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Genome-wide analysis at the level of single cells has recently emerged as a powerful tool to dissect genome heterogeneity in

cancer, neurobiology, and development. To be truly transformative, single-cell approaches must affordably accommodate

large numbers of single cells. This is feasible in the case of copy number variation (CNV), because CNV determination re-

quires only sparse sequence coverage. We have used a combination of bioinformatic and molecular approaches to optimize

single-cell DNA amplification and library preparation for highly multiplexed sequencing, yielding a method that can pro-

duce genome-wide CNV profiles of up to a hundred individual cells on a single lane of an Illumina HiSeq instrument. We

apply the method to human cancer cell lines and biopsied cancer tissue, thereby illustrating its efficiency, reproducibility,

and power to reveal underlying genetic heterogeneity and clonal phylogeny. The capacity of the method to facilitate the

rapid profiling of hundreds to thousands of single-cell genomes represents a key step in making single-cell profiling an easily

accessible tool for studying cell lineage.

[Supplemental material is available for this article.]

Tumor cells evolve via the acquisition of somatic genetic lesions
that bestow the capacity to proliferate and survive (Vogelstein
et al. 2013). Consequently, genetically distinct subpopulations
are likely to evolve and dynamically interact with each other
(Marusyk et al. 2012; Yates and Campbell 2012; Burrell et al.
2013). The presence of tumor genome heterogeneity has long
been acknowledged (Nowell 1976), and recent investigations
have tied it to disease progression and metastasis, as well as thera-
peutic resistance (Turke et al. 2010; Walter et al. 2012; Wu et al.
2012). Unfortunately, our knowledge of cancer genome heteroge-
neity is still lacking, due primarily to the lack of sensitive ap-
proaches that explore genetic heterogeneity at a genome-wide
scale. New technologies are needed to facilitate the dissection of
intra-tumoral heterogeneity.

Recently, with the advent of next-generation sequencing
(NGS) technologies and whole-genome amplification (WGA) ap-
proaches, single-cell genomic investigations have emerged as a
powerful approach to analyze cancer genetic heterogeneity
(Navin et al. 2011; Baslan et al. 2012). Genome-wide single-cell se-
quencing investigations have begun to illuminate valuable and

novel aspects of cancer biology and promise to deliver more (Ni
et al. 2013; Dago et al. 2014; Francis et al. 2014; Lohr et al.
2014). To realize the potential of single-cell sequencing in under-
standing the biology of heterogeneity,methods are needed that al-
low the investigation of hundreds of single-cell genomes at a
reasonable cost in time, effort, and reagents. Sequencing hundreds
of single cells to the nucleotide level is simply not affordable even
with the remarkable NGS platforms that are available. Fortunately,
copy number analysis requires only sparse sequence coverage, yet
it can distinguish subpopulations and provides deep insights into
genetic heterogeneity. Thus, in theory, coupling sparse sequenc-
ing withmolecular barcoding approaches offers a means to profile
many cells together.

Indeed, we and others have recently demonstrated the feasi-
bility of this approach by combining up to eight barcoded single
cells on a single sequencing lane (McConnell et al. 2013; Dago
et al. 2014), but the potential for higher level multiplexing has
not been explored at either the bioinformatic or operational levels.
To accomplish this, informatic analysis aimed at identifying min-
imal sequence read requirements for robust copy number iden-
tification is required. Furthermore, while technically feasible,
amplifying and creating barcoded sequencing libraries from
many single cells using traditional library preparation protocols9Present address: Department of Cancer Biology and Genetics,
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involving sonication, end repair, A-tailing, and adaptor ligation is
time-consuming and expensive.Wehave therefore set out to create
an optimized multiplexing process by determining the minimum
number of reads that can be used to determine genome-wide
copy number profiles at specific levels of resolution and then to
develop a simplified preparative method that is faster and cheaper
and yetmaximizes the amount of information that can be extract-
ed from each sequencing read from a single sequencing lane of the
Illumina HiSeq machine.

Here, we describe a robust and affordable, high-throughput
method that employs amodified version of degenerate oligonucle-
otide priming-PCR (DOP-PCR) amplification, simplified library
preparation, andmultiplex sequencing that facilitates the retrieval
of the genome-wide copy number landscape of hundreds of in-
dividual cancer cells. Our method drastically lowers the cost of
profiling single-cell genomes (down to∼$30 per single cell), signif-
icantly cuts sequence library preparation time, and maximizes the
amount of information extracted from each single-cell sequencing
data set. We apply our approach to human cancer cell lines and
clinical cancer biopsies to demonstrate its power to reveal popula-
tion heterogeneity.

