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With the objective of linking early findings relating to the novel SARS-CoV-2 coronavirus
with potentially informative findings from prior research literature and to promote
investigation toward therapeutic response, a coherent cellular and molecular pathway is
proposed for COVID-19. The pathway is consistent with a broad range of observed
clinical features and biological markers and captures key mediators of pathophysiology. In
this proposed pathway, membrane fusion and cytoplasmic entry of SARS-CoV-2 virus via
ACE2 and TMPRSS2-expressing respiratory epithelial cells, including pulmonary type-II
pneumocytes, provoke an initial immune response featuring inflammatory cytokine
production coupled with a weak interferon response, particularly in IFN-l–dependent
epithelial defense. Differentiation of non-classic pathogenic T-cells and pro-inflammatory
intermediate monocytes contributes to a skewed inflammatory profile, mediated by
membrane-bound immune receptor subtypes (e.g., FcgRIIA) and downstream signaling
pathways (e.g., NF-kB p65 and p38 MAPK), followed by chemotactic infiltration of
monocyte-derived macrophages and neutrophils into lung tissue. Endothelial barrier
degradation and capillary leakage contribute to alveolar cell damage. Inflammatory
cytokine release, delayed neutrophil apoptosis, and NETosis contribute to pulmonary
thrombosis and cytokine storm. These mechanisms are concordant with observed clinical
markers in COVID-19, including high expression of inflammatory cytokines on the TNF-a/
IL-6 axis, elevated neutrophil-to-lymphocyte ratio (NLR), diffuse alveolar damage via cell
apoptosis in respiratory epithelia and vascular endothelia, elevated lactate dehydrogenase
(LDH) and CRP, high production of neutrophil extracellular traps (NETs), depressed
platelet count, and thrombosis. Although certain elements are likely to be revised as
new findings emerge, the proposed pathway suggests multiple points of investigation for
potential therapeutic interventions. Initial candidate interventions include prophylaxis to
augment epithelial defense (e.g., AT1 receptor blockade, type III and type I interferons,
melatonin, calcitriol, camostat, and lopinavir) and to reduce viral load (e.g., remdesivir,
ivermectin, emetine, Abelson kinase inhibitors, dopamine D2 antagonists, and selective
estrogen receptor modulators). Additional interventions focus on tempering inflammatory
signaling and injury (e.g., dexamethasone, doxycycline, Ang1-7, estradiol, alpha blockers,
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and DHA/EPA, pasireotide), as well as inhibitors targeted toward molecular mediators of
the maladaptive COVID-19 immune response (e.g., IL-6, TNF-a, IL-17, JAK, and CDK9).
Keywords: COVID-19, immunity, therapeutics, signal transduction, cytokines
INTRODUCTION

COVID-19 is a severe acute respiratory disease caused by the
novel coronavirus SARS-CoV-2, which emerged in Wuhan,
China in late 2019, quickly becoming a global pandemic, with
over 10 million reported cases and 500,000 fatalities attributed to
the disease through June 2020. Much of the response to the novel
coronavirus has relied, by necessity, on a broad range of early
reports relating to clinical features, biological markers, and
candidate therapeutics. At the same time, many characteristics
of the SARS-CoV-2 coronavirus and the acute respiratory distress
produced by severe cases of COVID-19 infection mirror those
observed in earlier coronavirus outbreaks, including SARS (severe
acute respiratory syndrome, caused by SARS-CoV) and MERS
(Middle-East respiratory syndrome, caused by MERS-CoV).
Other conditions with informative overlap include ARDS
(acute respiratory distress syndrome, resulting from pulmonary
edema) and dengue hemorrhagic fever (DHF), which features
severe and often fatal secondary immunopathology following
dengue virus infection (Kurane, 2007) involving rapidly
elevated cytokine expression, pulmonary edema, and acute
respiratory failure.

The SARS-CoV-2 epidemic has emerged in the context of a
rich existing literature detailing aspects of cellular and molecular
pathways affected by prior CoV serotypes and related conditions.
Much of the emerging literature specific to SARS-CoV-2 not
only is strongly consistent with these findings but also features
informative differences, particularly in lung tissue (e.g., weaker
type III and type I interferon response, suppressed epithelial
defense, and elevated pulmonary infectivity).

With the objective of linking early findings relating to the novel
SARS-CoV-2 coronavirus with potentially informative findings
from prior research literature and to promote investigation toward
therapeutic response, a coherent cellular and molecular pathway is
proposed for COVID-19. The pathway is consistent with a broad
range of observed clinical features and biological markers and
captures key mediators of pathophysiology.

In this proposed pathway, membrane fusion and cytoplasmic
entry of SARS-CoV-2 virus via ACE2 and TMPRSS2-expressing
respiratory epithelial cells, including pulmonary type-II
pneumocytes, provokes an initial immune response featuring
inflammatory cytokine production coupled with a weak
interferon response, particularly in IFN-l–dependent epithelial
defense. Differentiation of non-classic pathogenic T-cells and
pro-inflammatory intermediate monocytes contributes to a
skewed inflammatory profile, mediated by membrane-bound
immune receptor subtypes (e.g., FcgRIIA) and downstream
signaling pathways (e.g., NF-kB p65 and p38 MAPK), followed
by chemotactic infiltration of monocyte-derived macrophages
and neutrophils into lung tissue. Endothelial barrier degradation
in.org 2
and capillary leakage contribute to alveolar cell damage.
Inflammatory cytokine release, delayed neutrophil apoptosis,
and NETosis contribute to pulmonary thrombosis and
cytokine storm. These mechanisms are concordant with
observed clinical markers in COVID-19, including high
expression of inflammatory cytokines on the TNF-a/IL-6 axis,
elevated neutrophil-to-lymphocyte ratio (NLR), diffuse alveolar
damage via cell apoptosis in respiratory epithelia and vascular
endothelia, elevated lactate dehydrogenase (LDH) and C-reactive
protein (CRP), high production of neutrophil extracellular traps
(NETs), depressed platelet count, and thrombosis.

Although certain elements are likely to be revised as new
findings emerge, the proposed pathway suggests multiple points
of investigation for potential therapeutic interventions. These
include prophylaxis to augment epithelial defense, reduce viral
load, and temper inflammatory injury, as well as therapeutics
targeted toward molecular mediators of the COVID-19
immune response.
CLINICAL FEATURES

Among patients with COVID-19 infection, cellular biomarkers
in severe cases include elevated leukocyte and neutrophil
counts, along with suppressed lymphocyte count, resulting in
a significantly higher NLR ratio relative to non-severe cases
(Huang C. et al., 2020; Qin et al., 2020). In a meta-analysis of
nine studies including 1779 patients, 399 with severe disease,
low platelet count was significantly associated with disease
severity and mortality. Platelet count (thrombocytopenia)
below the locally defined reference range is associated
with a five-fold increase in the risk of severe disease (Lippi
et al., 2020).

Molecular biomarkers of severe disease include elevated
procalcitonin, serum ferritin, D-dimer, C-reactive protein
(CRP), and inflammatory cytokines including IL-6, IL-2R, IL-
7, IL-8/CXCL8, IP10, MCP-1/CCL2, MIP1A/CCL3, GM-CSF,
and TNF-a, as well as IL-10 (Huang C. et al., 2020; Qin et al.,
2020). However, the level of IL-10, a negative regulator of
immune response, is reported to vary with COVID-19 severity
and progression, with lower initial levels and subsequent decline
associated with milder cases and possibly more successful viral
clearance (Ouyang et al., 2020). Fast respiratory rate and elevated
levels of lactate dehydrogenase (LDH), a marker of cell death,
also predict severity (Huang H. et al., 2020).

