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Abstract

Background: Despite recent advances in neonatal care, sepsis remains a leading cause of mortality in neonates.
Mesenchymal stem cells derived from various tissues, such as bone marrow, umbilical cord, and adipose tissue,
have beneficial effects on adult sepsis. Although human amniotic fluid stem cells (hAFSCs) have mesenchymal stem
cell properties, the efficacy of hAFSCs on neonatal sepsis is yet to be elucidated. This study aimed to investigate the
therapeutic potential of hAFSCs on neonatal sepsis using a rat model of lipopolysaccharide (LPS)-induced sepsis.

Methods: hAFSCs were isolated as CD117-positive cells from human amniotic fluid. Three-day-old rat pups were
intraperitoneally treated with LPS to mimic neonatal sepsis. hAFSCs were administered either 3 h before or at 0, 3,
or 24 h after LPS exposure. Serum inflammatory cytokine levels, gene expression profiles from spleens, and multiple
organ damage were analyzed. hAFSC localization was determined in vivo. In vitro LPS stimulation tests were
performed using neonatal rat peritoneal macrophages co-cultured with hAFSCs in a cell-cell contact-dependent/
independent manner. Immunoregulation in the spleen was determined using a DNA microarray analysis.
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Results: Prophylactic therapy with hAFSCs improved survival in the LPS-treated rats while the hAFSCs
transplantation after LPS exposure did not elicit a therapeutic response. Therefore, hAFSC pretreatment was used
for all subsequent studies. Inflammatory cytokine levels were elevated after LPS injection, which was attenuated by
hAFSC pretreatment. Subsequently, inflammation-induced damages in the brain, lungs, and liver were ameliorated.
hAFSCs aggregated with peritoneal macrophages and/or transiently accumulated in the liver, mesentery, and
peritoneum. Paracrine factors released by hAFSCs induced M1-M2 macrophage polarization in a cell-cell contact-
independent manner. Direct contact between hAFSCs and peritoneal macrophages further enhanced the
polarization. Microarray analysis of the spleen showed that hAFSC pretreatment reduced the expression of genes
involved in apoptosis and inflammation and subsequently suppressed toll-like receptor 4 signaling pathways.

Conclusions: Prophylactic therapy with hAFSCs improved survival in a rat model of LPS-induced neonatal sepsis.
These effects might be mediated by a phenotypic switch from M1 to M2 in peritoneal macrophages, triggered by
hAFSCs in a cell-cell contact-dependent/independent manner and the subsequent immunomodulation of the

Keywords: Human amniotic fluid stem cells, Neonatal sepsis, Inflammatory cytokines, Macrophage polarization,

Background
Despite recent advances in neonatal intensive care, sys-
temic inflammation such as sepsis is still a leading cause
of mortality and morbidity in preterm infants, particu-
larly in those with extremely low birth weights [1, 2].
Preterm neonates are more vulnerable to infectious dis-
eases leading to higher sepsis-related mortality com-
pared to adults due to the neonatal immune response
being quantitatively and qualitatively distinct from that
of adults [3, 4]. Lacking a fully developed adaptive im-
mune system, newborns must rely on the innate im-
mune response for protection against infection [3, 5]. In
addition, low numbers of lymphocytes in neonates ex-
acerbate the excessive production of pro-inflammatory
cytokines against infection [3, 6]. Therefore, macro-
phages are considered important initiators and regula-
tors of the innate immune response in neonates.
Mesenchymal stem cells (MSCs) possess unique para-
crine and immunosuppressive properties, which make
them useful candidates for cellular therapy [7-9]. In par-
ticular, numerous preclinical studies have successfully
used MSCs to improve outcomes in adult animal models
of sepsis and organ injury [7, 10-12], and clinical studies
to test their potential are ongoing in adults [13, 14].
However, the distinct differences in immune responses
between neonates and adults have been reported in ro-
dents and humans [3, 6], and little is known about the
therapeutic effect of MSCs on neonatal sepsis [15].
Among MSCs, human amniotic fluid stem cells
(hAFSCs) offer the intriguing potential for autologous
MSC treatment for a variety of complications in neo-
nates, including congenital abnormalities and preterm
birth [16]. Recently, we reported that hAFSC treatment
attenuated local inflammation in rodent models of peri-
natal diseases such as hypoxic-ischemic encephalopathy

[17] and fetal myelomeningocele [18]. hAFSCs generated
during pregnancy could be potentially used for autolo-
gous cell therapy treatment in neonates, if required im-
mediately after birth or during pregnancy [19]. However,
there is no report on the therapeutic efficacy of hAFSCs
for the treatment of neonatal sepsis.

The aim of this study is to determine the effect of
hAFSC transplantation in a rat model of LPS-induced
neonatal sepsis.