Results

Optimizing coverage in a multiplexing strategy

CNV analysis by sequencing typically counts the number of reads
that uniquely map to bioinformatically computed segments or
“bins” of genomic sequence (Alkan et al. 2009; Chiang et al.
2009).We have recently shown, from sequencing data of uniform-
ly amplified single-cell genomic DNA, that the copy number of a
particular bin is directly proportional to the number of sequencing
reads that map within it (Navin et al. 2011; Baslan et al. 2012). We
used 50,000 bins (50K bins), with an average bin length of 60 kb.
The profiles produced have clean breakpoints and segments with
quantal values, as one expects from single-cell data. At the pub-
lished coverage, this averaged 160 maps per bin, clearly an excess.
But howmuch data (measured as the number of sequencing reads
per bin) is required to produce a clean, quantal, genome-wide copy
number profile from a single cell at 50K bin resolution? Although
the answer can be approached mathematically on assumptions
about binomial sampling distributions, the confident detection
of minimum features, and expectations of quantal values, we de-
cided to take an empirical approachusing the same cancer cells pre-
viously analyzed. We retrieved single-cell sequencing data (Navin
et al. 2011) for a rearranged cancer cell (DNA content = 2.95N) for
which 8 million uniquely mapped reads were available and per-
formed correlation and copy number analysis on down-sampled
data sets. Normalized read counts of data down-sampled to 4, 2,
1, 0.5, and 0.25million reads plotted against the original 8 million
reads data set demonstrate strong correlations down to 1 million
reads (R2 = 0.939) (Fig. 1A). The 2million read copy number profile
(∼40 reads per bin) was highly similar to the profile generated from
the original 8 million read single-cell data set using 50K bins (Fig.
1B,C). Using fewer reads than this retained features of the break-
point profile, but the quantal nature of the copy number segments
became less clear (Supplemental Fig. S1). Two million uniquely
mapped reads were also sufficient to recapitulate the copy number
landscape of tumor cells with different DNA content (Supplemen-
tal Fig. S2). Thus, irrespective of DNA content, 2 million uniquely
mapped reads are sufficient to retrieve thegenome-wide copynum-
ber profile of a single cell when dividing the genome into 50K bins.

Are 50K bins needed? Given that the majority of copy num-
ber alterations found in bulk analysis of tumor genomes are on
the order of megabases (Mb) or greater (Beroukhim et al. 2010),
we reasoned that decreasing the number of bins (i.e., increasing
bin lengths) would decrease sequencing read requirements for
copy number determination. Reanalyzing the down-sampled
data using 20K and 5K bins (calculated using the variable bin
method) (see Methods) revealed that strong correlations were
maintained with the original 8 million data set down to 1 million
and 0.25 million uniquely mapped reads for 20K and 5K bins, re-
spectively (Fig. 1D,E; Supplemental Fig. S3). Importantly 96%
and 75% of the breakpoints, detected at a resolution of 50K bins,
were called at bin resolutions of 20K and 5K, respectively, with
the down-sampled data (Fig. 1D,E). Moreover, the quantal nature
of the copy number segments is clearly maintained. Naturally, at
lower resolutions of 20K and 5K bins, some focal alterations were
missed (Fig. 1D,E, red arrows). One and 0.25 million sequencing
reads for 20K and 5K bins, respectively, were also sufficient to re-
trieve genome-wide CNV information in cancer cells with differ-
ent DNA content (Supplemental Fig. S2).

We extended the down-sampling analysis to four single cells
with DNA content of 2.95N (aneuploid), three cells with DNA
content of 1.6N (hypodiploid) as well as four apparently normal
diploid cells. All cells were down-sampled to 2 million, 1 million,
and 0.25 million and analyzed using 50K, 20K, and 5K bins, re-
spectively. For each cell and sample size, 100 downsamples were
compared to a sample of 6 million reads. The diploid cells had
identical copy number calls for 99% of the genome for all sample
sizes. The hypodiploid cell downsamples matched the copy num-
ber calls for the 6 million read samples 99%, 92%, and 90%, re-
spectively, for 2 million, 1 million, and 250,000 read samples.
The downsamples for the aneuploid cells matched 93%, 84%,
and 78%. The bin-to-bin differences are mainly due to slight
changes in boundaries of segments (Fig. 1; Supplemental Fig.
S4). The data together, when taking into account current average
HiSeq output of 200 million reads per lane, indicate that, theoret-
ically, up to 500 single-cell genomes can be multiplexed and ana-
lyzed on a single HiSeq lane. Table 1 lists themultiplexing capacity
and the genomic bin resolution given different bin sizes.

An optimized DOP-PCR molecular approach for high-level

multiplexing

We employ DOP-PCR methodology for WGA because it amplifies
more uniformly across the genome than othermethods, andwhen
the goal is CNV analysis, we obtainmore reproducible results with
lower noise (Navin et al. 2011; Baslan et al. 2012; Cai et al. 2014).

Maximizing the efficiency of sequencing by identifying min-
imal read requirements to facilitate multiplexing is not the only
problem that needs to be addressed to optimize the efficiency of
highly multiplex single-cell CNV profiling. Performing the steps
of WGA and library preparation protocols, involving sonication,
end repair, A-tailing, and ligation for each cell individually takes
a great deal of bench work and can cost as much as $50 per cell
in reagents alone, making the procedure itself a target for optimi-
zation. Moreover, the resulting DNA molecules following DOP-
PCR carry universal 30-bp sequences at the ends and even when
sonicated, the universal DOP primer sequences remain on a sub-
stantial fraction of the DNA molecules, causing decreased com-
plexity (Supplemental Fig. S5), lower quality data, and decreased
mappability for some reads.
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To circumvent the above-mentioned issues, we devised a
method, termed Cleavable DOP-PCR Ligation (C-DOP-L), which
incorporates restrictionenzymedigestionof theuniversal sequenc-
es at the ends ofWGADNAvia the SEQXEkit (Sigma-Aldrich),with
an “NN-mediated” DNA ligation of barcoded Illumina adaptors
(Fig. 2). In our method, single-cell genomes are amplified using
DOP-PCR similar to what we have reported before (Navin et al.
2011; Baslan et al. 2012). However, the degenerate oligonucleotide
differs in that it incorporates a recognition site for a type IIS restric-
tion enzyme (isoschizomers AcuI and Eco57I [CTGAAG 16/14]).
When added to theWGADNA, the enzyme recognizes its binding
site and cleaves 16/14 (top/bottom strand) bases away from its rec-
ognition sequence, effectively removing the entire universal se-
quence found at the ends of the DNA molecules. Furthermore
and importantly, the digestion leaves 3′-NN overhangs (where N
is any base). These overhangs are subsequently used in the ligation
of barcoded Illumina adaptors designed to carry 3′-NN overhangs
on the P5 adaptor. To test the method, we designed and synthe-
sized 96 modified Illumina adaptors carrying custom barcoded