Elevated inflammatory markers including IL-6, CRP,
procalcitonin (PCT), and erythrocyte sedimentation rate (ESR)
are observed in fatal cases (Zeng et al., 2020). Fatal acute lung
injury is associated with T-lymphocyte dysregulation and
cytokine-driven inflammation (Qin et al., 2020), with diffuse
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pulmonary thrombosis and damage to endothelial cells (Poor
et al., 2020).

In examination of postmortem tissue from all major organs of
COVID-19 subjects, the primary finding is diffuse alveolar
damage (DAD), featuring marked infection and viral burden in
type II pneumocytes, along with pulmonary edema (Bradley
et al., 2020; Carsana et al., 2020). CT examination is reported to
have high diagnostic value, with multiple ground glass opacities
being a prominent feature of disease progression (Li and
Xia, 2020).

COVID-19 features infiltration of macrophages into lung
tissue, with apoptosis of epithelial cells and pneumocytes.
Infiltration of macrophages into alveolar cavities may be
induced by MCP-1, with TGF-b1 and TNF-a contributing to
proliferation and amplified cytokine production (He et al., 2006).
Markers of infiltration include the neutrophil chemokine
receptor CXCR2, along with monocyte chemotactic protein
MCP-1/CCL2 and its receptor CCR2. Genes upregulated in
severe and critically ill patients are enriched with members
belonging to the NF-kB pathway (Hadjadj et al., 2020).
Increased expression of TGF-beta in COVID-19 patients may
promote fibroblast proliferation and contribute to pulmonary
fibrosis (Xiong et al., 2020).

Several comorbid conditions are cited as risk-factors for
progression and case fatality, including age, diabetes, vascular
disease, cardiac dysfunction, hypertension, and cancer (Wu and
McGoogan, 2020). Fever is the most common initial symptom,
followed by cough, with maximum body temperature at
admission, respiratory rate, CRP, and albumin significantly
associated with progression in severity (Liu W. et al., 2020).
Gastrointestinal symptoms are also reported but with lower
frequency than in SARS or MERS (Ge et al., 2020).

The conditions associated with severe COVID-19 are not
accurately described as “compromised immunity.” Among
5700 hospitalized patients in the New York area with
confirmed disease, the most frequent comorbidities reported
were hypertension (56.6%), obesity (41.7%), diabetes
(33.8%), and coronary artery disease (11.1%) (Richardson
et al., 2020), all of which may be better described as
conditions featuring predisposition to inflammation. Indeed,
several key inflammatory cytokines associated with
hypertension (TNF-a, MCP-1, and IL-6) (De Miguel et al.,
2015) overlap those elevated in COVID-19.
ACE2-MEDIATED VIRAL ENTRY AND
PRIMING OF INFLAMMATORY RESPONSE

Like the SARS coronavirus, the novel SARS-CoV-2 virus uses
membrane-bound ACE2 to gain access to cells. ACE2 functions
as an enzyme within the renin-angiotensin system (RAS),
contributing to the regulation of blood pressure, fluid balance,
and vasoconstriction. Angiotensin I (Ang I) generated by renin
cleavage is converted by angiotensin-converting enzyme ACE to
produce Ang II, which in turn activates AT1R receptors,
contributing to increased blood pressure, vasoconstriction,
Frontiers in Pharmacology | www.frontiersin.org 3
oxidative stress, and pro-inflammatory signaling. The ACE2
enzyme has high affinity for Ang II, producing Ang(1-7).
ACE2 thereby antagonizes the effects of Ang II and exerts a
protective effect in conditions such as diabetes, hypertension, and
cardiovascular disease (Cheng et al., 2020). Notably, elevated
levels of Ang II are observed in ACE/ARB naïve COVID-19
cases, and high levels are associated with increased severity (Liu
N. et al., 2020).

Initial genetic evidence of ACE2-mediated entry by SARS-
CoV demonstrated that injection of spike protein in mice
contributed to acute lung failure in mice and down-regulation
of ACE2 expression. Inhibition of AT1R reduced lung pathology
by blocking the effect of Ang II (Kuba et al., 2005). Notably,
ACE2 is abundantly expressed on lung alveolar cells and
enterocytes of the small intestine and is also present in
vascular endothelia (Hamming et al., 2004), consistent with
initial presentation of symptoms and sites of subsequent
tissue damage.

SARS-CoV-2 viral entry is also dependent on priming of the
viral S protein by the serine protease TMPRSS2, which may be
partially blocked in some cell types by the serine protease
inhibitor camostat mesilate. Full blockade was reported when
camostat inhibition of TMPRSS2 was combined with an
inhibitor of endosomal cysteine proteases cathepsin B/L
(Hoffmann et al., 2020).

Despite exploitation of RAS by SARS-CoV-2, clinical
evidence does not support the discontinuation of ACE-
inhibitors or AT1R blockers (ARBs) as a strategy to limit
infection, particularly as both types of inhibitors act to reduce
the hypertensive and pro-inflammatory effects of Ang II. In
SARS-CoV-2 infection, virus-induced ACE2 downregulation
would be expected to lead to reduced production of Ang(1-7)
and accumulation of Ang II, contributing to pulmonary edema
and inflammation (Verdecchia et al., 2020).

Initial reports showed mixed evidence of clinical benefit of
ACE inhibitors and AT1R blockers (ARBs) in COVID-19, with
some showing insignificant effect (Peng et al., 2020; Richardson
et al., 2020), as well as reports of protective effect among patients
with pre-existing hypertension (Liu Y. et al., 2020; Yang et al.,
2020). In a recent meta-analysis of five studies, the odds of death
were reduced by a statistically significant 43% among 308
COVID-19 patients using ACE/ARB medications, compared
with 1,172 patients not using ACE/ARB medications. A non-
significant 19% reduction in the odds of hospitalization among
users was also observed (Ghosal et al., 2020). In a separate, larger
study of 610 cases and 48,667 high-coverage population–based
controls, individuals with hypertension using ARBs were
reported to have a 76% lower likelihood of developing
COVID-19. However, a similar effect was not reported for
ACE inhibitors (Yan et al., 2020).

Apoptosis of alveolar epithelial cells relies on autocrine
generation of Ang II, while Ang(1-7) inhibits apoptosis
through the Ang(1-7) receptor (Uhal et al., 2011). Exogenous
delivery of Ang(1-7) is reported to reduce inflammation and
improve lung function in ARDS models (Wosten-van Asperen
et al., 2011). Recombinant ACE2 is also reported as a potentially
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useful therapy in clinical studies of ARDS, producing a rapid
decrease in plasma Ang II levels, as well as reduced IL-6
expression (Imai et al., 2007; Zhang and Baker, 2017).
PRO-INFLAMMATORY IMMUNE
RESPONSE INITIATED BY TYPE-II
ALVEOLAR PNEUMOCYTES

The innate pro-inflammatory response to SARS-CoV-2 infection
in the lower respiratory tract may be most directly mediated by
type-II alveolar pneumocytes, which highly express ACE2. Type-
II pneumocytes act as epithelial immune cells and are capable of
producing TNF-a, IL-6, IL-1b, MCP-1, and GM-CSF. Infected
ACE2+ lung cells, but not uninfected cells, produce high levels of
pro-inflammatory cytokines (Wong and Johnson, 2013). The
age-related expression profile of ACE2 in uninfected human lung
tissue is distinct from that in other ACE2-expressing tissues,
showing a positive correlation with immune-cell and interferon-
response marker genes in older individuals (>49 years) and a
negative correlation in younger individuals (Li et al., 2020).

