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Abstract

We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate
species. This network is derived from a proteome-scale human protein interaction Core Network generated through
unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of
proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional
human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338
unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins
in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node
degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected
than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared
the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human
muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially
expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate
life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging
muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when
knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in
invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction
network presented here is enriched for novel conserved longevity proteins.
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Introduction

Genetic modulation of life span is ultimately mediated through

proteins, and the mechanisms that allow this control must

necessarily involve the interaction of multiple proteins. As a

biological pathway, aging is a pleiotropic process, and many of the

proteins identified as influencing this process have a proportionate

pleiotropy of function. Modulations of the levels in a single protein

have been found that provide robust increases in life-span for an

organism [1,2], but contributions from many genes are expected

to dictate longevity in all organisms. This idea is supported by an

investigation of yeast protein-protein interaction networks that

found that proteins related to aging have a significantly higher

connectivity than expected by chance [3]. Similarly, a second

group found that their computational model suggested aging genes

have more connections in interaction networks, and that this may

be useful in identifying new aging genes [4]. Therefore, a useful

way to identify novel genes with roles that affect life span is to

identify their gene product’s interactions with known aging-

associated proteins.

A role for protein interactions in processes is most apparent at

the level of protein complexes that assemble to carry out a

particular function. Likewise, protein interactions that mediate

signaling cascades demonstrate how interactions functionally

translate into a biological pathway. Indeed, biological processes

are built of hierarchical protein-protein interaction assemblies that

together carry out the overall physiological process. Therefore, the

identification of interactions that a protein participates in can be

an informative way to pursue an understanding of the protein’s

function. A common method for identifying protein interactions is

the yeast two-hybrid system (Y2H), which uses the interaction of

two proteins to reconstitute a transcription factor that then

activates expression of a reporter gene [5]. An important

development in the Y2H approach was the introduction of the

screening of libraries of potential interacting proteins [6]. This

development made it possible to identify novel protein interac-
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tions. Novel interactions impart a suggested role in a physiological

process for proteins based on the established involvement of their

interaction partner in that process.

Recently, high throughput approaches have expanded this idea

to a systems-scale level: investigators can identify the network of

interactions that occur among a large set of proteins, and from this

infer the relationships of those proteins in, as well as their

contribution to, the system. Such an approach has been used to

interrogate the protein interaction networks that underlie model

organisms [6–12], human cells [13,14], and organisms responsible

for infectious diseases [15–17]. Biological processes such as vulval

development in nematodes [18], and familial neurodegenerative

diseases [19–21] have also been the subject of large-scale Y2H

interaction mapping. From these studies, many hypotheses for new

participants in biological pathways have emerged.

The results from high-throughput protein interaction studies are

known to contain false-positive (i.e. biologically irrelevant) interac-

tions intermingled with the biologically relevant interactions.

Independent large-scale studies of the same system may not

necessarily distinguish the two [22], although detection of an

interaction in more than one study is strong evidence for the

authenticity of the interaction. An additional approach to address

interaction validity is to use features of the network itself to provide

evidence for the physiological relevance of the identified interactions.

Protein interaction networks behave as scale-free networks, and the

resultant properties such as path length and clustering features can

be mined with bioinformatic methods to evaluate the properties of a

given interaction within the network [23,24]. Comparisons with

other phenotypic data can provide further support. An observation

of similar regulation using gene expression analysis has been used to

establish confidence in protein interactions by a number of groups

[8,11,15,25,26]. Shared gene ontology annotations [27] can also be

used to identify characteristics of proteins that support the link(s)

suggested by the interactions [15].

Results

Interaction Network of Human Homologs of Invertebrate
Longevity Proteins

We performed a comprehensive survey of the published

literature on the genetics of aging as studied in model systems

(yeast, fly, nematode and mouse) and identified 363 genes that

have been reported to increase life span when mutated. Most of

these genes were curated in the SAGE KE Genes/Interventions

Database (http://sageke.sciencemag.org). The remainder were

culled from published large-scale genetic screens for longevity

phenotypes [28–32]. In order to characterize these longevity

genes/proteins in the context of a human protein interaction

network we sought to analyze their protein interaction partners in

a large human protein interaction database. We have used high-

throughput yeast two-hybrid methods to construct a large network

comprised of 114,689 unique binary interactions between

fragments of human proteins. This network was generated using

results from ,345,000 individual yeast two hybrid screens. Aspects

of the Prolexys human protein interaction network and methods

used to generate it have been described previously [15,21,33]. The

114,689 interaction network was filtered to create a Core Network

with 70,358 unique binary interactions between protein fragments

representing 10,425 unique genes curated as NCBI RefSeq

entries. The Core Network was generated by removal of ‘‘sticky’’

proteins identified using a K-means clustering method [15].