adaptors with sufficient complexity (equal distributions of A, T,
C, and G base pairs) in the first 4 bases (Supplemental Fig. S6).

Validation of C-DOP-L with cell lines

To ensure that the modification of the degenerate oligonucleotide
primer does not affect the uniformity of the WGA reaction or in-
troduce distortions to the genome, we examined normal and can-
cer cell lines. We chose to examine ∼100 genomes per HiSeq
Illumina lane, a convenient number for microplate processing,
and aimed for ∼1.5 million reads per cell.

We began by flow sorting nuclei from a diploid EBV immor-
talized lymphoblastoid cell line (315A) derived from a normal
male, selecting for diploid nuclei, making 96 single depositions,
and amplifying each. Of the 96 sorted single nuclei, 95 were suc-
cessfully amplified (i.e., yielding a minimum of 2 µg of total
WGADNA), processed using the C-DOP-Lmethod, and sequenced
on a single lane of HiSeq 2000. Sequencing reads for single cells
were de-convoluted, mapped to the human genome, and
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processed using our variable bin algorithm for copy number deter-
mination (Navin et al. 2011; Baslan et al. 2012; see Methods). For
all the single cells processed, we obtained on average 1.5 million
uniquely mapped reads with a range of 0.25 to 3.6 million with
all cells having a minimum of 0.25 million reads (Supplemental
Fig. S7A). Sequenced single-cell DNA displayed a GC amplification
bias that was comparable in magnitude to our previous approach
and was easily corrected using lowess smoothing (Supplemental
Fig. S7B). Importantly, the C-DOP-L methodmaintained the min-
imal sequence bias exhibited in our previous work using the DOP-
PCRapproach (Navin et al. 2011; Baslan et al. 2012;Cai et al. 2014).
The uniformity of the amplification reaction was maintained, as
demonstrated by the tight histogram distributions of the normal-
ized read count data as well as the genome-wide copy number pro-
files, revealing the vast majority of the genome at copy number 2
(Fig. 3A; Supplemental Fig. S7C). In aggregate, 0.97%of bins across
the 95 cells have a copy number differing from two on the auto-
somes and one on the sex chromosomes. This represents an upper
bound for false-positive copy number calls. The false-negative rate
was assessed by randomly inserting 1000 segments of lengths five,
nine, and 13 bins representing copy numbers 1 and 3 in randomly
selected autosomes across all 95 cells. Segments were considered
false-negative if the copy number of the central bin was called in-
correctly. The false-negative rates for copy number 1 were 12%,
1%, and 0% for segment sizes five, nine, and 13 bins, respectively.
The corresponding false-negative rates for copy number 3 were
27%, 6%, and 1%.

Multidimensional scaling of the 315A single-cell copy num-
ber profiles showed tight clustering for the majority of single cells
(88 single cells out of 96 sequenced single cells) (Fig. 3B). All of
these 88 cells displayed consistent normal genome-wide copy
number profiles with all of the autosomes at copy number 2 and
the sex chromosomes at copy number 1, attesting to the reproduc-
ibility of the method (Fig. 3A). Two cells were distant in the multi-
dimensional scaling graph from the cluster (Fig. 3B, red arrows)
with one cell displaying a chromosome wide duplication of
Chromosome 2 and another cell displaying heterozygous focal de-
letions on multiple chromosomes (Supplemental Fig. 8A,B).
Another five cells (outside of the black circle in Fig. 3B) displayed
deviations from discrete integer copy number profiles and more
spread distributions of normalized read count data (Supplemental
Fig. S8C,D,E). These profiles could be the result of an error in the
WGA amplification process, or cells caught early in S phase of
the cell cycle. We occasionally observe the occurrence of nonre-

current focal deletions or duplications (Fig. 3A, red arrows) in
otherwise normal cells. The nature of these events is currently un-
known and likely represents somatic events.