Local inflammatory cytokine expression in lung tissue of
severe CoV infection may differ from that observed in
circulating blood. SARS-CoV single-strand RNA is reported to
provoke high production of pro-inflammatory TNF-a, IL-6, and
IL-12 cytokines via activation of TLR7 and TLR8 (both highly
expressed in lung tissue), amplifying the innate immune response
(Li et al., 2013). Alveolar type-II cells are preferentially infected by
SARS-CoV, resulting in the production of pro-inflammatory
cytokines, with mRNA encoding IL-6 elevated approximately
10-fold in infected type-II cultures. In contrast, monocytes,
monocyte-derived dendritic cells, and alveolar macrophages are
not readily infected by SARS-CoV in culture and produce
comparatively weak interferon and cytokine levels in response
to viral exposure (Qian et al., 2013).

Likewise, the SARS-CoV-2 spike protein is a potent T-cell
antigen, and direct activation of COVID-19 patient-derived
peripheral blood mononuclear cells (PBMCs) by SARS-CoV-2
peptides in culture results primarily in production of T helper 1
(Th1)–related cytokines. However, IL-6 production is not
observed in stimulated PBMCs. This finding suggests that
direct antigen-specific T-cell activation may not induce
production of IL-6 and that it may instead be mediated by
innate immune cells (Weiskopf et al., 2020).

Based on intracellular cytokine staining, peripheral CD14
+CD16+ monocytes are also implicated in the production of
inflammatory cytokines in COVID-19 (Zhou et al., 2020).
However, based on single-cell RNA sequencing of peripheral
blood mononuclear cells (PBMCs) from seven COVID-19 cases
and six healthy controls, peripheral monocytes and lymphocytes
were not found to express substantial amounts of pro-
inflammatory cytokines, suggesting that circulating leukocytes
do not sufficiently account for COVID-19 cytokine storm (Wilk
et al., 2020).

Such expression findings should be interpreted cautiously,
as transcripts of many key immune genes demonstrate greater
Frontiers in Pharmacology | www.frontiersin.org 4
variation and transcription bursts than other genes (Gaublomme
et al., 2015). Still, it appears likely that the cytokine storm
observed in severe COVID-19 is mediated primarily by type II
alveolar cells and local retention of blood cells that have migrated
from peripheral circulation to infiltrate lung tissue.
INDUCTION OF NON-CLASSIC TH1 CELLS
AND INTERMEDIATE CD14+CD16+
MONOCYTES

SARS-CoV-2 infection produces rapid activation of pro-
inflammatory blood cell lineages. CD4+ Th1 lymphocytes co-
expressing IFNg and GM-CSF are reported almost exclusively in
ICU patients with COVID-19, with relative absence of these cells
in non-ICU patients and healthy controls. The percentage of
CD14+CD16+ monocytes is also much greater in ICU patients
with severe pulmonary complications. Pathogenic Th1 cells
(GM-CSF+IFNg+) are associated with increased proliferation
of inflammatory CD14+CD16+ intermediate monocytes
expressing both GM-CSF and IL-6. These contribute to the
risk of inflammatory cytokine storm (Zhou et al., 2020).

Pathogenic GM-CSF+IFNg+ Th1 cells have been described in
inflammatory disease as “non-classic” Th1 cells (or “Th17/Th1”
cells) and have been studied in conditions such as multiple
sclerosis and juvenile rheumatoid arthritis. These CCR6+
Th17-derived cells have an intermediate gene expression
profile between Th1 and Th17, with weaker suppression of
Th17-associated genes RORC2 and IL-17A than classic Th1
cells (Mazzoni et al., 2019). Th17 lymphocytes have an
unstable phenotype and rapidly shift to a more aggressive non-
classic Th1 phenotype in the presence of IL-12 and TNF-a.
Inhibitors of TNF-a abrogate this transition (Cosmi et al., 2014).
One of the earliest case reports of COVID-19 implicated an
increased concentration of CCR6+ Th17 cells as a driver of
severe respiratory damage (Xu et al., 2020). The potential
therapeutic use of IL-17 inhibitors in COVID-19 has been
proposed (Pacha et al., 2020).

The transcription factor Eomes, induced by the combined
activity of IL-2 and IL-12, favors the induction of non-classic
Th1 cells by selectively suppressing the expression of genes
involved in Th17 differentiation. Knockdown of Eomes can be
induced by tamoxifen (which also functions as a selective
estrogen receptor modulator having tissue-dependent effects as
a mixed agonist/antagonist) (Mazzoni et al., 2019). Non-classic
Th1 cells are more pathogenic than Th17 cells (Kotake et al.,
2017). The preferential induction of these cells is notable, as a
comparison of gene expression between severe and non-severe
COVID-19 patients reported that, in severe cases, the most
significant biological function among differentially expressed
genes (DEGs) having downregulated expression was the Th17
cell differentiation pathway (Ouyang et al., 2020).

Intermediate monocytes express the surface molecule
CD14 and CD16, which encodes the FcgIII receptor. CD14+
CD16+ intermediate monocytes produce high levels of pro-
inflammatory TNF-a, coupled with low-to-absent levels of
July 2020 | Volume 11 | Article 1169
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anti-inflammatory IL-10 and have high antigen-presenting
capacity. Elevated CD14+CD16+ cells are associated with
increased ESR and C-reactive protein (CRP) levels (Ziegler-
Heitbrock, 2007). Among monocytes, the highest expression
of TNF-a receptor TNFR1 is observed in CD14+CD16+ cells
(Hijdra et al., 2013). These monocytes can be mobilized
under stress conditions, which may include, but are not
dependent on, catecholamine release (Steppich et al., 2000).

Males are reported to have a significantly higher risk of
mortality and mechanical ventilation than females in COVID-
19, both before and after age-matching (RR, 1.4; 95% CI, 1.2–1.7)
(Singh et al., 2020). In this context, it is notable that CD14+
monocytes and monocyte-derived macrophages deprived of 17
beta-estradiol express higher levels of CD16, with significant
increases in TNF-a, IL‐1b, and IL‐6 production due to the
absence of estrogen (Kramer et al., 2004). Additional factors
potentially affecting gender differences in COVID-19 include
androgen-mediated transcription of TMPRSS2 and X-linked
effects (Wambier and Goren, 2020), as ACE2, androgen
receptor, and TLR7 loci are all situated on the X chromosome.

The effects of CD14+CD16+ monocytes in elevating cytokine
production and NLR ratios have been studied in other
conditions. CD14+CD16+ cells are the preferential targets of
Zika virus infection, with amplified proliferation of these cells
and a reduction in the percentage and number of classical CD14
+CD16- monocytes (Michlmayr et al., 2017). In acute leukemia,
CD14+CD16+ monocytes are positively correlated with
neutrophil proliferation and negatively correlated with CD4+
lymphocyte count (Jiang et al., 2015). Rheumatoid arthritis is
characterized by preferential activation of intermediate CD14
+CD16+ monocytes, which contribute to pathogenesis through
the production of inflammatory cytokines including TNF-a, IL-
1b, and IL-6 (Rana et al., 2018). In patients with type-1 diabetes,
CD14+CD16+ monocyte production of IL-1b and IL-6 similarly
contribute to pro-inflammatory pathology (Hamouda
et al., 2019).
SKEWED INFLAMMATORY CYTOKINE
PRODUCTION MEDIATED BY FC AND TLR
RECEPTORS

Several membrane-bound proteins may contribute to the
skewed inflammatory response, elevated cytokine production,
and depressed platelet count observed in severe COVID-19. Fc
receptors are cell surface proteins that mediate the phagocytosis
and cytotoxic destruction of antibody-bound pathogens. Toll-like
receptors (TLRs) are pattern-recognition receptors that participate
in the innate immune response to extracellular pathogens.

