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Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in
the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the
functional properties of such oscillators then becomes important for the understanding of these cellular processes and
for the characterization of fundamental properties of more complex clocks. Here, we show how the dynamics of a
minimal two-component oscillator is drastically affected by its genetic implementation. We consider a repressor and
activator element combined in a simple logical motif. While activation is always exerted at the transcriptional level,
repression is alternatively operating at the transcriptional (Design I) or post-translational (Design II) level. These
designs display differences on basic oscillatory features and on their behavior with respect to molecular noise or
entrainment by periodic signals. In particular, Design I induces oscillations with large activator amplitudes and
arbitrarily small frequencies, and acts as an ‘‘integrator’’ of external stimuli, while Design II shows emergence of
oscillations with finite, and less variable, frequencies and smaller amplitudes, and detects better frequency-encoded
signals (‘‘resonator’’). Similar types of stimulus response are observed in neurons, and thus this work enables us to
connect very different biological contexts. These dynamical principles are relevant for the characterization of the
physiological roles of simple oscillator motifs, the understanding of core machineries of complex clocks, and the bio-
engineering of synthetic oscillatory circuits.
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Introduction

Oscillations play a fundamental role in many aspects of cell
physiology. This is the case, for instance, of the well-known
sustained oscillations associated to circadian clocks, enzyme
synthesis, or the cell cycle [1]. In many of these situations,
oscillations are originated by the interaction of many
components forming complex regulatory networks, whose
main constituents are being experimentally determined.

Recently, simple oscillator architectures have been found
to be involved in the regulation of seemingly unrelated
biological processes. An oscillator based on a combination of
positive and negative feedback loops has been shown to
regulate the cell cycle of Xenopus laevis embryos [2]. The
combination of a two-component negative feedback between
Cdc2 and the anaphase-promoting complex, with a positive
feedback centered on Cdc2, leads to robust oscillations. The
tumor suppressor protein p53, one of the most extensively
studied proteins in relation to cancer [3], also seems to be
part of a genetic oscillator [4]. Single cell experiments
uncovered the existence of oscillations originated by the
interactions of two components, p53 itself and Mdm2—one
of its major regulators. While this simple scheme only
originates damped oscillations, the presence of a putative
positive feedback on p53 or delays in protein production
could promote undamped behavior. These findings suggested
a digital, instead of analogical, action of the p53-Mdm2
system, which could function as a fail-safe mechanism to
maintain low p53 levels under general physiological con-
ditions. A third system was uncovered in the context of
somite segmentation [5] and linked to the oscillatory
production of the Notch effector protein Hes1 [6]. These
oscillations seem to be regulated by the presence of delays in

a single negative feedback loop constituted by the very same
protein [7,8], although a three-component negative feedback
loop has been postulated [6]. Finally, a genetic clock was
discovered in relation to the nuclear factor kappa B (NF-jB)
[9], a transcription factor that regulates several cellular
responses [10]. Oscillations, in this case, were associated with
the interactions of proteins of the IjB family, which act as
inhibitors of NF-jB. Three different isoforms of this inhibitor
(IjBa, -b, and -e) were revealed to contribute in distinct ways
to the ‘‘decoding’’ of external information affecting the
system. These same oscillations were later studied using time-
lapse single-cell analysis [11]. As a consequence, the NF-jB
oscillator is proposed to act as a complex control module able
to use period or amplitude to differentially regulate
expression of target genes. Overall, these studies indicate
the relevance of broadly characterizing the dynamical
properties of minimal motifs.
Full understanding of the oscillatory dynamics of simple

schemes is also relevant for the development of synthetic
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gene networks. Artificial networks can be constructed
following the suggestions derived from mathematical model-
ing and then characterized by combining theoretical and
experimental studies [12]. This methodology has already been
successfully applied in the case of oscillatory genetic net-
works. A bacterial oscillator was developed with the use of
three well-known repressors linked in a daisy chain [13]. More
recently, a combination of a positive and negative feedback
constituting a two-component clock was both theoretically
and experimentally characterized in Escherichia coli [14]. These
two systems illustrate some of the advantages of studying
basic properties of cellular oscillations in a context-inde-
pendent biological setting.