To further validate our approach, we proceeded to profile sin-
gle nuclei from a rearranged human breast cancer cell line. Flow
sorting 96 single nuclei from the pseudo-triploid (apparent DNA
content 3.65N by FACS) breast cancer cell line SK-BR-3 followed
by WGA amplification and C-DOP-L library preparation resulted
in 94 successfully amplified and ligated products (97.9%). These
were loaded on a single HiSeq 2000 lane and, after informatic pro-
cessing, produced genome-wide copy number profiles (20K bins)
that very closely recapitulated that of the corresponding SK-BR-3
bulkDNA (R2 Pearson’s correlation = 0.963) (Fig. 3C). Importantly,
smoothing kernel density plots of the normalized sequencing data
revealed the quantized nature of the single-cell data with densities
corresponding to discrete copy number integer values (Fig. 3C, in-
sert boxes; Supplemental Fig. S7D). In addition, presumed driver
genomic alterations observed in the bulk copy number profile,
such as high level amplification of theMYC locus onChromosome
8, the heterozygous deletion of DCC on Chromosome 18, and the
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Figure 2. Schematic overview of the C-DOP-L approach for highly mul-
tiplex single-cell sequencing. In brief, WGA DNA is treated with restriction
enzyme to cleave the universal sequences found at the ends of WGA DNA.
The digestion reaction leaves 3′-NN overhangs (where N is any base: A,T,
C,G). DigestedDNA is then ligated to barcoded Illumina sequencing adap-
tors that are designed to contain 3′-NN overhangs. After barcode addition,
samples are pooled, amplified, and sequenced on a single lane of the HiSeq
instrument. (WGA) Whole-genome amplified, (RE) restriction enzyme, (N)
any base (A,T,C, or G).

Table 1. Multiplex capacity and bin parameters for copy number de-
termination of single cells using different bins sizes

Number
of bins Bin sizea

Number
of reads
required

(in millions)

MiSeq
approximate
multiplexing
capacityb

HiSeq
approximate
multiplexing
capacityc

50K 60 kb 2 5 70
20K 150 kb 1 10 140
5K 600 kb 0.25 42 560

Approximate multiplexing capacity is calculated assuming equal distribu-
tion of multiplexed single-cell libraries in final pool.
aBin size calculated using the varbin algorithm.
bCalculated with the presumed output of 12 million sequencing reads
per MiSeq lane.
cCalculated with the presumed output of 200 million sequencing reads
per HiSeq lane.
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homozygous deletion of a cluster of zinc finger proteins on
Chromosome 19, were observed in 100% of the single cells se-
quenced (Supplemental Fig. S9). Interestingly, multidimensional
scaling of all 94 integer copy number profiles resolved two distinct
clusters corresponding to a major subpopulation (subpopulation
1) and a minor subpopulation (subpopulation 2) (Fig. 3D).
Hierarchal clustering of the single-cell profiles plotted in the
formof a copynumberheatmap clearly illustrates that the two sub-
populations are derived from the same lineage, with the vast ma-
jority of the genome present at the same copy number in almost
all single cells, for example, Chromosomes 2, 7, and 11 (Fig. 3E,
black arrows). Importantly, the two subpopulations differed signif-
icantly with different copy number states on Chromosomes 5, 14,
and 19, among others (Fig. 3E, red arrows; Supplemental Fig.
S10A). Some of these events are also evident in the bulk SK-BR-3
copy number profile as segments with noninteger copy number
values (Supplemental Fig. S10B). This genomic heterogeneity of
a cancer cell line is not restricted to SK-BR-3, as another breast can-
cer cell line (MDA-MB-231) also revealed substantial heterogeneity
where three distinct subpopulations were observed (Supplemental
Fig. S11). Thus, the data demonstrate the robustness and accuracy
of our highly multiplex single-cell sequencing approach in profil-
ing cancer genomic heterogeneity.

Highly multiplex single-cell sequencing of clinical breast

cancer tissue reveals subclonal populations and somatic

mosaicism of chromosomal amplifications

To determine the feasibility of high-level multiplexing for actual
clinical samples, we analyzed two estrogen receptor (ER)-positive
breast cancer cases (Pt31 and Pt41) from a larger study in progress.
Both were determined to be diploid in DNA content, with similar
histopathology and from the same gene expression subtype (lumi-
nal B) as determined by RNA sequencing and PAM50 analysis (Fig.
4A,B; Supplemental Fig. S12). Bulk copy number analysis revealed
characteristic ER-positive copynumber alterations, such as gains of
Chromosomes 1q and 8q and deletion of Chromosome 11q (Fig.
4C; Russness et al. 2010; Curtis et al. 2012) in both cases. To allow
comparison with our previous approach (WGA4 amplification
[Sigma-Aldrich] followed by standard Illumina library prep.),
core needle biopsies from both cases (8 mm in length) were cut
evenly into two sections for processing using WGA4 and C-
DOP-L (Fig. 4D). For each section, 96 nuclei were sorted, and the
plates were processedwith eitherWGA4 or C-DOP-L. Each 96mul-
tiplexed pool was sequenced on a single lane of the IlluminaHiSeq
instrument. Cells yielding at least 0.25 million uniquely mapped
reads were considered successful for the complete process.
Compared with the cell lines, the clinical samples were somewhat
more variable. The number of successfully profiled cells for Pt41
was 86/96 using WGA4 and 89/96 using C-DOP-L, while Pt31
yielded 88/96 and 69/96, respectively. The homogeneity of the
single-cell copy number profiles from Pt41 (discussedmore below)
allowed us to compare differences in data quality between the two
methods. Using amethod based on amedian absolute pairwise dif-
ference metric (MAPD) (Cai et al. 2014) to compare the two meth-
ods shows the normalized bin count data to be somewhat noisier
with C-DOP-L, with a MAPD of 0.30 compared to 0.25 for
WGA4.However, comparing copynumber, the twomethods are al-
most identical, with a median pairwise copy number difference of
3.4% for WGA4 and 3.9% for C-DOP-L.

