50 half-maximal inhibitory concentration

ICB immune checkpoint blocking

ICI immune checkpoint inhibitor

IL2/4/6/10 Interleukin 2/4/6/10

IL20RB Interleukin 20 receptor subunit beta

IL4I1 Interleukin 4 induced 1

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO least absolute shrinkage and selection operator

NES normalized enrichment score

OS overall survival

PCA principal component analysis

PD1 programmed cell death protein 1

PPI protein-protein interaction

pRCC papillary renal cell carcinoma

PRKCQ protein kinase C theta

ROC receiver operating characteristic

ssGSEA single-sample gene set enrichment analysis

TCGA The Cancer Genome Atlas

Teff effector T cell

Tfh follicular helper T

TIL tumor-infiltrating lymphocyte

TMB tumor mutation burden

TME tumor microenvironment

TMEM131L Transmembrane 131 like

Treg regulatory T cell

TRG T cell proliferation-related gene

t-SNE t-distributed stochastic neighbor embedding

UCSC Xena University of California Santa Cruz Xena

VHL Von Hippel-Lindau
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