Exclusion of bait proteins with .87 interactions and prey proteins

with .231 interactions resulted in removal of 44,331 interactions

and 855 nodes (i.e. unique genes) from the unfiltered network.

Figure 1A shows a log-log graph of node degree distributions of

the unfiltered network (black circles) and the Core Network (red

circles). The fact that the degree distribution appears as a straight

line on a logarithmic plot indicates that the Core Network is scale-

free [23,34]. This Core Network was queried to determine the

interaction properties of human protein homologous to proteins

experimentally implicated regulation of life span. A masked

version of the complete Core Network is shown in Table S6.

The majority of genes and proteins identified as having a role in

modulation of life span were discovered in yeast, fly and

nematode. We therefore identified the human orthologs and

homologs of these invertebrate longevity genes according to

definitions used in NCBI’s Homologene (http://www.ncbi.nlm.

nih.gov/entrez/query.fcgi?DB=homologene) and the Karolinska

Institute’s Inparanoid Database (http://inparanoid.cgb.ki.se/). Of

the 363 invertebrate longevity genes identified, 252 have human

homologs and 175 of these homologs are represented in the Core

Network of the Prolexys protein interaction database (Table S1).

The proteins encoded by the 175 human homologs of invertebrate

longevity genes were observed to interact with 2,163 additional

human proteins in the yeast two-hybrid assays. This longevity

protein interaction network ultimately consists of a total of 3,271

binary connections between the 2,338 proteins (Table S2). When

the longevity network was derived from the Core Network it was

immediately apparent that the longevity homologs were unusually

highly connected with an average node degree of 18.8 and a

median node degree of 7.0 (see Table S1 for individual node

degrees). These values are notably higher that average and median

node degrees of 13.5 and 5.0 observed for the entire Core Network

(Table S6). Figure 1B shows a box plot comparing the distribution

of node degrees for the 175 human longevity protein homologs

and the Core Network from which the longevity sub-graph was

derived. This indicates that human homologs of longevity proteins

comprise a group of highly connected hubs in the Core Network.

The increase in the median node degree for the longevity proteins

indicates that this distribution is not due to the effect of outliers.

A path length analysis was performed to determine whether the

network of longevity protein homologs were more closely

connected to each other than would be expected by chance.

Figure 2A shows the average mean shortest path length in 1,000

sets of 175 proteins selected at random from the Core Network is

Author Summary

Studies of longevity in model organisms such as baker’s
yeast, roundworm, and fruit fly have clearly demonstrated
that a diverse array of genetic mutations can result in
increased life span. In fact, large-scale genetic screens have
identified hundreds of genes that when mutated, knocked
down, or deleted will significantly enhance longevity in these
organisms. Despite great progress in understanding genetic
and genomic determinants of life span in model organisms,
the general relevance of invertebrate longevity genes to
human aging and longevity has yet to be fully established. In
this study, we show that human homologs of invertebrate
longevity genes change in their expression levels during
aging in human tissue. We also show that human genes
encoding proteins that interact with human longevity
homolog proteins are also changed in expression during
human aging. These observations taken together indicate
that the broad patterns underlying genetic control of life
span in invertebrates is highly relevant to human aging and
longevity. We also present a collection of novel candidate
genes and proteins that may influence human life span.

Longevity Interactome
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4.61 as compared to 4.15 for the longevity network (p = 0.004).

This result is consistent the prediction that proteins with shared

functions (in this case the modification of life span) are more likely

to be closely associated in the network than would be expected by

chance. To determine whether this path length difference is a

trivial result of the high average node degree in the longevity

network, we performed a path length analysis using networks with

randomized connections. In order to do this, the edges in the Core

Network of 70,358 binary interactions were randomly reassigned

while preserving the node degree of each individual protein. The

average path length between the longevity protein homologs

present in 100 randomized core interactomes was then deter-

mined. As shown in Figure 2B, we found that the average shortest

distance between any two longevity proteins (4.15) is significantly

less than the average distance of 4.73 (60.13) between these

proteins in the 100 networks with randomly assigned interactions

(p,0.01). This result shows that the decreased path length

observed in the longevity network is not simply a feature of high

node degrees but is in fact dependent on the connections between

the specific interacting proteins included in the longevity network.

Expression of Genes Encoding Human Longevity
Homologs and Their Interacting Proteins during Human
Aging

The 2,163 human proteins that interact with the invertebrate

longevity homologs are not known to be involved directly in aging or

longevity phenotypes. However, because of their ability to bind

directly to known longevity proteins in the yeast two-hybrid assay,

these can be considered as candidate longevity proteins. To validate

potential roles for the interacting proteins in human longevity we

looked for evidence that the expression of genes encoding these

proteins might be changed during the aging process. To do this, we

compared the network to DNA microarray datasets comparing gene

expression in human skeletal muscle from cohorts of young and old

healthy volunteers [35]. In this microarray study, skeletal (vastus

lateralis) muscle biopsies from healthy older and younger adult men

and women were compared using gene expression profiling. After

quantile normalization, the number of genes significantly differen-

tially expressed with age was determined by performing, on a probe-

by-probe basis, 24,354 two-sample t-tests. To control the family-wise

error rate (FWER), the significant genes were chosen at 5% using

Holm’s step-down method. FWER was used to insure a low

probability of any false positives among this list. Using a false

discovery rate cut-off of 5%, a large number of genes were found to

be differentially expressed as a consequence of age [35].