Single tumor cells fromboth cases were then plotted and clus-
tered in a heatmap format based on their genome-wide copy num-

ber profile (Fig. 4E). We omitted from the figure the cells with
normal profiles and used CORE (Cores of Recurrent Events)
(Krasnitz et al. 2013; see Methods) to select the cancer cells that
are part of a clonal lineage. We were thus able to approximate tu-
mor cellularity for each biopsy (∼60% tumor for Pt31 and∼90% tu-
mor for Pt41). Chromosome 1q and 8q duplications as well as the
loss of 11qwere found in virtually all single cells fromboth tumors
using both approaches, consistent with these events occurring
very early in the evolution of the tumor genome and further attest-
ing to the sensitivity and specificity of our approach (Fig. 4E, black
arrows). Interestingly, whereas the Pt41 tumor profile contained
more copy number alterations than Pt31 (measured as % of ge-
nomealtered), single-cell copynumberprofiles fromPt41displayed
homogeneity, with almost all cells sharing all chromosomal alter-
ations. In contrast, Pt31 had three subpopulations that differed in
their copy number status at multiple chromosomes, for example
Chromosomes 5, 7, 11, and 13 (Fig. 4E, red arrows). These popula-
tions were also found to differ in proportion between the two adja-
cent sections. Phylogenetic analysis of the subpopulations based
on their genomic alterations revealed that the two divergent popu-
lations, 2 and3, arose fromthe earlier ancestral population1via the
acquisitionof additional genomic alterations (Fig. 4F), yet, interest-
ingly, we see that population 1 has persisted.

Upon further examination of the single-cell copy number
profiles of the tumor (Pt31), we noticed additional heterogeneity:
mosaic copy number amplification variants (Fig. 5). Some oc-
curred at genes with established clinical significance in breast can-
cer, such as the amplification of cyclin D1 (CCND1) (Arnold and
Papanikolaou 2005) on Chromosome 11 and topoisomerase
(DNA) II alpha (TOP2A) (Engstrom et al. 2014) on Chromosome
17, while others occurred at genes for which experimental evi-
dence exists for involvement in cancer, such as the homeobox pro-
tein SIX6 (Soulier et al. 2005) onChromosome 14 and PREX1 (Sosa
et al. 2010) on Chromosome 20. Together, these data provide
strong evidence of the power of highly multiplex single-cell se-
quencing in resolving subclonal structure and illustrating genomic
heterogeneity present within the genomes of human tumors.

Discussion

The potential of single-cell genome profiling in understanding
cancer heterogeneity lies in the ability to profile hundreds and
even thousands of single-cell genomes. Our approach extends
the burgeoning field of single-cell genomics by offering a robust
high-throughput method to examine the genome-wide copy
number profile of hundreds of single cancer cells. Our down-sam-
pling simulation analysis facilitated the benchmarking of the
minimal data requirements necessary to reproduce genome-wide
copy number variation of cancer cells and guided our subsequent
multiplexing strategy. By coupling the restriction enzyme diges-
tion of the WGA DNA universal sequences with NN-mediated
adaptor ligation, our approach allows us to (1) maximize the
amount of information extracted from each sequencing read via
the elimination of the WGA universal sequences, (2) enhance
the quality of the sequencing output, and (3) significantly reduce
the cost and effort required to generate highly multiplexed sin-
gle-cell sequencing libraries. In our previous report (Navin et al.
2011), each single cell was sequenced on a single lane of the
Illumina platform at a cost of ∼$1000. Using the methods de-
scribed here, with the multiplexing of 96 single cells on a single
HiSeq lane, we have reduced the cost of sequencing a single cell
to ∼$30 per cell in reagents and sequencing costs (refer to
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Supplemental Table S1 for breakdown of the method’s cost and
time effort). Undoubtedly, with the decreasing cost per base from
NGS, this figure is likely to drop even further and facilitate
the profiling of thousands of single cells in a single lane. At that

stage, microfluidics will be needed to reduce preparation costs
andmanual labor. Also, our approach usingC-DOP-L can easily ac-
commodate different multiplexing platforms such as the Illumina
third read TruSeq indexing system.
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While our approach focuses on robustly identifying an im-
portant class of somatic mutations in copy number variants, it
does not focus on the identification of other sources of somatic
mutations such as single nucleotide variants (SNVs) and structural
variants. However, it is important to point out that, with the cur-
rent sequencing output of NGS platforms, it is still prohibitively
expensive to sequence the exomes of hundreds of single cells.
Furthermore, even though our single-cell amplification approach
(degenerate oligonucleotide priming-PCR) does not cover the en-
tire genome when sequenced at high depths, there is evidence to
suggest that up to a third of the whole genome can be covered in
a single-cell WGA product (Voet et al. 2013), and we observe
that genome coverage increases with more single cells sequenced
(Supplemental Fig. S13). Thus, an approach based on initially re-
solving clonal population structure via genome-wide copynumber
variation followed by pooling of single-cell libraries and targeted
capture of particular subpopulations (for example, the three sub-
populations in Pt31) may provide exome-wide views of these sub-
populations. A similar strategy has recently proven effective in
illustrating the clonal architecture of secondary acute myeloid leu-
kemia (Hughes et al. 2014).