FcgRIIIA (CD16) expression by monocytes is essential for
antibody-dependent cellular toxicity (ADCC), which makes
antibody-bound targets, such as virus infected cells, vulnerable
to TNF-a–mediated cell death (Yeap et al., 2016). Meanwhile,
the monocyte surface molecule CD14 cooperates with TLR2 in
response to viral infection, activating nuclear factor-kB (NF-
Frontiers in Pharmacology | www.frontiersin.org 5
kB)–dependent transcription of genes encoding inflammatory
cytokines, which may be inhibited via blockade of TLR2-
mediated signaling (Zhou et al., 2010). Expression of TLR2 in
monocytes is upregulated by IL-6 (Pons et al., 2006). Activation
of TLR2 by SARS-CoV spike protein induces the production of
inflammatory cytokines, including IL-6, IL-8, and TNF-a (Wang
et al., 2007).

In addition to NF-kB activation, CD14-positive monocytes in
SARS-CoV patients show an increase in phosphorylated
mitogen-activated protein kinase MAPK p38. Augmented p38
MAPK activation in CD14 cells is associated with elevated IL-8
levels (Lee C. H. et al., 2004). The p38 MAPK signaling pathway
is also implicated in the death of SARS‐CoV–infected cells
(Mizutani, 2007).

Given the observed proliferation of CD14+CD16+
intermediate monocytes in COVID-19 patients with
severe pulmonary distress, it is possible that differential
activation of Fcg receptor subtypes, particularly FcgRIIA
(inflammatory) and FcgRIIB (inhibitory), may contribute to an
imbalanced inflammatory response. SARS macaque models
produce skewed inflammatory cytokine production (including
chemoattractants IL-8 and MCP-1) and absence of wound-
healing similar to that observed in fatal human cases. Blockade
of FcgRIIA reduces these effects (Liu et al., 2019). TNF-a and IL-
10 synergistically upregulate FcgRIIA expression, while TNF-a
downregulates FcgRIIB expression (Liu et al., 2005).
Accordingly, TNF-a inhibition has been suggested as a
potential therapeutic in SARS-CoV (Tobinick, 2004).
Interestingly, the inhibitory FcgRIIB subtype is selectively
upregulated in dendritic cells from RA patients with quiescent
disease (Wenink et al., 2009).

Blockade of FcR activation via IVIG has been suggested for
severe pulmonary inflammation and lung injury in SARS-CoV-2
(Fu et al., 2020). The anti-inflammatory effect is associated with
its ability to recruit surface expression of the inhibitory Fc
receptor FcgRIIB (Samuelsson et al., 2001). Among potentially
repurposed therapeutics, IVIG is not without dangers (renal
failure, thrombosis), and effectiveness is not established in MERS
(Mustafa et al., 2018). Alternatively, human polyclonal
immunoglobulin G from bovines has been reported to inhibit
MERS-CoV in vivo (Luke et al., 2016).

Because depressed platelet count and dysregulated immune
function is observed in COVID-19, the mediating role of Fcg
receptors in immune thrombocytopenia (ITP) may also be
informative. In ITP, loss of self-tolerance to platelet protein
leads to destruction of platelets and precursor megakaryocytes by
binding of platelets to Fc receptors on macrophages. The
inhibitory FcgRIIB receptor subtype (FCGR2B) prevents
consumption by macrophages. Exogenous soluble FcgRIIB
competitively binds antibody-bound platelets (Luke et al.,
2016) and prevents autoantibody production (Shih et al.,
2014). In contrast, FcgRIIA (FCGR2A) significantly aggravates
the severity of antibody-mediated thrombocytopenia (McKenzie
et al., 1999). Blocking FcgRIIIA (CD16) has also been shown to
reduce ITP in mouse models (Flaherty et al., 2012).
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In addition to viral entry via ACE2, antibodies against
coronavirus spike proteins (anti-spike-S-IgG) can induce
antibody-dependent enhancement (ADE) of viral entry via type
II Fcg receptors. Such enhancement has been studied in SARS-CoV
infection (Wang et al., 2014) and appears to be dependent on the
activation of Fcg receptor II. Among FcR subtypes, FcgRIIA
(CD32A) appears to mediate infectivity most efficiently (Jaume
et al., 2011). In MERS-CoV, neutralizing antibodies can bind to the
spike protein and enable alternative entry into FcgRIIA expressing
cells (Wan et al., 2020). Accordingly, care in the selection of
antigens is essential in the design of vaccine and antibody-based
therapeutic strategies in order to avoid the potential for ADE.

Risk-genotypes associated with severe inflammatory pathology
may be informative in the context of COVID-19. The FcgRIIA-R/
R131 (rs1801274) genotype induces variation in the FcgRIIA
receptor, while the CD14-159CC (rs2569190) genotype induces
variation in CD14-mediated pro-inflammatory cytokine
induction. Both are risk-genotypes for severe SARS (Yuan et al.,
2005; Yuan et al., 2007) as well as aberrant immune response in
pneumonia (Yuan et al., 2005), myasthenia gravis (van der Pol
et al., 2003; Aricha et al., 2011), and acute asthma (Martin et al.,
2006; Zhou et al., 2019).
NEUTROPHIL INDUCTION AND LUNG
INFILTRATION

Severe SARS-CoV-2 infection is characterized by high neutrophil
infiltration into lung tissue. In a study of 222 COVID-19 patients,
disease severity was associated with significantly higher levels of
both anti-virus IgG (IgG) and NLR ratio. Severity rates for
patients with NLRhighIgGhigh, NLRhighIgGlow, NLRlowIgGhigh,
and NLRlowIgGlow phenotypes were 72.3, 48.5, 33.3, and 15.6%,
respectively (p < 0.0001). Recovery rates for severe patients with
these phenotypes were 58.8, 68.8, 80.0, and 100%, respectively
(p = 0.0592). Notably, high NLR patients expressed the highest
levels of IL-2, IL-6, and IL-10, with fatalities observed only in
these patients (Zhang et al., 2020b).

Neutrophils comprise the majority of infiltrating cells into
tissues undergoing inflammation. Transcriptional analysis of
genes induced by SARS-CoV-2 features a host response
characterized by weak induction of type I and type III
interferons, coupled with enrichment of genes associated with
cell death, leukocyte activation, and chemokine recruitment,
including IL-1A, MCP-1 (CCL2), and IL-8 (CXCL8) (Blanco-
Melo et al., 2020). In ARDS, MCP-1 and IL-8 induce chemotaxis
of pro-inflammatory neutrophils into the lungs, where they
are retained in the capillary bed and migrate into the alveolar
space, contributing to cytokine production, formation of
microthrombi, and cell death. GM-CSF, IL-8, and IL-2
contribute to delayed apoptosis, prolonging the amplified
inflammatory response. In animal models of neutrophil-driven
lung injury, cyclin-dependent kinase (CDK) inhibitors are
reported to reduce inflammation and improve resolution by
inducing neutrophil apoptosis (Potey et al., 2019). CDK9 is
specifically implicated in this process (Wang et al., 2012).
Frontiers in Pharmacology | www.frontiersin.org 6
Neutrophils can target pathogens and create a physical barrier
to their migration by releasing NETs comprised of mesh-like
extracellular DNA. NETs are observed at high levels in COVID-
19 patients. Patient sera induce healthy control neutrophils to
undergo NETosis. However, NETs may contribute to cytokine
release and progression to respiratory failure (Zuo et al., 2020)
and contribute to thrombosis via platelet-neutrophil interaction
(Laridan et al., 2017).
ADHESION AND TISSUE RETENTION OF
INFLAMMATORY LEUKOCYTES

The pathological inflammatory response observed in COVID-19
may be mediated by adhesion of hyperactivated and aggressive
T-cells, monocytes, and neutrophils retained from peripheral
circulation by vascular endothelia. Endothelial barrier
degradation, capillary leakage, and extravasation into inflamed
tissue may then contribute to the DAD observed in severe cases.