To integrate the longevity interactome with the gene expression

data, we asked whether any of the genes encoding longevity

proteins or their interactors (‘‘1u interactors’’) were significantly

changed in the transcript profiles from old vs. young human

cohorts. Of the 175 longevity proteins, 169 were represented on

the microarray used in this study by 210 probes. We determined

how many of the 210 probes had a significant association of

expression and age using analyses based on loess normalized

intensities converted to log scale. HOPACH (Hierarchical

Ordered Partitioning and Collapsing Hybrid) was then used to

cluster the resulting genes and generate plots of similarly expressed

genes. This analysis identified 54 of the 210 probes (52 of 169

unique genes) as being differentially expressed between the old and

young cohorts (FDR q-value,0.05). The differentially expressed

aging gene homologs are listed in Table 1.

To see whether this was unusual, we included an additional test

to determine whether this set of probes is more enriched in genes

associated with age than one would expect by pure chance. We

drew randomly from the original list of genes probes (24,354

probes genes) 210 at a time and for each of these random draws,

examined the number of genes probes significantly associated with

age at the same level of significance. However, among only 1 of

Figure 1. Node Degree Distributions in Core Network and
Longevity Network. Panel A shows the node degree distribution in
unfiltered and Core protein interaction networks. A log-log plot of node
degrees in both unfiltered and Core interaction networks appears as a
straight line indicating that both are scale free. Black circles represent
node degrees of 11,280 proteins in a network of 114,698 interactions.
Red circles show the node degree distribution after removal of bait
proteins with .87 interactions and prey proteins with .231
interactions. The Core Network contains 70,358 binary interactions
among 10,425 unique proteins. Panel B shows the node degree
distributions of the Core and longevity networks represented as box
plots. The average node degree in the Core Network is 13.5. The
average node degree for the 175 longevity proteins is 18.8. Median
node degrees (indicated by thick horizontal lines) for the core and
longevity networks are respectively 5.0 and 7.0.
doi:10.1371/journal.pgen.1000414.g001

Longevity Interactome
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the 1,000 random draws we performed, did that many or more

significant genes probes come up, implying a significant enrich-

ment among this set (p-value = 0.001; see Figure 3B). A

permutation test for all 236 gene longevity gene homologs present

on the microarray (represented by 291 probes) is shown in

Figure 3A. We found among the longevity gene homologs

(regardless of whether they were present in the interaction network

data), 66 out of 291 probes were significantly associated with age.

However, among only 4 of the 1000 random draws we performed,

did that many significant genes come up, implying a significant

enrichment among this set as well (p = 0.004).

We next evaluated the 2,507 probes that correspond to genes

encoding 2,036 of the 2,163 1u interactors in the longevity

interactome network. We repeated the analyses described above

for the longevity proteins. Among the 1u interactors, 611 out of the

2,507 probes (581 of 2,036 genes) were significantly associated with

age. In 1,000 random draws of 2,507 probes, none contained 611 (or

more) significant genes, demonstrating significant enrichment

among the set of 1u interactors (p,0.001; see Figure 3C).

These statistical analyses clearly demonstrate that genes

encoding human homologs of invertebrate longevity genes and

genes encoding their interacting proteins are highly enriched

among genes with a statistically significant change in expression

between young and old muscle tissue in human. This result is

somewhat surprising in that these genes are derived primarily from

experiments done in invertebrate models, and thus one might not

expect a priori to see age-dependent changes in expression levels in

human tissue. Two preliminary conclusions are suggested by these

observations: 1) longevity genes discovered in invertebrate models

are likely to play some roles in human longevity and 2) cells and

tissues appear to modulate expression levels of such longevity

genes during the aging process in human. A list of human

homologs of invertebrate aging genes and genes encoding

interacting proteins that show significant expression changes in

aging human muscle are shown in Table S3.

Figure 4 shows a subnetwork of the longevity interactome. This

subnetwork includes only those genes whose expression is

significantly changed in the aging microarray data. This

subnetwork contains 339 interactions among 325 proteins, roughly

10% of the interactions in the larger network. We consider

proteins in this network to be of high interest for further studies.

An example of one group of interest is FRAP1 (mTOR) and its

interacting proteins. FRAP1 has total of 63 interacting protein

interactions in the longevity network.