Importantly, the robustness of our approachhas allowedus to
profile hundreds of single-cell genomes from cancer cell lines and
human tissue, and the resulting data have provided unique biolog-
ical insights with important implications for tumor biology. First,

the observation of subclonal variation in human cancer cell lines,
generally presumed to be monoclonal, implies that the evolution-
ary process that underlies cancer development is still operative in
cell culture. Second, subclonal heterogeneity in culture raises the
question of how similar cancer cell lines are between different lab-
oratories and how to compare different studies utilizing the same
cell lines (Hatzis et al. 2014). Third, the observation of the relative
homogeneityof Pt41 in comparison to Pt31 is intriguinggiven that
thePt41genome ismorehighly rearranged.Thismight suggest that
factorsotherthangenomicinstabilitymightmodulate intra-tumor-
al heterogeneity and/or that diversification is dynamic throughout
thehistoryofatumor.Andfourth, themosaicismofgenomicampli-
fications observed in Pt31 highlights the remarkable heterogeneity
cancer genomes are capable of sustaining and begs the question of
how these varied alterations might modulate responses in the face
of selective pressures such as therapeutic intervention.

Finally,whilewedevisedourmethod for thepurposeof study-
ing cancer heterogeneity and evolution, it is clear that its applica-
tions are not limited to cancer biology (Baslan and Hicks 2014).
The robustness of the method coupled with its high-throughput
nature makes it an attractive approach to examine the CNV pat-
terns underlying aneuploidy in human gametes (Hou et al. 2013)
as well as human neurons (McConnell et al. 2013). In addition, bi-
ological phenomena such as the ploidy conveyor in hepatocytes
(Duncan et al. 2010) could very well be carefully dissected using
themethods described here.With regard to cancer biology, the ap-
plication of our high-throughput single-cell genome sequencing
approach to many tumor types and ultimately hundreds of cancer
samples is bound to illuminate the underlying biology behind
tumor heterogeneity and help in our struggle to better understand
and tackle this disease.

Methods

Sequence read down-sampling analysis

Down-sampling analysis was performed on 11 cells from Navin
et al. (2011), where each single cell had a minimum of 6 million
mapped reads after removing duplicates. The 11 cells consisted
of four diploid cells (SRR053620, SRR053623, SRR053624,
SRR053633), three hypodiploid cells (SRR054569, SRR089401,
SRR089402), and four aneuploid cells (SRR054609, SRR054610,
SRR054611, SRR054612). Sample sizes of 2 million, 1 million,
and 250,000 were sampled 100 times each for each cell and com-
pared to a 6 million read sample. Reads were binned and data seg-
mented to obtain copynumber estimates across the genome. The 6
million read and 2 million read samples were binned using 50,000
bins. The 1 million read samples were binned using 20,000 bins.
The 250,000 read samples were binned using 5000 bins. Each of
the bins in the 50,000 bin genome partition (small bins) was
matched to a bin in the 20,000 and 5000 bin partitions (large
bins) by selecting the large bin that most overlapped the small
bin. Copy number calls in the 6 million read samples were com-
pared to the copy number calls in the corresponding bins in the
other downsamples.

Nuclei isolation from cell cultures and clinical samples,

DNA staining, and single-cell flow cytometry

315A lymphoblastoid cells were cultured as suspension cultures in
RPMI 1640 (Gibco-Invitrogen) supplemented with 10% FBS
(HyClone), 100 unitsmL−1 penicillin, and 100 μgmL−1 streptomy-
cin (Gibco-Invitrogen). SK-BR-3 and MDA-MB-231 were cultured
as adherent cultures in DMEM (Gibco-Invitrogen) supplemented
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with 10% FBS, 100 unitsmL−1 penicillin, and 100 μgmL−1 strepto-
mycin. All lines were cultured at 37°C and 5% CO2. Core biopsies,
obtained prior to treatment, were processed by formalin fixation
and paraffin embedding (FFPE) or frozen down and stored in
OCT compound (two cores each per biopsy event). Both specimen
types were subjected to sectioning, hematoxylin and eosin stain-
ing, and histologic evaluation by the study pathologist. Frozen
cores were processed for single-nuclei isolation as described before
(Baslan et al. 2012). FPPE sections were used for tumor histology
and immunohistochemistry. For cell lines (both adherent and sus-
pension), nuclei were prepared by collecting ∼106 cells in a 15-mL
conical centrifuge tube and gently centrifuging at 105g for 4 min
followed by medium aspiration and the addition of 1 mL of NST-
DAPI buffer. Nuclei were prepared from frozen core biopsy samples
by finely mincing tissue in 0.5 mL NST-DAPI buffer according to a
protocol previously published by Baslan et al. (2012). Single-cell
sorting was performed using a FACS AriaIIU SORP (BD
Biosciences) with the ACDU option (Automated Cell Deposition
Unit). The sorter was run inside a BioProtect IV Safety Cabinet
(Baker Company) to maintain BSL2 biosafety standards. The
DAPI signal was detected by a 355-nM UV laser (450/50 bandpass
filter). Gains were set for the UV photomultiplier based on the
DNA content equivalent to human diploid lymphoblast cells.
Single nuclei were determined by doublet discrimination as de-
scribed by Wersto et al. (2001). Single cells were deposited in a
96-well plate format containing 9 µL of cell lysis buffer (800 µL
H2O, 6 µL Proteinase K, and 96 µL 10× singe cell lysis and fragmen-
tation buffer [Sigma WGA4]).