Phenotypic profiling of circulating leukocytes in critical
COVID-19 patients indicates high activation of S-protein
specific T-cells producing inflammatory cytokines, coupled with
depletion of CD4+ and CD8+ T-cells expressing the LFA-1
integrin subunit CD11a. Conversely, recovery from respiratory
distress is accompanied by a reversal of CD11a+ cell depletion
(Anft et al., 2020). Hyperactivated T-lymphocytes and
inflammatory macrophages recruited by chemokine signaling to
lung tissue exhibit strong interaction with epithelial cells,
contributing to increased cell death and lung injury. Elevated
markers of immune cell trafficking in COVID-19 include MCP-1
and LFA-1. As monocyte recruitment and epithelial damage can
be induced by binding of MCP-1 to ligands CCR1 or CCR5,
blockade of these ligands has been suggested as a potential
therapeutic approach (Chua et al., 2020).

Adhesion of inflammatory CD14+CD16+ monocytes and
neutrophils to vascular endothelia is mediated by interaction of
LFA-1 with its ligand, intercellular adhesion molecule ICAM-1.
Inflammatory cytokines IL-1 and TNF-a induce ICAM-1
expression on endothelial cells. Expression of ICAM-1 selectively
enhances adhesion of inflammatory non-classical and intermediate
CD16+ monocytes under flow, with no effect on CD16- monocytes
(Regal-McDonald et al., 2019). Docosahexaenoic acid (DHA) is
reported to inhibit TNF-a-induced ICAM-1 expression (Lin H. C.
et al., 2019), with similar inhibition of ICAM-1 expression reported
for eicosapentaenoic acid (EPA) in aortic endothelia (Huang
et al., 2015).

ICAM-1 facilitates cytokine-induced adhesion of neutrophils
to vascular endothelia (Tonnesen, 1989). Notably, upregulation of
ICAM-1 expression and inflammatory leukocyte recruitment is
observed in ARDS (Müller et al., 2002) and respiratory syncytial
virus (RSV) disease (Arnold and König, 2005). Similar
upregulation is observed in Ang II-induced macrophage
infiltration and cardiovascular pathology, which is ameliorated
by ICAM-1 blockade (Lin Q. Y. et al., 2019). Blockade of ICAM-1
is also reported to markedly reduce pulmonary barrier damage in
ARDS (Svedova et al., 2017).
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Extravasation of CD14+CD16+ intermediate monocytes is
mediated by secretion of MMP-9, a protease that degrades
extracellular matrix proteins, resulting in the release of matrix-
bound VEGF-A and increased vascular membrane permeability
(Sidibe et al., 2018), In COVID-19 patients with respiratory
failure, a significant increase is observed in circulating MMP-9,
strongly correlated with neutrophil count (Ueland et al., 2020).

COVID-19 respiratory failure thus features co-expression of
inflammatory cytokines with regulators of leukocyte recruitment
and vascular integrity. This suggests a mechanism by which
inflammatory leukocytes may degrade the alveolar-capillary
barrier, with resulting destruction of lung tissue. Notably,
electron microscopy of post-mortem lung tissue reveals
extensive opening of junctional complexes. Hyperalbuminemia
in severe COVID-19 patients, consistent with vascular
permeability and capillary leakage, is strongly associated with
mortality (Wu M. A. et al., 2020).

The potential importance of this mechanism in COVID-19
pathology is underscored by transcriptional and proteomic
profiling. In bronchial epithelial cells infected with SARS-CoV-
2, DEGs are enriched for members of pathways related to NF-kB,
TNF-a, and IL-17 signaling. Specific genes shared by these
pathways include MMP9, ICAM1, CSF3, and IL6 (Enes and
Pir, 2020). A protein-protein interaction network of DEGs
shared between COVID-19, MERS, SARS, H1N1, and Ebola
identifies ICAM1, VEGFA, MMP9, IL6, TNF, IL-8, IL1B, STAT1,
TLR2, TLR1, IRF7, and CXCL1 as hub genes (Alsamman and
Zayed, 2020). Proteomic profiling of blood samples from
COVID-19 patients identifies ICAM-1 and FCGR3A (CD16)
as the most significant proteins in the classification of short vs.
extended disease course (Tang). Likewise, in post-mortem lung
tissue, IL-6, TNF-a, ICAM-1, and CASP-1 (an activator of
inflammatory response and cell death) show significantly
higher tissue expression, compared with control and H1N1
samples (Nagashima et al., 2020).

Although SARS-CoV-2 infection in pediatric cases is generally
associated with asymptomatic resolution, a perplexing minority
of children present with Kawasaki disease (KD)–like features,
alternatively described as multisystem inflammatory syndrome
(MIS). These patients present with high inflammatory markers,
early gastrointestinal symptoms, and acute myocarditis, with
therapeutic immune globulin reportedly contributing to
recovery (Toubiana et al., 2020; Belhadjer et al., 2020). These
cases may potentially be understood in the context of the
same mechanisms of inflammatory leukocyte infiltration
implicated above.

Specifically, acute KD is associated with increased
proliferation of CD14+CD16+ intermediate monocytes
(Katayama et al., 2000), while diminished inflammation in
response to plasma exchange therapy is associated with a
significant reduction in the percentage of CD14+CD16+
intermediate monocytes, relative to total leukocytes (Koizumi
et al., 2019). The acute phase of KD also features transient
depletion of CD11a-expressing T-cells from peripheral blood
(Furukawa et al., 1993). In cultured vascular endothelial cells,
patient sera from acute phase KD induces significantly higher
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expression of ICAM-1 than quiescent sera, with TNF-a
contributing to ICAM-1 expression (Inoue et al., 2001). In KD
cases exhibiting coronary artery abnormalities, a high and
unresponsive NLR ratio is associated with resistance to IVIG
treatment (Cho et al., 2017). Thus, the KD-like symptoms
observed in a subset of pediatric COVID-19 cases are broadly
consistent with the inflammatory mechanisms described in the
proposed pathway.
WEAK INTERFERON DEFENSE AND
NEUTROPHIL-DRIVEN CYTOTOXICITY
IN LUNG EPITHELIA

SARS-CoV-2 infection is associated with increased levels of pro-
inflammatory cytokines (Chen et al., 2020; Zhang, Guo, et al.,
2020), yet the immune response in lung tissue features a
relatively impaired response of type I (a/b), II (g), and III (l)
interferons (Chu et al., 2020), along with down-regulation of
interferon-induced genes. This contrasts with the interferon
response in SARS-CoV, where preferential infection of alveolar
type-II cells results in a marked increase of IFN-b and IFN-l (IL-
29) production (Qian et al., 2013).

The suppressed IFN-l response observed in COVID-19 may
be a key factor mediating viral infectivity. In human lung tissues,
SARS-CoV-2 demonstrates markedly higher infectivity and
replication than that of SARS-CoV, generating 3.2 times the
number of infectious virus particles within 48 hours of infection
(Chu et al., 2020).

While IFN-a and IFN-b receptors are primarily expressed on
peripheral blood cells, IFN-l receptors have restricted
expression, preferentially defending epithelial cells, including
respiratory pneumocytes. IFN-l expression thus provides an
initial line of defense to restrict viral replication in the upper
airways, suppress excessive inflammation of the lower airways,
and maintain the integrity of cellular barriers to inflammatory
injury (O’Brien et al., 2020; Broggi et al., 2020).

In Dengue infection, IFN-l inhibits replication of the
DENV-2 virus in a dose-dependent manner in vitro (Palma-
Ocampo et al., 2015). The rs7247086 variant of IFNL1 (the T
allele) is reported to be protective against DHF, suggesting
that IFNL1 may play a role in the pathogenesis and elevated
cytokine expression observed in this condition (Arayasongsak
et al., 2020).