FRAP1 has a well-established role in longevity, with loss of

function mutations in the FRAP1 orthologs in both nematodes

Figure 2. Path length analysis of longevity genes in Core Network. Panel A shows a comparison of the mean shortest path length of the 175
genes in the longevity cohort to the average shortest path length distribution in the Core Network. The histogram shows the distribution of mean
shortest path lengths observed in 1,000 sets of 175 genes randomly selected from the 10,430 unique genes present as nodes in the Core Network.
The mean shortest path length for all genes is 4.61. By comparison, the mean shortest path length for the 175 longevity genes is 4.15 (vertical red
line). The p-value for the significance of this difference is 0.004. Panel B shows path length analysis for interactions among longevity homologs using
randomized networks. The mean shortest path length between the 175 longevity protein homologs in the network is 4.15 (vertical red line). The
distribution of mean shortest path lengths between these proteins in 100 networks with randomly assigned connections is shown. The peak of the
distribution in the randomized networks is 4.73. As none of the values from the permutation distribution was less than 4.15, the p-value for the
significance of this difference is ,0.01.
doi:10.1371/journal.pgen.1000414.g002
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Table 1. Human Longevity Gene Homologs with Significant Expression Changes in Muscle.

Human Homolog
Geometric Mean
Ratio (old/young)

FDR Adjusted
p-value

Model Organism
Gene Name Model Organism

amino acid metabolism

AMT 1.1 3.80E-02 GCV1 S. cerevisiae

GCN1L1 1.1 2.10E-02 GCN1 S. cerevisiae

MSRA 0.9 2.10E-02 Eip71CD D. melanogaster

axonal guidance

FEZ1 1.2 9.60E-05 unc-76 C. elegans

FEZ2 1.8 1.20E-08 unc-76 C. elegans

cell adhesion

ILK 1.2 9.60E-05 pat-4 C. elegans

PARVB 0.8 2.10E-02 pat-6 C. elegans

cell cycle

CDK8 0.9 3.70E-02 SSN3 S. cerevisiae

HSMPP8 1.2 4.09E-05 T09A5.8 C. elegans

cell signaling

DUSP10 1.2 2.00E-04 puc D. melanogaster

FRAP1 0.9 2.00E-03 let-363 C. elegans

GNAI1 0.9 5.90E-03 GPA2 S. cerevisiae

OPA1 0.9 4.60E-03 eat-3 C. elegans

PRKAG1 0.7 2.40E-07 SNF4 S. cerevisiae

PRKAG2 0.8 1.60E-02 SNF4 S. cerevisiae

RAB10 1.3 1.50E-04 rab-10 C. elegans

RRAGD 0.7 1.60E-06 GTR2 S. cerevisiae

SGKL 1.4 7.30E-05 sgk-1 C. elegans

cytoskeletal processes

CNN3 1.2 1.40E-02 SCP1 S. cerevisiae

DNCH2 1.1 2.30E-02 che-3 C. elegans

FLNB 1.3 5.50E-04 cher D. melanogaster

TAGLN 1.4 2.60E-03 SCP1 S. cerevisiae

energy metabolism

ACO2 0.9 1.60E-02 aco-2 C. elegans

AOX1 1.2 4.70E-03 F55B11.1 C. elegans

ATP5F1 0.9 1.00E-02 asb-2 C. elegans

ATP6V0A1 1.3 5.90E-05 unc-32 C. elegans

COX4I1 0.9 1.50E-04 W09C5.8 C. elegans

COX5B 0.9 2.90E-03 cco-1 C. elegans

CYC1 0.9 3.60E-03 cyc-1 C. elegans

IDH1 0.8 7.00E-08 F59B8.2 C. elegans

IDH3A 0.6 2.80E-05 F43G9.1 C. elegans

UGP2 0.9 2.60E-03 K08E3.5 C. elegans

UQCRFS1 0.8 1.20E-08 isp-1 C. elegans

mRNA maturation

NUP98 1.1 1.40E-02 NUP100 S. cerevisiae

RBPMS 1.2 2.00E-02 mec-8 C. elegans

protein catabolism

EDEM1 1.2 9.80E-05 MNL1 S. cerevisiae

SH3MD2 0.9 2.60E-03 POSH D. melanogaster

SH3RF2 1.6 5.80E-04 POSH D. melanogaster

UCHL5 0.9 4.10E-02 ubh-4 C. elegans

Longevity Interactome
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[36] and yeast [30,32] leading to increased life span. Our results

suggest that FRAP1 may also have a role in human longevity.