Finally, the study of simple architectures can also help us
identify common oscillator properties and their contribution
to the dynamics and the modular assembly of more complex
networks [15–18].

In this work, we focus on understanding the interplay
between genetic design and the functional properties of one
of these minimal logical architectures. In particular, we
consider a relaxation-based oscillator combining an activator
and a repressor unit operating on each other (Figure 1A and
1B). In order to be able to exhibit sustained oscillations, this
system also requires an autocatalytic step [19]. Thus, the
activator is acting both on the repressor and on itself. This is
not only a useful architecture to understand information
processing of simple oscillators but also appears as a common
core motif in unrelated biological contexts, such as the
previously mentioned embryonic cell-cycle oscillator or the
circadian clocks [2,17,18]. We introduce two different genetic
implementations of this scheme. Both designs largely differ in
the way the onset of oscillations is produced. These differ-
ences have major implications in the oscillatory behavior,
stimulus response, robustness to biochemical noise, and
synchronization by a periodic signal. The contrast between
both implementations should be more stressed for networks
operating close to the bifurcation regime, e.g., oscillatory
responses, although some of the main features persist for a

broad parameter range. A prominent class of biological
relaxation oscillators, where this difference in dynamics is
crucial, is neurons. Neural computational properties drasti-
cally depend on the way oscillations are generated. Following
these dynamical principles, neurons are generally classified as
Type I or Type II [20,21]. We are able to import some of these
concepts into a completely different biological scenario.

Results

Models
We introduce two designs with repression operating

differently. In Design I (Figure 1C), the repressor inhibits
transcription of the activator in a sigmoidal way, e.g., we
consider that the repressor binds to DNA as homodimer. This
is a frequent biological situation [22], and it was recently used
in the construction of a synthetic genetic clock [14]. In Design
II (Figure 1D), the repressor antagonizes activator action, e.g.,
it acts as a protease increasing the activator degradation
linearly. This design is related to previous theoretical studies
of relaxation-based genetic oscillators, which were consid-

Figure 1. Minimal Oscillatory Architecture and Its Genetic Implementation

(A) An activator (red) is acting on itself and on a repressor element (blue).
The repressor is in turn acting on the activator. (B) The logical elements
correspond to the promoter and coding region of a given gene. This motif
can be genetically implemented in two ways. An activator protein
operates transcriptionally in both cases while repression is implemented
at the transcriptional, Design I (C), or post-translational, Design II (D) level.
DOI: 10.1371/journal.pcbi.0020030.g001
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Synopsis

Periodic variations in protein abundances are at the heart of
important cellular processes, with common examples being the
circadian rhythms or the cell cycle. What is the molecular basis of
this behavior? Recent reports showed how simple architectures,
based on the interaction of a few molecular components, are
capable of inducing oscillatory dynamics. These structures are also
of interest for the understanding of complex cellular oscillators, as
they appear to be core constituents of them. The authors carefully
analyze one of these architectures and uncover how different
genetic implementations of such structures strikingly influence its
dynamical behavior. They consider two genetic implementations of
a repressor and activator element combined in a simple logical
motif. While activation is transcriptionally implemented in both
cases, repression may act either transcriptionally or post-transla-
tionally. These differences in design originate drastic changes in the
way oscillations are produced, in the tolerance to molecular noise, or
in the circuit response to external stimuli. Similar aspects have been
discussed in relation to neural dynamics; therefore this work is able
to connect two very different biological scenarios. Thus, simple
genetic motifs exploit not only their connectivity pattern but their
design to act as information processing units within living cells.