Notably, MERS-CoV encodes two accessory proteins, NS4a
and NS4b that contribute to suppression or evasion of innate
antiviral immune pathways. In particular, both deletion of NS4a
and mutation of catalytic or nuclear localization sites of NS4b
result in increased expression of IFN-l1 (Comar et al., 2019).
The weak interferon response observed in COVID-19 suggests
that the possibility that one or more SARS-CoV-2 viral proteins
may exert a similar effect in suppressing IFN-l expression,
weakening front-line innate immune defense against viral
infectivity. Similarly, viral proteins of RSV, the most important
respiratory virus among infants, antagonize IFN-mediated
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epithelial protection. Exogenous IFN-l1 confers prophylactic
benefit against viral infection (Villenave et al., 2015).

A recent genome-wide association study examined 300,000
loci to identify genetic factors associated with ACE2 expression
in the presence of RNA virus infection. The most significant
association was identified in three SNPs within the IFN-l region
of chromosome 19, controlling expression of IFNL3 and IFNL4.
In the presence of RNA virus infection, ACE2 expression shows a
significant negative correlation with IFN pathway genes. One of
these SNPs is located near a frameshift mutation that disables the
production of IFN-l4 (Ansari et al., 2020). As both ACE2 and
receptors for IFN-l are preferentially expressed on type II
alveolar pneumocytes, their association may be relevant in
COVID-19 pathology, as suppressed IFN-l expression coupled
with elevated ACE2 expression could simultaneously suppress
epithelial defense while amplifying the viral load.

Weak induction of IFN-l in COVID-19 may be an
important amplifier of cytokine production by impairing the
control of inflammatory neutrophil responses. In animal
models of ARDS induced by influenza-A virus (IAV)
infection, neutrophils comprise the majority of infiltrating
cells and are the primary source of pro-inflammatory
cytokines. Neutrophils also express high levels of the
interferon-lambda receptor IFNLR1 in proximity to epithelial
cells, allowing IFN-l to mediate sustained local anti-viral
defense without amplifying inflammation. Accordingly,
exogenous administration of pegylated recombinant IFN-l in
IAV-induced ARDS suppresses viral replication and improves
lung function (Galani et al., 2017). IFN-l also suppresses the
migration of neutrophils and their proclivity to NETosis,
thereby enabling the suppression of thromboinflammation
(Chrysanthopoulou et al., 2017).

Low levels of IFN-l in COVID-19 also appear likely to
skew immune response toward neutrophil proliferation and
suppressed lymphocyte response, contributing to the
thrombosis, pro-inflammatory cytokine production, and
fatality observed among NLRhigh patients. Exogenous IFN-l
may reduce these consequences. CD14+ monocytes quickly
express the IFN-l receptor IFNLR1 upon differentiation to
macrophages. IFN-l stimulates the cytotoxic and phagocytic
capacity of macrophages, as well as the secretion of cytokines
that mediate T and NK-cell migration and cytotoxicity (Read
et al., 2019).
CYTOKINE STORM FEATURING HIGH
EXPRESSION OF IL-6 AND TNF-a

Increased IL-6 is an early indicator of cytokine release syndrome
in COVID-19 patients (Wang et al., 2020). IL-6 concentrations
are increased 2.9-fold in patients with complicated COVID-19
vs. uncomplicated (Coomes and Haghbayan, 2020), and IL-6
levels are predictive of respiratory failure (Herold et al., 2020;
Zhang et al., 2020a).

The SARS-CoV spike protein induces (TNF-a converting
enzyme) TACE-dependent shedding of the extracellular ACE2
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receptor domain, resulting in loss of ACE2 function and
production of TNF-a. NL63-S, a common cold coronavirus
serotype, also uses ACE2 for entry, but does not induce similar
ACE2 shedding or TNF-a production (Haga et al., 2008). TACE
antagonists have been suggested as an approach to inhibit TNF-
a and attenuate disease severity in SARS-CoV (Tobinick, 2004).

Cytokine storm on the IL-6/TNF-a axis appears likely to be
mediated by phosphorylation of the NF-kB subunit p65. In
SARS-CoV infection, the viral spike protein induces activation
of NF-kB via IkB-a degradation, resulting in production of IL-6
and TNF-a (Wang et al., 2007). The viral nucleocapsid protein of
SARS-CoV can also bind the NF-kB regulatory element on the
IL-6 promoter, and activity is highest when the p65 subunit is
present (Zhang et al., 2007).

Regulatory elements in the ACE2 gene control the
transcription of PIR (pirin), a negative regulator of NF-kB
subunit RELA (p65). SARS-CoV-2 disruption of ACE2 is
proposed to reduce PIR expression (Fadason et al., 2020). PIR
is proposed to function as a reversible switch that enables NF-kB
response to changes in redox levels (oxidative stress) in the cell
nucleus (Liu et al., 2013). Repression of PIR ablates inhibition of
IL-6 expression (Wu et al., 2017).

Inhibition of NF-kB activation has been suggested as a
therapeutic strategy to increase survival in SARS-CoV infection
(DeDiego et al., 2014). Inhibition of JAK signaling may block p65
phosphorylation and attenuate proinflammatory cascade (Yang
et al., 2017). Tocilizumab, a well-tolerated blocker of the IL-6
receptor, may have potential to dampen cytokine release
syndrome in COVID-19 (Zhang C. et al., 2020). Because
catecholamines augment the production of IL-6 and other
inflammatory cytokines, a-1 adrenergic receptor inhibition
(e.g., prazosin) has also been suggested as a candidate that may
provide prophylactic benefit against cytokine storm (Konig
et al., 2020).

Use of low molecular weight heparin is reported to be
associated with improvement in aberrant coagulation and a
reduction of IL-6 levels (Shi et al., 2020), and is reported to
increase survival in COVID-19 (Negri et al., 2020; Tang et al.,
2020). However, elevated anti-heparin-PF4 antibodies have been
observed in severe COVID-19 patients, even in the absence of
heparin exposure, and may contribute to heparin-induced
thrombocytopenia, via binding of antibody-heparin complexes
to the platelet FcgRIIA receptor (Liu X. et al., 2020). For that
reason, the use of alternative anticoagulants (other than
coumadin, which may provoke thrombotic complications) may
be indicated (Izak and Bussel, 2014).
DISCUSSION

The rapid case growth and high fatality rate of COVID-19 have
posed an urgent global health challenge. Major uncertainties
exist in ascertainment, and case reports are likely to exclude large
numbers of subclinical or asymptomatic cases that may
contribute to infectivity and confound containment efforts.
Meanwhile, conditional on cases that have been reported and
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confirmed, the global case fatality rate of the disease exceeds
4.8%, with the United States experiencing the highest number of
fatalities (127,000) through June 2020 (ncov-CSSE, 2020).

Despite incomplete knowledge of the pathophysiology relating
to the novel coronavirus SARS-CoV-2, the proliferation of initial
reports and small-scale studies carry stronger information content
than may be evident amid the “noise” of this emerging literature,
when integrated in the context of prior research on other CoV
serotypes, ARDS, and related inflammatory conditions. From a
noise-reduction perspective, information content can often be
amplified by extracting jointly correlated signals from what might
otherwise be individually weak sensors. The tractable pathway
presented here is reflective of that effort.

Part of this analysis, by necessity, includes findings from early
reports and pre-published data that may be modified or
contradicted by subsequent studies. Accordingly, some
elements of this pathway may require revision as new findings
emerge. Figure 1 illustrates this pathway.

Among the benefits of a coherent biological pathway,
consistent with the observed clinical course of SARS-CoV-2, is
that it connotes multiple points of intervention for potential
Frontiers in Pharmacology | www.frontiersin.org 9
therapeutic candidates. Emphatically, the candidates described
below are not prescriptive but are instead discussed here to
provoke pathway-informed investigation.