Human FRAP1 interacts with 63 proteins that have not previously

been shown to be involved in longevity. Some of these have

functions that are consistent with known FRAP1 functions of

FRAP1, e.g. an interaction with RPS27, a component of the small

ribosomal subunit may be related to the function of FRAP1 in

translational control; similarly, nuclear import of FRAP1 is

necessary for signaling through S6K and an interaction with

TPR supports the idea that mTOR associates with the nuclear

pore [37]. Interestingly, mRNA levels for 24 of the 63 partners

(38%) of FRAP1 are significantly different between young and old

patient samples. Proteins that can interact with FRAP1 are thus

frequently expressed differentially with age in human. FRAP1

interacting proteins that show significant changes in gene

expression during aging in human muscle are shown in Table 2.

To determine whether there is a relationship between protein

interaction and a correlation in gene expression between protein

pairs in this network, we compared the distribution of both

negative and positive gene expression correlations with binary

interactions. Figure 5 shows the distribution of gene expression

correlations for the experimentally derived longevity network as

compared to simulated networks of genes with randomly assigned

binary connections. Both positively and negatively co-regulated

protein pairs are enriched in the longevity interaction network

relative to that observed in randomized networks. This observa-

tion supports the idea that interacting proteins are transcription-

ally co-regulated [38]. A list of the binary pairs with significant

age-dependent transcriptional co-regulation is shown in Table S4.

Validating Human FRAP1 Interacting Proteins in a C.
elegans Life Span Assay

In order to test the hypothesis that interacting partners of

human longevity homologs might themselves be longevity proteins

we tested a group of these for effects on life span in C. elegans. The

24 FRAP1 interacting proteins with significant gene expression

changes in aging human muscle are listed in Table 2. Of these 18

were tested for their ability to modulate life span in C elegans using

RNAi mediated knock-down (six of 24 were not tested because

reagents were not available in our RNAi library). Wild-type N2 C.

elegans were fed E. coli expressing double-stranded RNA corre-

sponding to genes encoding 18 FRAP1 interacting proteins and

life spans were determined in two independent experiments. Of

the 18 genes tested in this way, six reproducibly extended the life

span of C. elegans by .10% (Figure 6). These genes are listed in

Table 3. The gene showing the greatest effect on life span after

RNAi treatment is RPS27. Knock-down of rps-27 expression in

nematode resulted in 50% and 44% increases in life span in two

independent experiments. Mammalian RPS27 encodes a zinc

finger-containing protein component of the 40S ribosomal subunit

[39]. Several studies have established that TOR signaling can

modulate life span in yeast [30,32] and fly [40]. It has been

demonstrated further that inhibition of translation can also extend

life span indicating that loss-of-function in TOR signaling

modulates aging through an effect on rates of translation [41–

43]. Since RPS27 is a component of the ribosome and interacts

with FRAP1 (Tor), it is likely that the life span extension seen in

the rps-27 knock-down is due to an effect on rates of translation

either through TOR signaling, direct effects on ribosome

structure, or a combination of the two.

The fact that 33% of the candidates tested had a significant

effect on life span extension is noteworthy. Previous genome wide

screens in C. elegans using RNAi have reported that less than 1% of

the nematode genome may encode genes that can extend life span

when knocked-down [28,29].

Discussion

We present here a large protein interaction network comprised

of human homologs of genes known to influence longevity in

Human Homolog
Geometric Mean
Ratio (old/young)

FDR Adjusted
p-value

Model Organism
Gene Name Model Organism

response to stress

HSPA9B 0.9 1.70E-02 hsp-6 C. elegans

transcription

RFX1 1.2 3.70E-05 daf-19 C. elegans

RFX3 0.9 1.10E-02 daf-19 C. elegans

translation

EEF1A1 1.3 9.70E-05 Ef1alpha48D D. melanogaster

EEF1A2 1.2 1.50E-04 Ef1alpha48D D. melanogaster

MRPL47 0.8 2.60E-03 B0261.4 C. elegans

transport of molecules

ABCC5 1.2 1.80E-03 mrp-5 C. elegans

FABP3 0.6 3.50E-07 lbp-7 C. elegans

FLJ10074 (SCYL2) 0.8 9.17E-05 SCY1 S. cerevisiae

SLC25A3 0.9 2.60E-03 C33F10.12 C. elegans

STX1A 1.1 2.00E-02 unc-64 C. elegans

unknown

KIAA0931 (PHLPPL) 1.2 1.16E-04 CYR1 S. cerevisiae

LIM (PDLIM5) 1.5 9.96E-08 eat-1 C. elegans

doi:10.1371/journal.pgen.1000414.t001

Table 1. Cont.