Dynamics of Genetic Oscillators



ered as valid core mechanisms of circadian clocks [16,17].We
can mathematically describe the deterministic dynamics of
the two implementations by means of a set of differential
equations. The corresponding full models describe the
dynamics of the biochemical reactions associated with the
activator and repressor elements, i.e., transcription, trans-
lation, promoter binding, etc. We can simplify these models
by using standard quasi steady-state assumptions.

Design I:

dx
dt
¼ D nx

1þ qx2

1þ x2 þ ry2
� x

� �

dy
dt
¼ Dny

1þ qx2

1þ x2
� y ð1Þ

Design II:

dx
dt
¼ D nx

1þ qx2

1þ x2
� x� rxy

� �

dy
dt
¼ Dny

1þ qx2

1þ x2
� y ð2Þ

Here, x,y denote the activator (repressor) concentrations, D
is the ratio of degradation rates between activator and
repressor, r is the repressor strength, q the increase of
protein production due to the binding of the activator to the
promoter, and nx(ny[enx) is the effective activator (repressor)
basal rate with e measuring the ratio between them. Time and
protein concentration are expressed in non-dimensional
form (see Supporting Information for details on the models,
simplifying assumptions, and non-dimensionalization of
variables).

Onset of Oscillations
When would these systems exhibit sustained oscillations?

Both implementations are examples of relaxation-based
oscillators. Oscillations appear when a clear separation of
time scales between activator and repressor dynamics exists.
This implies two conditions on the parameters: firstly,
activator degradation should be stronger than the repressor
one (D�1), and secondly the activator translation rate should
be also stronger than the repressor one (e�1, i.e., ny�nx). The
above conditions imply much faster activator dynamics,
which ‘‘relaxes’’ the ‘‘stress’’ accumulated during the slow
evolution of the repressor [23].

Although both implementations share a common structure
capable to generate oscillations, their dynamical behavior is
drastically different. This is a direct consequence of how
repression acts on each system. This difference can be
understood by analyzing the associated response curves
(nullclines) in the phase plane. These curves depict the
equilibrium concentration of one species as a function of the
other one [23]. Sigmoidal repression in Design I permits the
coexistence of high levels of the oscillator molecular
constituents. High repressor concentration is required to
actively shut off transcription of the activator. Thus, higher
concentrations of both proteins are reached. This is reflected
in the geometry of both nullclines which can intersect three
times, i.e., there exists three equilibrium points, two of which
have high concentration of both proteins (Figure 2A). In
comparison, the linear repression in Design II implies a single

equilibrium point at lower concentrations (Figure 2B). These
differences are thus a consequence of the faster repressor
action in the post-translational design with respect to the
transcriptional one.
The different types of equilibria found in the two designs

and their stability properties completely determine the onset
of oscillations. In a situation without oscillations, Design I
shows two equilibria, one stable and one unstable, with high
concentration of both proteins. A change in a system
parameter can cause these equilibria to approach each other
until they coalesce and disappear, giving rise to a stable limit
cycle causing the oscillations (saddle-node bifurcation on an
invariant circle, Figure S1). In Design II, the single equili-
brium point, stable when the system is not oscillating, may
become unstable as a parameter changes and the system
approaches a stable limit cycle (subcritical Hopf bifurcation,
Figure S1).

Oscillatory Features
To highlight the distinct features associated with genetic

design, we considered similar biochemical parameters for
both implementations. This implies equal transcription,
translation, and binding rates. We also selected repression
strength, r, in such a way that mRNAs and repressor species
show similar concentration levels in both systems. The most
apparent property distinguishing both designs is the differ-
ence in period and amplitude of the oscillations. We
characterized the shape of the oscillations in both cases as a
function of the ratio of degradation rates, i.e., D, as this is one
of the key parameters responsible for the different time scales
between activator and repressor dynamics.
In Design I, after the saddle-node bifurcation, the period of