Potential investigational therapeutics consistent with the
proposed COVID-19 pathway are listed in Table 1. Specific
candidates are indicated as examples and do not comprise an
exhaustive list. These candidates are not prescriptive but are
instead intended to provoke further research and pathway-
informed investigation.

Initial interventions with potential benefit early in SARS-CoV-
2 infection may include approaches focused on augmenting
epithelial defense, reducing viral load, and modifying
inflammatory signaling. Potential candidates include the use
ACE inhibitors and AT1R blockers (ARBs) to reduce the
hypertensive and pro-inflammatory effects of Ang II, exogenous
Ang(1-7), recombinant ACE2, pegylated IFN-l , early
administration of IFN-I, and a-1 adrenergic receptor inhibition.

In a study of 77 COVID-19 patients, treatment with IFN-a2b
significantly reduced the duration of detectable virus in the upper
respiratory tract, and reduced the duration of elevated IL-6 and
CRP levels (Zhou Q. et al., 2020). However, evidence from SARS
FIGURE 1 | Proposed features of cellular and molecular pathophysiology in COVID-19. Membrane fusion and cytoplasmic entry of SARS-CoV-2 virus via ACE2 and
TMPRSS2-expressing respiratory epithelial cells, including pulmonary type-II pneumocytes, provokes an initial immune response featuring inflammatory cytokine
production coupled with a weak interferon response, particularly in IFN-l–dependent epithelial defense. Differentiation of non-classic pathogenic T-cells and pro-
inflammatory intermediate monocytes contributes to a skewed inflammatory profile, mediated by membrane-bound immune receptor subtypes (e.g., FcgRIIA) and
downstream signaling pathways (e.g., NF-kB p65 and p38 MAPK), followed by chemotactic infiltration of monocyte-derived macrophages and neutrophils into lung
tissue. Endothelial barrier degradation and capillary leakage contribute to alveolar cell damage. Inflammatory cytokine release, delayed neutrophil apoptosis, and
NETosis contribute to pulmonary thrombosis and cytokine storm. These mechanisms are concordant with observed clinical markers in COVID-19, including high
expression of inflammatory cytokines on the TNF-a/IL-6 axis, elevated neutrophil-to-lymphocyte ratio (NLR), DAD via cell apoptosis in respiratory epithelia and
vascular endothelia, elevated lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), and CRP, high production of neutrophil extracellular traps (NETs),
depressed platelet count, and thrombosis.
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and MERS cases suggests that while early delivery of IFN-I can
reduce viral replication, later delivery may amplify risk by
elevating pro-inflammatory response (Channappanavar et al.,
2016; Channappanavar et al., 2019).

Among conservative, well-tolerated therapeutic candidates,
melatonin exerts a protective effect on vascular endothelia by
inhibiting NF-kB induced expression of MMP-9 (Qin et al.,
2012). It is also reported to protect lung tissue from hypoxic
stress by downregulating TNF, IL-6, and VEGF expression, with
quercetin providing additional prophylactic effect (Al-Rasheed
et al., 2017). Vitamin D attenuates TLR-mediated induction of
inflammatory cytokines (Thota et al., 2013). This mechanism
may be relevant in COVID-19 as low plasma levels of vitamin
D are reported in SARS-CoV-2 infected individuals and
significantly contribute to the risk of infection and
hospitalization (Merzon et al., 2020). Calcitriol, the active
form of vitamin D, is also reported to directly reduce the
virus-induced cytopathic effect of SARS-CoV-2 infection in
cultured human respiratory epithelial cells (Mok et al., 2020).
The combination of melatonin and vitamin D has been
proposed as a potentially synergistic intervention in COVID-
19 (Martıń Giménez et al., 2020).

Several classes of therapeutics may have benefit as potential viral
entry inhibitors. In a screening of 290 compounds for antiviral
activity against SARS-CoV and MERS-CoV, those promoting at
least 50% viral inhibition in Vero E6 cells in vitro with little or no
toxicity included selective estrogen receptor modulators (SERMs)
(e.g., toremifene and tamoxifen), Abelson kinase (ABL)
inhibitors (e.g., imatinib and dasatinib), dopamine D2 receptor
Frontiers in Pharmacology | www.frontiersin.org 10
antagonists (e.g., chlorpromazine and triflupromazine), and
antiparasitic agents (e.g., hydroxychloroquine and emetine) (Dyall
et al., 2014). Research involving additional cell lines may be
informative in this context, because while SARS-CoV-2 can be
isolated from Vero E6 cells, cells engineered to express TMPRSS2
display a nearly 10-fold increase in SARS-CoV-2-infected cells than
parental Vero E6 cells (Matsuyama et al., 2020).

SERMs such as toremifene are reported to potently
inhibit Ebola virus, even without detectable expression of
estrogen receptors, suggesting that SERMs may affect viral
activity through an alternative pathway (Johansen et al., 2013).
In CD14+ monocytes, SERMs are reported to reduce
inflammatory signaling by downregulating TNF-a–stimulated
NF-kB activation and to promote macrophage differentiation
toward an M2 anti-inflammatory/repair phenotype (Polari et al.,
2018). Toremifene was among two network-predicted
therapeutics, along with the AT1R blocker irbesartan, with the
strongest correlation between CoV-induced transcriptomes and
drug-induced transcriptomes and having literature-based antiviral
evidence (Zhou Y. et al., 2020).

ABL inhibitors are reported to have potent effect against
SARS-CoV and MERS-CoV cell fusion, which is required for
cytoplasmic delivery of the viral genome (Coleman et al., 2016).
The D2 receptor antagonist chlorpromazine is reported to inhibit
clathrin-mediated endocytosis in both SARS-CoV (Inoue et al.,
2007) and MERS-CoV (Liang et al., 2018).

Several antiparasitic agents are recognized for exhibiting
antimicrobial and anti-inflammatory properties, suggesting
potential benefit against SARS-CoV-2 infection. For example,
TABLE 1 | Potential investigational therapeutics consistent with proposed COVID-19 pathway.

Therapeutic candidate
(not exhaustive)

Class Potential mechanism and basis for investigation

Losartan, Irbesartan Angiotensin II receptor AT1R blocker (ARB) Blockade of pro-inflammatory, pro-hypertensive Ang II effects
Recombinant ACE2, Ang (1-7) Exogenous RAS modulators Restoration of anti-inflammatory, anti-hypertensive Ang(1-7) effect
Prazosin Alpha-adrenergic blocker Reduction of catecholamine-related amplification of cytokine response
Pasireotide Somatostatin analogue Reduction of cortisol-mediated NLR
Pegylated IFN-l Interferon-III Augmented defense of respiratory epithelium, reduced cytokine production,

NETosis and thrombosis
Calcitriol, Melatonin Natural hormone supplement Prophylaxis, reduced cytokine induction
Lopinavir, Camostat Protease inhibitor Disruption of viral entry
Remdesivir Antiviral agent Reduction of viral replication
Chlorpromazine, Triflupromazine Dopamine D2 receptor antagonist Reduction of viral titer via disruption of clathrin-mediated endocytosis
Emetine, Ivermectin,
Hydroxychloroquine

Anti-parasitic Prophylactic reduction of viral titer

Imatinib, Dasatinib Abelson (ABL) kinase inhibitor Blockade of host-virus membrane fusion
Toremifene, Tamoxifen Estrogen receptor modulator (tissue-dependent

mixed agonist/antagonist)
Antiviral activity and inhibition of non-classic Th1 induction, potentially via
receptor-independent mechanisms