Longevity Interactome
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invertebrate systems and their interacting proteins. To compile

this list of homologs, we selected genes that confer increased life

span when mutated, deleted or knocked down in yeast, flies or

nematodes. The longevity homolog sub-network (3,271 interac-

tions) is derived from a much larger Core Network (70,358

interactions) that was generated in an unbiased fashion using a

random high throughput yeast two hybrid process. The Core

Network was generated from larger network after removal of sticky

proteins with very high node degrees [15,21,33]. Analysis of the

human longevity interactome presented here show that the 175

human longevity homologs are more closely connected that would

be expected by chance, with a mean path length of 4.15 as

compared to and average of 4.61 in the Core Network. Another

striking feature of human homologs of invertebrate longevity

proteins is their exceptionally high average node degree of 18.8 (as

compared to an average of 13.5 in the Core Network). This

observation indicates that human longevity protein homologs may

function as hub proteins in the human interactome [44,45]. The

fact that longevity proteins are hubs may be indicative of their

having a central role in cellular function. They may also function

as nodes that connect and/or integrate functionally diverse cellular

components and systems. It is interesting to consider the possibility

that knock-down of these longevity genes may extend life span

through a mechanism that involves uncoupling connections

between cellular components of diverse function.

A striking conclusion of this study is dramatic degree of

enrichment for genes encoding network proteins among genes that

are transcriptionally modulated during aging in human muscle

tissue. This correlation indicates that the network is enriched for

proteins involved in human aging. This conclusion is consistent

with the observation that human proteins interacting with the

longevity homolog FRAP1 can increase life span when knocked-

down in C.elegans. Overall these results provide evidence that the

broad class of longevity proteins identified in invertebrates have a

conserved role in processes of human aging and longevity.

Materials and Methods

Bait and Prey Construction
Complementary DNA was generated from poly(A)+ RNA

isolated from multiple human tissues (including adult brain, fetal

brain and liver) and inserted between the Gal4 transcriptional

activation domain and the Schizosaccharomyces pombe URA4 coding

region of pOAD.102 (prey plasmid) or the Gal4 DNA-binding

domain and the S. cerevisiae MET2 coding region of pOBD.111

(bait plasmid). Yeast transformed with bait or prey plasmids were

Figure 3. Significance of gene expression changes for longevity gene homologs and interacting proteins. The permutation
distributions (based on 1,000 permutations of the array label) for the number of significant probes (based on FDR value in the association of age
versus expression) for three different sets: A. human homologs of aging genes (based on 1,000 random draws of 291 probes), B. longevity gene
homologs present in the interaction network (based on 1,000 random draws of 210 probes), and C. 1u interactor protein genes (based on 1,000
random draws of 2,507 probes). Vertical red lines indicate values (number of probes with FDR-based q-value,0.05) for the original experimental
datasets from which the p-values of these three tests are derived.
doi:10.1371/journal.pgen.1000414.g003
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plated on medium lacking uracil (prey) or methionine (bait) to

select for transformants expressing the markers fused to the cDNA

inserts. Additional information about the plasmids, yeast strains

and library construction can be found in Supplementary

Information.

Automated Yeast Two-Hybrid Screening Process
The two-hybrid expression plasmids, pOBD.111 and pOAD.102

used in this study have been described [15]. pOBD.111 and

pOAD.102 are modifications of pOBD and pOAD [46]. The bait

and prey yeast strains used were respectively, R2HMet (MATa
ura3-52 ade2-101 trp1-901 leu2-3, his3-200 met2D::hisG gal4D

gal80D) and BK100 (MATa ura3-52 ade2-101 trp1-901 leu2-3,112

his3-200 gal4D gal80D GAL2-ADE2 LYS2::GAL1-HIS3 met2::-

GAL7-lacZ), a derivative of PJ69-4A [47]. Bait and prey cDNA

libraries were made using poly(A)+ RNA prepared from human

tissues (see Table S5) by random primed cDNA synthesis followed by

the PCR addition of yeast recombination tails. Both bait and prey

cDNAs are cloned as a double fusion between the two-hybrid

domain on the 59 end of the insert and an ORF-selection marker on

the 39 end. Specifically, bait cDNA inserts were cloned between the

GAL4 DNA binding domain and the TRP1 or MET2 coding

regions, and prey inserts between the GAL4 transcriptional

activation domain and URA3 [15]. These cDNAs were then cloned

Figure 4. Subset of Longevity Network including only those genes whose expression is significantly changed in young vs old
human muscle. Longevity gene homologs are shown in red; interacting proteins are shown in green. The network contains 339 interactions among
325 proteins.
doi:10.1371/journal.pgen.1000414.g004
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into linearized expression vectors by recombination in yeast [46].

Yeast transformed with bait were plated on medium lacking

tryptophan or methionine to select for in-frame TRP1 or MET2

fusions, respectively, and prey were selected without uracil for in-

frame URA3 fusions.

Y2H screens were performed in 96-well plates by mating in each

well 56106 cells of a yeast clone expressing a single bait with 56106

clonally diverse cells from a prey library. After mating overnight, the

Matings were plated using a Genesis Workstation 150 liquid

handling robot (Tecan) onto medium that selected simultaneously

for the mating event, the expression of the ORF-selection markers,

and the activity of the metabolic reporter genes, ADE2 and HIS3.