the limit cycle can be arbitrarily large and changes
appreciably with D. This is shown in the right inset of Figure
2A, where the frequency of the oscillations is plotted as a
function of D. Oscillations might emerge at almost zero
frequency. In addition, the relatively long time necessary to
achieve strong repression allows the presence of large
concentration amplitudes in this system (Figure 2C). Design
II oscillations appear, however, with finite frequency and this
tends to be a less variable characteristic of the system. Faster
(linear) repression action prevents (in this case) large
activator concentrations (Figure 2D).
The previous features can be qualitatively understood by

inspection of the response curves in a regime where the
parameter D is close to its bifurcation value, i.e., the value
where oscillations arise. Large periods in Design I appear as a
consequence of a slowdown in the dynamics of the activator
after reaching its maximal amplitude. This corresponds to the
point in phase space where the activator and repressor
response curves are tangent. These slow dynamics are a
remnant or ghost of the presence of a previous stable
equilibrium [23]. Note that since the equilibrium is in the
saturated part of the repressor-response curve, small changes
in the activator (x) do not affect the equilibrium value of the
repressor (y). This translates into oscillations with a broad
‘‘shoulder’’ of high activator and repressor concentrations
(Figure 2C) and consequently into large periods. On the other
hand, the equilibrium point in Design II changes stability
when the maximum of the activator nullcline crosses the
repressor curve below its saturated regime. Therefore,
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dynamics at these concentration levels can not be arbitrarily
delayed (Figure 2D).

A further noticeable difference in oscillatory behavior is
the appearance of damped oscillations associated to sub-
threshold values of D. This is seen only in the second design
due to presence of a low-amplitude unstable limit cycle
characteristic of subcritical Hopf bifurcations (Figure S1).
Damped oscillations can emerge as a response to subthres-
hold stimuli and also play a role in aspects such as noise
resistance or entrainment to external periodic signals
(discussions below). Finally, sustained oscillations are found
in a larger range of parameter values for Design II (system
robustness, Figures S2 and S3).

Stimulus Response
Transient stimulation by an external signal can induce

oscillations in genetic systems [4,9,11]. These stimulus
response dynamics may also be influenced by the different
genetic design. We are interested in two scenarios where the
stimulus duration and pattern are important. For both cases
we suppose that the oscillators are initially in the rest state,
i.e., not oscillating, which could be interpreted as the state of
no activity of the circuit. The stimulus is able to activate this
circuit, pushing it toward the oscillatory regime, e.g., by
reducing the repressor degradation.

We first studied the dynamical response to a continuous
stimulus with fixed amplitude but varying length. We

measured the recovery of the system as the time-lapse needed
to return to its rest state after the pulse is switched off.
Recovery time increases relatively proportional to pulse
duration for short pulses but experiences a sudden threshold
for longer ones (Figure S4A). This threshold is due to the
presence of a stimulus long enough to trigger an oscillation,
and can act as a fail-safe mechanism to avoid unwanted circuit
activity, e.g., protecting the cell from high concentrations of
oscillator constituent proteins such as p53 [4]. Below this
threshold, Design II shows small jumps in response associated
to the presence of damped oscillations (Figure S4B).
In a second scenario, we analyzed the response of genetic

oscillators to different stimulation patterns (Figure 3). We
first apply three consecutive signal pulses with the same fixed
amplitude, duration, and inter-pulse time to an inactive
circuit. This short pulse train does not elicit any significant
response in either of the two designs (Figure 3A and 3B).
However, a pulse train with the very same features as before,
but a larger number of constituent pulses, is ‘‘integrated’’ by
Design I which triggers an oscillation (Figure 3C). This is not
the case in Design II (figure not shown). We can imagine a
complementary situation. In this case, we consider the same
pulse pattern as initially but with a slight change in the
duration of the pulses (see Figure 3 caption for details).
Oscillations are now induced in Design II only (Figure 3D). In
summary, Design I acts by integrating external cues, while
Design II better detects the periodicity of a given signal.