Whole-genome amplification and Illumina library generation

Single cells were lysed by incubating 96-well plates for 1 h at 50°C,
followed by 4min at 99°C using a thermocycler. Single-cell whole-
genome amplification was then carried out using the SeqPlex
Enhanced DNA Amplification Kit (SEQXE, Sigma) according
to the manufacturer’s instructions. Twenty-four amplification cy-
cles were used. Single-cell amplification products were purified
using QIAquick 96-well plates according to the manufacturer’s in-
structions. DNA was eluted in 50 µL EB solution. All subsequent
reactionswere carried out in 96-well plate format usingmultichan-
nel pipetting. Restriction digestion of WGA universal sequences
was performed interchangeably using SeqPlex supplied Primer
Removal reagents (Sigma) and Eco57I (Thermo Scientific). One
microgram of WGA DNA products in a total volume of 20 µL con-
taining 2.4 µL 10× Primer Removal Buffer/Buffer G, 0.4 µL Primer
Removal Solution/SAM, and 0.5 Primer Removal Enzyme/Eco57I
enzyme (Thermo Scientific). Reactions were incubated at 37°C
for 30 min followed by incubation at 65°C for 15 min for en-
zyme deactivation. Reactions were subsequently cooled on ice.
Following restriction digestion, 24 µL of EB and 26 µL of 2×
Quick Ligase Reaction Buffer (NEB) were added to each reaction
to bring the volume up to 70 µL. The addition of 26 µL of 2×
Quick Ligase Reaction Buffer is critical since it facilitates selec-
tion of higher molecular weight DNA (between 200 and 600
bps). Digested DNA was subsequently purified using Agencourt
AMPure XP beads (Beckman Coulter) according to the following
protocol: 30 µL of warmed beads were added to each digestion re-
action. Beads and reaction products were mixed by vortexing for
7 sec. Mixed reactions were then incubated off-magnet for 10
min at RT, after which they were then transferred to a DynaMag-
96 Side magnet (Life Technologies) and left to stand for 5 min.
Ninety microliters of supernatant were withdrawn and discarded.
Beads were washed with 180 µL of freshly made 80% EtOH. After
a second round of EtOH washing, beads were allowed to dry on
the magnet for 15 min. Dried beads were then resuspended off-

magnet in 48 µL of EB and allowed to incubate for 10 min, fol-
lowed by 5 min incubation on-magnet. Forty-four microliters of
the elutant were then mixed with 26 µL of 2× Quick Ligase
Reaction Buffer and purified again using AMPure XP beads accord-
ing to the steps described above. The final elution volume was 44
µL of EB, of which 41 µL were transferred to another 96-well plate
for ligation. HPLC-purified barcoded NN-Illumina adaptors were
ordered from IDT. Two microliters of barcoded adaptors (PE5/7)
were added to each bead-purified, digestedWGADNA. Ligation re-
actions were carried in a total volume of 70 µL with 1 µL of ligase
and 26 µL of ligase buffer. Reactions were incubated at 20°C for 30
min followed by a DNA ligase inactivation step at 65°C for 15min.
Heat-inactivated ligation reactions were subsequently cooled at
4°C. After adaptor ligation, 2.3 µL of each 96 adaptor ligated library
were pooled together and distributed equally into three fresh tubes
(∼70 µL). Pools were purified 1× using 30 µL beads as described
above and eluted in 30 µL of buffer EB. Following bead purification
of the pools, PCR enrichment was performed in a total volume of
62.5 µL containing 2.5 µL of 10 µM PE5/7 primers and 30 µL of
Phusion High-Fidelity PCRMaster Mix (NEB) according to the fol-
lowing parameters: (1) 98°C for 30 sec, (2) 98°C for 10 sec, (3) 65°C
for 30 sec, and (4) 72°C for 30 sec, (5) return to (2) for a total of 10
cycles, then (6) 72°C for 5 min, and (7) hold at 4°C. Samples were
then quantified using the Bioanalyzer and qPCR and subsequently
run on HiSeq machines.

Variable bin (varbin) method

In dividing the genome into bins for copy number estimation, we
utilize a method that partitions the genome into bins of variable
sizes based on the unique mappability of sequences across the
human genome, with each bin containing the same number of
mappable positions. Bin boundaries were computed for 50K,
20K, and 5K bins according to the guidelines outlined by Baslan
et al. (2012). Additionally, for a number of regions in the genome,
we noticed the accumulation of very high read depth compared to
the expected norm. These regionswe found to consistently display
the high read depth in both bulk as well as single-cell sequencing
data, and many were found in bins surrounding centromeres.
Using data from 54 normal diploid single cells, these bins (desig-
nated as “bad bins”) were determined as follows. Bincounts were
divided by the mean for each cell to normalize for differences in
total read count between each cell. For each chromosome, the
mean of the bins over all cells is subsequently subtracted from
each normalized bin count to normalize for differences between
chromosomes. Themean and standard deviation of the autosomes
was then used to compute an outlier threshold corresponding to a
P-value of 1/N, where N is the number of bins used. This was done
for the 5K, 20K, and 50K bin data sets. These bins aremasked from
downstream copy number analysis.