Yeast that grew on this selection medium (‘‘positives’’) were counted

and transferred into liquid medium in a 96-well format using a

MegaPix colony picking robot (Genetix). A maximum of 48 colonies

per mating were picked. Searches that yielded more than 200

positives (,2% of all searches) were considered to result from bait

plasmids that activated transcription in the absence of specific

protein-protein interactions, and were not analyzed further. Cloned

inserts were amplified from plasmid PCR. Liquid cultures grown

from positive yeast colonies were used as templates in PCR reactions

that amplified either both bait and prey cDNA inserts, or prey inserts

only in screens in which the baits had been sequenced before the

matings. The PCR reactions were assembled in 384-well format

using the Genesis Workstation 150 or a custom built (Zymark) PCR

workstation that included a SciClone ALH 500 liquid handling robot

(Zymark). PCR amplification took place in Primus-HT thermo-

cyclers (MWG Biotech). The amplicons served as templates in DNA

sequencing reactions. Identities of insert fragments were established

by querying against the NCBI RefSeq database. The Y2H protein-

protein interaction database is the result of two distinct workflow

modes referred to as random and directed. In the random mode

individual bait clones are picked randomly from a library and mated

with a library of prey cDNAs. Directed searches, on the other hand,

are matings of prey libraries with a single intentionally constructed

bait cDNA clone whose identity is known a priori. In random

searches, moreover, the identity of the bait is discovered –

depending, again, on a particular workflow – either before or after

the mating has been performed. The alternatives are to sequence

both the bait and prey from Y2H positives (called positive-derived

sequence) or to sequence the bait plasmid before mating (called pre-

sequencing) requiring only the prey to be sequenced from positive

diploids. All Y2H search data and DNA sequences used to determine

interaction pairs reported in this study are included in Table S5.

Homology Searches
A total of 363 genes that had been reported to increase life span

when mutated yeast, fly, nematode and mouse species were compiled

from SAGE KE and the published literature. We then screened for

their respective clusters in Homologene and Inparanoid databases.

The human genes among those clusters were deemed to be the

orthologs of the respective invertebrate genes. Any additional human

paralogs were also taken into consideration. The 363 invertebrate

genes have homology to genes had human ortholog/paralog which

resulted in a total of 252 human genes.

Data Filtering
k-means clustering (k = 2) was applied sequentially to prey and

baits in the core protein interaction database to define two

populations of genes based on their number of partners [15].

Those interactions involving genes (i.e. baits with .87 interactions

and preys with .231 interactions) were deemed promiscuous by

this analysis and removed from the final dataset. The remaining

interactions were referred to as the ‘‘Core Network’’. The

unfiltered core interactome had a total of 120,779 interactions

involving 11,327 genes curated as NCBI Gene entries. The Core

Network after filtering comprised of 71,814 interactions from

10,430 genes. The aging interactome reported here includes only

interactions from the Core Network.

Network Topology Analysis
To establish the basis for suitable null hypotheses, the process of

deriving subnetworks from the large interaction network was

performed 1000 times with sets of 175 genes randomly selected

from one of two sources: 1) any gene contained in the Y2H PPI

database or 2) genes in either Homologene or InParanoid having

homologs of C. elegans, D. melanogaster or S. cerevisiae. Because the

latter set corresponds to genes conserved from phylogenetically

distant organisms it is referred to as ‘‘ancient.’’ In each iteration of

the process, the 175 genes were used to query the Y2H PPI

Table 2. Human FRAP1 Interacting Proteins with Significant
Expression Changes in Muscle.

FRAP1 Interacting
Protein Name

Geometric Mean
Ratio (old/young)

FDR Adjusted
p-value

cell adhesion

DSP 0.9 3.12E-02

PPFIA1 1.2 2.58E-03

cell signaling

ABR 1.3 7.17E-04

GLTSCR2 1.1 2.92E-02

IL13RA1 1.1 1.49E-02

MAPKAPK2 0.9 1.98E-02

PACSIN2 1.2 7.47E-03

PPP1R13B 1.1 1.08E-02

cytoskeletal processes

VIM 1.5 2.92E-05

energy metabolism

IMMT 0.7 2.32E-06

OXCT 1.3 1.41E-02

PDK2 0.8 1.65E-02

mRNA maturation

SART3 1.3 8.04E-05

response to stress

ARS2 1.2 3.22E-04

OXR1 0.9 2.87E-02

TEBP (PTGES3) 1.2 1.25E-02

translation

RPS27 1.2 1.78E-04

transport of molecules

AP2B1 0.8 1.67E-05

CLTA 1.2 5.27E-05

LTF 1.1 3.26E-02

SLC25A6 1.2 2.19E-03

unknown

DKFZP564F0522 0.8 3.50E-03

FLJ39502 1.1 4.98E-02

HYPK 1.1 2.14E-02

doi:10.1371/journal.pgen.1000414.t002

Longevity Interactome

PLoS Genetics | www.plosgenetics.org 9 March 2009 | Volume 5 | Issue 3 | e1000414



database and create subnetworks in a manner otherwise identical

to that of the procedure for longevity homologs.