Figure 2. Repressor and Activator Dynamics

(A and B) Shows repressor (y), activator (x) phase plane analysis for both designs. Nullclines and limit cycle trajectory (red line) close to the bifurcation
point. Solid line, activator-nullcline; dashed line, repressor-nullcline; inset, frequency of the limit cycle oscillations as a function of the bifurcation
parameter D. Note the difference in both designs (oscillations may arise almost with zero frequency in Design I).
(C and D) Activator (x, solid blue line) and repressor (y, dashed red line) adimensional concentration as a function of time. We consider the following
parameter values in all figures: nx¼ 1.58, e¼ 0.05, q¼ 50, r¼ 1 (see Supporting Information for bifurcation diagrams associated with the emergence of
oscillations).
DOI: 10.1371/journal.pcbi.0020030.g002
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These two different responses have been widely discussed in
the context of neurobiology. Neurons in this way can be
considered as ‘‘integrators’’ or ‘‘resonators,’’ also as a
consequence of the different bifurcation scenarios previously
discussed [20,21]. As in neurobiology, and also in the case of
calcium signaling [1,19], this has important implications for
signal processing.

Biochemical Noise
Deterministic models present only an approximation to

the behavior of genetic oscillators in certain limits, e.g.,
increasing promoter interactions and number of molecules
[24]. In a realistic cellular environment, these systems exhibit
stochastic dynamics originated by the presence of a small
number of molecules of their constituents [25,26]. Biochem-
ical reactions are then better described in probabilistic terms
where the kinetic parameters become transition probabil-
ities. The mathematical description of the system is now in
terms of the master equation formalism [27]. The difficulty in
solving analytically master equations, even for very simple
scenarios, is partially avoided by the use of computational
simulations [28].

Stochasticity may play a dual role in genetic systems.
Generally, it can impede proper function. As a consequence,
some circuit architectures could be preferred to others as
being more robust against noise [17,29–31]. Relaxation-based
oscillators of the type discussed here have been thought to

provide such noise resistance in circadian clocks [17].
However, stochastic dynamics appear as a required feature
to perform some biological tasks. This has been recognized in
several contexts such as signal amplification [32], noise-
induced oscillations [17], and bi-stability [33]. Ultimately,
noise can originate phenotypic heterogeneity, which in-
creases the cell adaptation to unexpected environmental
conditions [26].
We simulated the stochastic dynamics of the system under

different conditions with the Gillespie [28] algorithm (see
Supporting Information for details and Figure S7). In all
situations, we computed the coefficient of variation (CV,
standard deviation/mean) of the distribution of periods and
the decay time of the auto-correlation function (sc, the time
scale at which the periodicity of a dynamical variable is lost)
for both designs [27,30] as these are appropriate measures of
the variability of oscillations with respect to molecular noise.
We first studied the effects of noise due to the presence of a

small number of molecules of all circuit elements. We
modified these numbers by changing a parameter X associ-
ated with the cell volume. We can envisage two dynamical
situations. In the first one, the system is in a non-oscillatory
state with the parameter of interest, i.e., D, close to the
bifurcation value where the oscillations emerge. In Figure 4 it
is shown how CV and sc change, in this case as a function of the
number of activator molecules. We see how at a certain level of
noise CV reaches a minimum value (sc reaches a maximum),