Estradiol Steroid hormone Inhibition of CD16 and proliferation of inflammatory intermediate monocytes
DHA, EPA n-3 polyunsaturated fatty acid Reduced ICAM-1-mediated leukocyte adhesion and inflammatory response
Doxycycline Tetracycline antibiotic Antibiotic, anti-inflammatory effect on cytokine expression and MMP activity
Dexamethasone,
Methylprednisolone

Glucocorticoid Reduced inflammatory response

Sekukinumab, Broadalumab IL-17 inhibitor Reduced inflammatory response
Tocilizumab, Siltuximab IL-6 inhibitor Reduced inflammatory response
Etanercept TNF inhibitor Reduced inflammatory response
Tofactinib, Fedratinib JAK inhibitor Inhibition of NF-kB p65 signaling
Alvocidib Cyclin-dependent kinase (CDK) inhibitor Reduced inflammatory response and neutrophil-mediated cell death
FcgRIIB Exogenous Fc receptor delivery Reduced inflammatory response, potential inhibition of platelet consumption
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ivermectin interferes with the nuclear import of proteins
encoded by several RNA viruses and is reported to exert anti-
viral action against SARS-CoV-2 in Vero cells (Caly et al., 2020).
Early evidence suggests that ivermectin treatment may be
associated with reduced mortality risk in patients with COVID-
19, particularly in those requiring oxygen support or mechanical
ventilation (Rajter et al., 2020).

Hydroxychloroquine has been broadly used during the SARS-
CoV-2 epidemic, with evidence of potential prophylactic effect
(Colson et al., 2020) mediated by reduced viral replication
(Keyaerts et al., 2004) and interference with ACE2 binding
(Vincent et al., 2005). Chloroquine is also reported to reduce
secretion of IFN-g and IL-17 in activated Th1 and Th17 cells,
respectively (Schmidt et al., 2017). However, evidence of
therapeutic benefit for hospitalized patients has not been clearly
established (Magagnoli et al., 2020; Shamshirian et al., 2020). In
addition to potential risks of retinopathy and arrhythmia,
combination therapy with azithromycin is reported to be
associated with increased risk of heart failure and cardiovascular
mortality (Lane et al., 2020).

A randomized, controlled trial of remdesivir including more
than 1000 patients reported a reduction in average time to
recovery to 11 days for the treatment group vs. 15 days for
patients assigned to placebo. A small but insignificant reduction
in the risk of fatality was also observed among treated patients
(Ledford, 2020). In a screening of 16 therapeutic candidates
specifically targeting SARS-CoV-2, the antiparasitic agent
emetine was reported among four compounds achieving at
least 50% in-vitro inhibition, along with remdesivir, lopinavir,
and homorringtonine. Synergy between remdesivir and emetine
was observed, enabling reduced dosages to achieve significant
reduction in viral yield (Choy et al., 2020). In the context of
SARS-CoV-2, adjuvant use of emetine may be of particular
interest, given that emetine has a well-established role in
enhancing interferon activity (Schellekens et al., 1975) and is
reported to disrupt viral entry and replication (Yang et al., 2018).
Considerations include pregnancy and cardiovascular risk.

The broad spectrum antibiotic doxycycline has been shown to
exert anti-inflammatory effects by interfering with the expression
of IL-6, IL-8, and TNF-a, reducing the recruitment of
neutrophils and lymphocytes into inflamed tissue, and
suppressing the activity of metalloproteinases (MMPs) (Di
Caprio et al., 2015). Notably, doxycycline treatment was
reported to reduce mortality by half in human patients with
DHF, with survival associated with significant reductions in TNF
and IL-6 levels (Fredeking et al., 2015). Administration of
doxycycline also significantly decreases MMP-mediated
capillary leakage and alveolar damage in virus-infected mice
(Ng et al., 2012). These properties suggest potential therapeutic
benefit of doxycycline across multiple fronts of COVID-
19 immunopathology.

Corticosteroids are commonly used in the treatment of
inflammatory conditions, but timing and duration of use are
important considerations in the context of COVID-19. In SARS,
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early corticosteroid treatment (<7 days of illness) was associated
with an increase in subsequent viral load (Lee N. et al., 2004).
However, the use of steroids may be beneficial at the point of
disease progression to acute respiratory distress and cytokine
storm (Tomazini et al., 2020). Methylprednisolone use is
reported to reduce the risk of death in patients with COVID-
19 pneumonia that has progressed to ARDS (Wu C. et al., 2020).
This result is consistent with clinical evidence in SARS, where
pulse methylprednisolone was reported to be beneficial in a
subset of patients with critical illness. Prolonged steroid
administration without effective antimicrobial support is
discouraged due to the risk of secondary infection (Tai, 2007).

In a randomized controlled trial comparing 2104 COVID-19
patients receiving dexamethasone and 4321 patients receiving
standard-of-care, dexamethasone treatment reduced the risk of
death by one-third in patients requiring invasive mechanical
ventilation and by one-fifth in patients requiring oxygen without
invasive ventilation. Dexamethasone did not reduce mortality
risk in patients that had not progressed to the need for
respiratory support at the time of randomization (Horby et al.,
2020). However, in non-intubated patients with COVID-19
pneumonia, combination therapy including corticosteroids
and tocilizumab is reported to increase survival (Mikulska
et al., 2020).

Steroid use has been suggested as a possible factor
contributing to the elevated NLR ratio observed in SARS
patients. However high NLR is observed even in steroid-naïve
patients, and elevated serum cortisol is reported to be correlated
with the degree of neutrophilia and lymphopenia (Panesar et al.,
2004). High adrenocorticotropic hormone (ACTH) production
and induced cortisol release in response to SARS-CoV infection
has been suggested to mimic the effect of corticosteroids in
driving T-lymphocytes out of peripheral circulation (Panesar,
2003). The somatostatin analogue pasireotide may attenuate the
skewed neutrophil/lymphocyte response observed in COVID-19.

Additional pathway-informed candidate therapeutics targeting
molecular mediators of the COVID-19 hyperinflammatory
response include biologics such as TNF-a inhibitors, IL-6
inhibitors, tamoxifen-mediated inhibition of Eomes, IL-17
inhibitors, CDK inhibition, exogenous delivery of soluble
FcgRIIB, and JAK inhibitors. Among TNF inhibitors, etanercept
was proposed as a potential first-line choice in SARS-CoV based
on considerations of safety, short-half life, and limited
immunogenicity (Tobinick, 2004). Early evidence relating
to compassionate use of IL-6 inhibitors in SARS-CoV-2
(tocilizumab and siltuximab) appears promising, with
unfavorable outcomes generally associated with treatment-
resistant increases in IL-6. Well-designed clinical trials appear
justified (Khan et al., 2020).

The high infectivity, rapid case growth, and severe outcomes of
the SARS-CoV-2 epidemic have created an urgent global health
crisis and a pressing need for therapeutic approaches to contain
the number of fatalities. This epidemic has emerged in the context
of a rich existing literature detailing aspects of cellular and
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molecular pathways affected by prior CoV serotypes and related
conditions. Much of the emerging literature specific to SARS-
CoV-2 is strongly consistent with these findings, and also features
informative differences, particularly in lung tissue (e.g., weaker
interferon response, suppressed epithelial defense, and elevated
pulmonary infectivity).

The resulting synthesis enables construction of a coherent
biological pathway that suggests multiple points of investigation
for potential therapeutic candidates. Given the high case fatality
rate of COVID-19, such candidates may help to bridge an urgent
gap. While results from ongoing randomized controlled clinical
trials remain essential, critical patients may benefit in the interim
from the estimation of preliminary odds ratios relating to
repurposed therapeutics, based on outcomes of COVID-19
patients having existing exposure to pathway-relevant candidates.
Frontiers in Pharmacology | www.frontiersin.org 12
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