The mean shortest path length between any two aging genes in

the actual longevity network was calculated. We simulated the

Core Network 100 times, by rewiring the edges, preserving the

node degree of each protein. The aging related human genes were

then screened through 100 randomized networks, to generate 100

simulated longevity networks. We then calculated the mean

shortest path length between any two aging genes in the 100

randomized networks. A one sided t-test was used to compare

mean shortest path lengths of the experimentally derived data to

those of 100 randomizations.

Gene Expression Data Analysis
No background correction was performed given the very low

levels of background intensity, however we performed loess

normalization [48] on the entire set of probes to account for

differences in the distribution of intensities among arrays. To select

the genes that are differentially expressed with regards to age

among the probes that matched our set of longevity proteins we

performed, gene by gene, simple two-sample t-tests and used the

Benjamini-Hochberg procedure [49] to derive adjusted q-values

for the list of genes ranked by statistical significance. After deriving

the number of significantly differentially expressed genes (based on

an FDR cut-off of 5%), we wished to determine if this set of probes

was significantly enriched with genes whose expression changes

related to age, which motivated a permutation test to find whether

the identification of a gene is related to life span extension was

independent of differential expression with regards to the

microarray data on muscle tissue in old and young subjects. We

simply performed a large number of permutations on the longevity

protein label for the total set of probes, each permutation

randomly designated genes as either longevity protein genes or

not and then among this random set, we performed the same

procedure to find the number of significantly differentially

Figure 5. Correlation of gene expression changes with binary protein interactions. Distribution of transcriptional expression correlations
for binary protein interaction pairs in the longevity network is shown in black. Distributions of correlation for randomized binary pairs is shown in red.
The experimental network shows enrichment for both positively and negatively correlated binary pairs. Approximate inference via Two-sample
Kolmogorov-Smirnov test confirms significant differences in the two distributions of correlations (p,0.00001).
doi:10.1371/journal.pgen.1000414.g005

Figure 6. Kaplan–Meier survival curves for C. elegans treated
with RNAi knock-down of genes encoding homologs of six
human FRAP1 interacting proteins. Human homologs correspond-
ing to nematode genes are as follows: MAPKAP2 (C44C8.6); SART3
(B0035.12); ARS2 (E01A2.2); RPS27 (F56E10.4); HYPK (F13G3.10);
DKFZP564F0522 (C33H5.10).
doi:10.1371/journal.pgen.1000414.g006
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expressed genes. After 1000 permutations, we have 1000

randomly generated numbers of significantly differentially ex-

pressed genes and we can compare our observed number to this

null distribution to find the p-value of the test that these genes

(related to life extension) or unrelated to age in human muscle. We

performed an identical analysis for the 1u interactor genes.

Correlation Analysis
To examine whether probes for genes encoding binary

interaction pairs had more evidence of co-regulation in the

microarray data, we examined correlation of log2 expression of

probes of pairs of genes that were 1) connected directly and

randomly chosen equal number of pairs of probes for pairs of

genes unconnected in the network from the total list of probes on

the Illumina array. For genes connected in the interactome

represented by more than one probe, the correlation of all relevant

pairs of probes were estimated (i.e., if there were 3 probes in one

gene matched with 2 probes in another, this generated a total of 6

correlations). The purpose of this was to determine whether genes

connected in the interactome were more related in expression than

randomly drawn pairs of genes.

C. elegans Life Span Assays
Animals were grown on NGM agar plates seeded with OP50 E.

coli at 20uC. RNAi bacteria strains were cultured as previously

described [50]. Wild-type N2 animals at the late L4 larval stage were

fed with E. coli expressing different double-stranded RNAs and

incubated at 25uC for life span experiments. 5-fluorodeoxyuridine

(0.05 mg/ml) was added onto plates during the reproductive phase

to eliminate progeny. Animals were transferred onto fresh plates

every 3–6 days. The first day of adulthood is Day 1 in survival curves.

Animals were scored as alive, dead or lost every other day. Animals

that did not move in response to touching were scored as dead.

Animals that died from causes other than aging, such as sticking to

the plate walls, internal hatching or bursting in the vulval region,

were scored as lost. In all life span assays, E. coli carrying the empty

RNAi vector L4440 was fed to animals as controls. Statistical

analyses were performed using the Prism 4 software (Graphpad

Software, Inc., San Diego, CA, USA). Kaplan–Meier survival curves

were plotted for each life span experiment and p values were

calculated using the log-rank test [50].
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