Figure 3. Response in Activator Concentration (x) to a Short-Pulse Train

(A and C) Design I; (B and D) Design II.
(A and B) Three pulses of fixed amplitude and duration. In this example, pulses represent transient changes in repressor degradation rate, i.e., changes
in parameter D. Pulse durations are chosen approximately as 1/10 of the oscillation period (1 time unit for Design I, and 0.2 time units for Design II,
respectively). Pulse amplitudes are 1 for Design I and 0.5 for Design II in units of D (right y axis).
(C) Design I: ten pulses with the same amplitude and period eliciting a large response.
(D) Design II: three pulses with the same amplitude but slightly longer duration (0.3 time units) are able to trigger a big response.
DOI: 10.1371/journal.pcbi.0020030.g003
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i.e., oscillations become more coherent. This is, however, not
the regime with the largest amount of molecules of circuit
constituents, i.e., the closest to the deterministic noiseless
limit, as one could a priori expect. Such apparent paradox is
related to a stochastic resonance phenomenon linked to the
noise-induced oscillations. This effect is common to both
designs, but it is manifested in different ways. In Design I
(Figure 4A and 4C), a situation with a large number of
molecules reduces the presence of noise-induced oscillations.
Oscillations are produced as completely uncorrelated pulses
with long waiting times between them, obeying a Poissonian
distribution (Figure S5). In the opposite regime of strong
noise, oscillations are easily induced but in a very irregular
way. The oscillator experiences high period variability (high
CV, low sc) in both extreme cases.

In Design II (Figure 4B and 4D), the appearance of
subthreshold oscillations and a characteristic frequency
slightly modifies the previous argument. In this case, a lower
minimum in CV is seen due to the inherent higher coherence
of oscillations. Variability in the range of weak noise is
associated with the presence of different time scales in the
system due to the subthreshold oscillations (Figure S5).

We can compare the previous analyses with a far-from-
bifurcation scenario (shown also in Figure 4). Stochastic
resonance is absent in this case since noise-induced oscil-
lations do not arise. In addition, oscillations in both designs
are less variable when the number of present molecules
increases, as one would expect. A comparison of Figure 4A
and 4B and Figure 4C and 4D reveals a common trend in
which Design I dynamics are more variable when the
oscillator is close to its bifurcation value.

It is also interesting to analyze the effects associated with
low numbers of mRNA species. To examine this contribution
to stochasticity, we changed the transcription and translation
rates proportionally for a fixed-system volume (X). In this way,
we are varying the average number of mRNA molecules while
keeping the protein levels unchanged. A decrease in tran-
scription, and thus in the number of messenger molecules, is
compensated by a ‘‘burst’’ of translational activity [26].
In Figure 5 we plotted the variability of oscillations (CVs

and scs) as a function of the mRNA molecules of the activator
for both designs. We again analyzed two situations with the
system within (out) the oscillatory regime. Additionally, we
selected a number of molecules of all constituents that
correspond to the case of maximal coherence (minimal
variability) found in the previous studies (solid curves in
Figure 4). These results show that mRNA change contributes
strongly to the presence of noise in the system as we obtain
similar qualitative behavior by changing mRNA only, than by
modifying the number of all molecular species [26]. Tran-
scriptional repression in Design I is reflected in a slightly
different behavior of this system with respect to mRNA-
induced noise (Figure S6).

Synchronization
Genetic oscillators are subjected many times to external

periodic signals. A common example is that of the circadian
rhythms entrained by the external dark-light cycle. More
generally, oscillatory stimuli can give important information
about natural and synthetic oscillators [34]. Entrainment
depends both on the signal and the system-specific features.
We are interested in examining how changes in the last

Figure 4. Effect of Noise Due to the Presence of a Small Number of Molecules of All Circuit Components

CV and sc scaled by the deterministic oscillation periods versus biochemical noise expressed as the average number of activator molecules per period,
obtained from numerical simulations. (A and C) Design I; (B and D) Design II. Filled circles correspond to a situation close to bifurcation in both designs
and open squares to a value of the parameter D far from bifurcation. Error bars are the size of data points.
DOI: 10.1371/journal.pcbi.0020030.g004
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properties (i.e., changes in system design) affect entrainment
by the same external source.

We considered a periodic square wave signal that modifies
the repressor degradation rate when active, e.g., a heat-shock
pulse varying the degradation rate of the repressor [16]. This
signal can alter the natural period of the genetic oscillator.
We analyzed the stable regions of frequency locking, i.e.,
stable Arnold tongues, as a function of the period and
amplitude of the signal for both designs (Figure 6).