Sequence alignment and single-cell copy number analysis

Multiplexed single-cell sequencing libraries were split according to
their unique barcode identifiers specified by the first seven bases of
the sequencing reads. Single-cell sequencing data were aligned to
the human reference genome hg19 using Bowtie (Langmead
et al. 2009). Reads were sorted, PCR duplicates removed, and
then indexed using SAMtools (Li et al. 2009). Uniquely mapping
reads were counted for each bin and normalized for GC bias using
lowess smoothing. Normalized read count data were then seg-
mented using circular binary segmentation (CBS) (Venkatraman
and Olshen 2007). For copy number estimation in single cells,
we employed an approach based on least-squares fit as follows:
When analyzing data from a single cell, the copy number at any
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point in the genome must be an integer. Thus, if the data were ac-
curate, then after segmentation, the segmented mean values
should have a clearmultimodal distributionwith a peak represent-
ing each copy number present in the genome. The data at this
point in the analysis are centered around 1, meaning that the
mean value across the bins (5000, 20,000, or 50,000) of the seg-
mented value is close to 1. In a diploid genome, this would repre-
sent a copy number of 2, with regions of copy number 1 having a
segmented value near 0.5 and regions of copy number 3 having a
segmented value near 1.5. These could easily be converted to copy
number estimates bymultiplying the segmented value for each bin
by 2 and rounding to the nearest integer. This is the basic idea used
to estimate copy number in single-cell data. In rearranged cancer
cells where the copy number of genomic segments is unknown,
in order to find the best multiplier wemultiply the segmented pro-
file by 1.5, 1.55, 1.6, 1.65,… 5.5 (81 different values) and compute
what we call a quantal error for each multiplier. This is the sum of
the squared difference between the multiplied segmented profile
and the multiplied segmented profile rounded to the nearest inte-
ger. The multiplier that gives the smallest quantal error is deemed
the best fit and used to estimate copy number. This quantal error
can also be used as a quality control parameter. Cells with a large
quantal error can really be multiple cells, parts of cells, or have de-
graded DNA. For heatmap plots, single cells were hierarchically
clustered based on their genome-wide copy number profiles using
the Manhattan distance function and clustered according to the
Ward method.

False-negative estimation

The false-negative rate was estimated by randomly inserting simu-
lated segments of copy numbers 1 and 3 into randomly selected
cells from the set of 95 cells from the 315A cell line. Segments of
5, 9, and 13 bins were simulated by picking random contiguous
bins within the autosomes that did not overlap centromeres or
chromosome boundaries. To simulate copy number 1, the normal-
ized read count was multiplied by 0.5 and the standard deviation
from 0.5 increased by √2. To simulated copy number 3, the nor-
malized read count was multiplied by 1.5 and the standard devia-
tion from 1.5 decreased by √1.5. The genome with the inserted
segment was then segmented using DNAcopy and considered
matched if the copy number call at the central bin in the segment
matched the exacted copy number; otherwise, the segment was
counted as a false negative.

Consistency

To compare data quality between the WGA4 and the C-DOP-L
methods, we use an approach based on the median absolute pair-
wise difference (MAPD) quality control metric (Cai et al. 2014).
Tumor cells from sample Pt41 appear to be from the same clone
for cells processed with both WGA4 and C-DOP-L, allowing a di-
rect comparison of methods. To estimate noise in the bin ratio
data between two cells, we used the median absolute deviation
(MAD) of the difference in bin ratio data between the two cells.
This is the pairwise distance. For any given cell, the median of
the pairwise distances between that cell and the other cells pro-
cessed with the same protocol is the MAPD for that cell. We report
the median MAPD for the cells from both methods. To estimate
variation in copy number calls, we count the number of bins
with different copy number calls comparing pairs of cells. The
MAPD for each cell is the median number of differences compared
to the other cells processed by the same protocol. We report the
median of these MAPD values for both protocols as a percentage
of the total number of bins.

DNA purification of bulk samples and Illumina library generation

For bulk extraction of genomic DNA from cell lines as well as
clinical tissue, leftover nuclei suspensions were subjected to
phenol-chloroform DNA extraction (details are provided in Sup-
plemental Material). Purified DNA was processed using standard
Illumina library preparation methods and sequenced on the
HiSeq instrument. Sequencing data was analyzed for copy number
variation using the samemethods described for single-cell analysis
(above).

RNA purification, RNA-seq library generation, and analysis

RNA was purified from homogenized cancer biopsy samples, and
RNA sequencing libraries were prepared using the Ovation RNA-
seq system (NuGEN). Sequence data were processed using a variety
of algorithmic tools including Mapsplice2 (Wang et al. 2010) and
RSEM (RNA-seq by Expectation Maximization) (Li et al. 2010).
Detailed information is included in the Supplemental Material.

CORE

CORE analysis was performed as described before (Krasnitz et al.
2013). Briefly, segments with integer copy number values above
or below the reference were considered amplified or deleted, re-
spectively. Copy number events in each cell were derived by slic-
ing, and cores, i.e., regions of significantly recurrent (P < 0.05)
gains and losses, were determined by applying the CORE method
to the entire set of single-cell genomes. Finally, the incidence table
was computed, with rows and columns corresponding, respective-
ly, to cells and cores and with values in the [0,1] interval quantify-
ing the bestmatch between an event in the cell and the core. Single
cells that contained statistically significant cores we judged to be
part of the cancer phylogeny and used for downstream analysis,
while cells lacking cores (mostly cells with the vast majority of
the genome at copy number 2) we judged to be contaminating
normal cells.

Data access

The sequencing data from this study have been submitted to the
NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/
sra) under accession number SRP055057.
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