A signal increasing repressor degradation can drive the
system toward the rest state. Increasing repressor degrada-
tion decreases D, which needs to be smaller than a given
threshold value to quench oscillations. Absence of the signal
releases the system back to the oscillatory regime. These
combined dynamics ultimately locks the system frequency to
that of the external stimulus. Design II exhibits a clearer
entrainment threshold in comparison to Design I (Figure 6A
and 6B). The lack of a sharp threshold in the first design is a
direct consequence of the remnant of the steady-state (ghost
state) mentioned in an earlier section. The ghost state induces
a slowdown in the dynamics, which allows synchronization
with subthreshold signals.

In an alternate scenario, the signal decreases repressor
degradation. This effect can only push the system far from the
bifurcation accelerating the dynamics. Entrainment by the
signal is thus more difficult and the threshold phenomenon
disappears. Both systems behave qualitatively in the same way
in this case, as we see in Figure 6C and 6D. The slower
dynamics of Design I are still reflected in a wider synchro-
nization region.

We studied the effect of biochemical noise in the first
entrainment situation (signal-increasing repressor degrada-
tion). Noise induces variability in the intrinsic period of the
system oscillations and in the phase lag with respect to a
reference time, i.e., phase diffusion [30]. In the presence of
noise, the effect of a periodic signal is hardly noticed in the
CV for the distribution of periods, where only a shift of the
maximum of the distribution towards the external signal
period is seen for both designs. On the contrary, phase
diffusion due to biochemical noise can be counter-balanced
by the application of an external signal. This can be
appreciated in the decay of the correlations, sc, and the
distribution of phase lags to the period of the external signal,
which can be defined as:

/k ¼ /0 þ 2ptk=Tsignal: ð3Þ

Here, tk, Tsignal are the period of oscillation of the k-th cycle
and the signal, respectively. In Figure 7 we show the
distribution of phase lags for both designs in a situation of
weak noise and for a threshold value of the signal. Design II
experiences more phase diffusion in agreement with the
discussion of the deterministic situation. We also plotted the
case of no external forcing for comparison (flat solid line
distribution in Figure 7).

Discussion

The study of minimal architectures capable of generating
oscillations is motivated by three complementary aspects.
Firstly, simple oscillator motifs seem to be acting as control
modules in different biological contexts. This is the case of

Figure 5. Effect of Noise Due to the Presence of a Small Number of mRNA Molecules

CV and sc , as in Figure 4, versus biochemical noise expressed as the average number of activator mRNA molecules per period. (A and C) Design I; (B and
D) Design II. Filled circles correspond to a situation close to bifurcation in both designs and open squares to a value of the parameter D far from
bifurcation. We fix the cell volume such as the system experiences intermediate noise strengths (coinciding with the maxima seen in Figure 4, where the
number of activator molecules is ;500 in Design I and ;200 in Design II). Error bars are the size of data points.
DOI: 10.1371/journal.pcbi.0020030.g005
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oscillators involved in the cell cycle of Xenopus laevis [2], the
response to DNA damage mediated by the tumor suppressor
p53 [4], the establishment of somite patterning in vertebrates
[6], or the temporal control of action of the NF-jB
transcriptional factor, a basic regulator of many cellular
processes [9]. A full understanding of the physiological roles
of these oscillators is, however, lacking. Secondly, questions
about basic design principles of oscillators such as the
relationship among structure, dynamics, and evolution [18],
or their modular assembly into complex cellular networks
[15], can be more easily analyzed with the use of these simple
systems. Finally, a better knowledge of the information-
processing capabilities of these schemes is of interest for the
bio-engineering of artificial clocks with almost full control of
their components and interactions [13,14].

What would one need to know about such minimal
architectures to completely understand their function? A
usual strategy would be the following: Initially, it is, of course,
necessary to identify its molecular components and then
characterize their general biochemical properties. Molecular
and genetic experiments are later carried out to delineate the
logical architecture of its interactions and thus are able to
establish the connection between the structure and the
function of the module. As a consequence, the identification
of similar architectures in different biological contexts could
lead us to assume the same functional properties without the
demand to characterize experimentally these new situations.

In this work, we show the relevance of going from the
uncovering of such logical structures, or ‘‘molecular cartoons,’’
to the determination of their specific genetic designs, in order
to truly understand their overall functional properties.
We introduced a simple relaxation-based module to

analyze the consequences of two alternative genetic imple-
mentations on its dynamics. We show that its behavior is
dramatically influenced by how the repressor is operating in
the system, either sigmoidally (transcriptional repression) or
linearly (post-translational repression). These designs are
shown to be associated with two different mechanisms
originating the onset of oscillations, which in turn determine
its dynamical properties.
Both designs differ in basic oscillatory features. Repression

operating at the transcriptional level induces oscillations with
arbitrarily large periods, while these are smaller and less
variable in the post-translational case. In this latter design,
the system also exhibits damped oscillatory dynamics. Addi-
tionally, in a situation where a similar number of molecules of
repressor and mRNA species are present, post-translational
repression displays much lower oscillating amplitudes of the
activator. These differences greatly influence the functional
properties of these designs such as their stimulus response,
behavior in the presence of biochemical noise, and entrain-
ment by periodic signals.
Recent experimental reports [4,9,11] have discussed the

possibility that certain signaling modules could be encoding

Figure 6. Synchronization Regions (Arnold Tongues) for the Deterministic Models

Only the 1:1 (red) and 1:2 (blue) stable resonance regions are shown. x0 is the limit cycle frequency (the undriven system is in the oscillatory regime at D
¼ 11 for Design I and D ¼ 22 for Design II, respectively), and x denotes the signal frequency. The (scaled) signal amplitude dRS affects the repressor
degradation (see Supporting Information). Positive values (top panels) increase degradation and decrease the value of D while negative values (bottom
panels) decrease degradation and increase the value of D. Solid lines: critical values of signal amplitude for effectively driving the system towards the
rest state.
DOI: 10.1371/journal.pcbi.0020030.g006

PLoS Computational Biology | www.ploscompbiol.org March 2006 | Volume 2 | Issue 3 | e300195

Dynamics of Genetic Oscillators



information on the amplitude and period of their oscillatory
response in order to regulate their transcriptional targets. We
show here how these two designs show distinct use of period
and amplitudes and also very different signal response to
external cues. Design I acts as a signal ‘‘integrator’’ while
Design II resonates with specific frequencies of the stimulus (a
‘‘resonator’’). These behaviors determine the information-
processing capabilities of these systems in a similar way to the
case of neural systems. Indeed, different neuron types have
been shown to respond as integrators or resonators to
external signals [21].

Stochastic noise is a relevant factor in understanding the
structural and functional properties of genetic oscillators. We
studied the behavior of these designs in the presence of two
sources of noise, one due to the presence of a small number
of molecules of their constituents and the other due to
changes in translational efficiency or ‘‘translational bursting’’
[25,26]. Both cases exhibit the well-known phenomenon of
stochastic resonance associated with noise-induced oscilla-
tions. This means that oscillations in both systems are more
coherent for intermediate levels of noise rather than in a
weaker noise regime, as one could naively expect. Analyzing
both systems under similar noise conditions, we see that

Design II exhibits more noise resistance [17]. We also
considered a simplistic scenario to study the entrainment of
both designs by periodic signals since this is relevant for
natural and artificial oscillators [16,34]. Both systems showed
distinct entrainment properties. Design I becomes, however,
easier to synchronize due to the presence of a ghost state [23].
Understanding the functional consequences of different

genetic implementations of minimal motifs emerges as an
important requirement to properly classify part of the
overwhelming complexity found in cells [35,36].

Materials and Methods

Numerical simulations were done using MATLAB (The Mathworks,
Natick, Massachusetts, United States) and Fortran codes.
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