Methods
Isolation, culture, and immunophenotypic
characterization of CD117* amniotic fluid cells
The study was approved by the Institutional Review
Board of Keio University School of Medicine (no.
20140285), and informed consent was obtained from all
the volunteer donors. Five-milliliter amniotic fluid sam-
ples were obtained from two pregnant women who
underwent amniocentesis at 15 and 16 weeks of gesta-
tion. CD117-positive (CD117") cells were isolated as
hAFSCs, as described previously [17-22]. Briefly, within
2 h, the samples were centrifuged at 200xg for 5 min.
After removing the supernatant, the cell pellet was culti-
vated in growth medium comprising alpha modified
Eagle minimum essential medium (a-MEM; Invitrogen,
Carlsbad, CA), 15% fetal bovine serum (FBS) (Invitro-
gen), 1% L-glutamine (Invitrogen), 1% penicillin/strepto-
mycin (Invitrogen), and 40% AmnioMax-II (Life
Technologies, Carlsbad, CA). After the cell population
became sub-confluent, the cells were counted, and the
CD117" cells were isolated as hAFSCs using a magnetic
cell sorting kit (Miltenyi Biotec, Auburn, CA).

CD117" cells were characterized by flow cytometry for
surface markers, as described in our previous studies
[17, 18, 21]. The antibodies used for flow cytometry are
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listed in Table S1. CD117" cells were cultured in “adipo-
genic differentiation medium” and “osteogenic differenti-
ation medium” (PromoCell, Heidelberg, Germany)
according to the manufacturer’s protocol. To induce
chondrogenic differentiation, a total of 1.0 x 10° cells were
seeded in EZSPHERE (AGC Techno Glass, Tokyo, Japan),
then cultured for 12 days in “chondrogenic differentiation
medium” (PromoCell). CD117" cells were also character-
ized by real-time polymerase chain reaction (RT-qPCR)
for the expression of molecular differentiation markers
into adipogenic, osteogenic, or chondrogenic lineages.
RT-qPCR was performed in duplicate in a volume of
25 pL per reaction using a 96-well Bio-Rad CFX96 Real-
Time PCR System (Bio-Rad, Richmond, CA). Reaction
mixtures contained 5ng genomic DNA as the template,
04mM of each primer (FASMAC, Atsugi, Kanagawa,
Japan), SYBR Premix Ex Taq II (Tli RNaseH Plus; Takara
Bio), and sterile H,O. The primer sets are listed in Table
S2. We analyzed the relative gene expression in each sam-
ple by the 27*4“T method. Gene expression values were
normalized to S-actin levels as an internal control.

Animals

All experiments were approved by the Animal Committee
of Keio University (no. 18003-0). At postnatal day 3 (P3),
Sprague Dawley (SD) male rat pups (Charles River La-
boratories Japan Inc., Kanagawa, Japan) were randomly
assigned to three experimental groups. These groups were
treated with intraperitoneal (i.p.) injections (lower abdo-
men, both sides) as follows: control group (saline NaCl
0.9%), LPS group (LPS; Escherichia coli O55: B5, Sigma-
Aldrich, Steinheim, Germany), and hAFSCs+LPS group.
LPS 0.25 mg/kg dissolved in 50 pL [23], 1.0 x 10° hAFSCs
dissolved in 50 pL saline, or 50 pL saline was injected in-
traperitoneally in the rats. The optimal timing of hAFSCs
administration was investigated by screening the effect at
four time points (3 h before, Oh, 3h, and 24 h after LPS
exposure). For survival analysis, rats were monitored 6, 12,
24, and 48h after LPS administration and the survival
checks were continued once a day up to 30 days after LPS
administration. We investigated another group that re-
ceived only hAFSCs (hAFSCs group) (n =39) for the as-
sessment of the negative effects of hAFSCs administration.
We also monitored the survival in the hAFSCs+LPS group
using different donor-derived hAFSC cell lines.

Based on the results from the screening studies, all sub-
sequent studies were conducted by hAFSC pretreatment
3h before LPS exposure (Fig. 1a), as only this group
showed any significant therapeutic effect (Table 1).

Analysis of serum inflammatory cytokines and levels of
organ function indicators

For analysis of cytokines and organ function indicators
in serum, blood was collected from the heart at 6 h after
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LPS administration [23, 24]. Serum was prepared in un-
coated tubes by centrifugation at 4000 rpm for 5 min
and stored at —80°C until analysis. Serum levels of
tumor necrosis factor (TNF)-q, interferon (IFN)-vy, inter-
leukin (IL)-1pB, and IL-6 were determined 6 h after LPS
administration using MILLIPLEX® Multiplex Assays
using Luminex® with a rat cytokine/chemokine panel
(Merck Millipore, Billerica, MA, USA) according to the
manufacturer’s protocol [24]. The MILLIPLEX® plate
was read with a Luminex®200 xPONET® system. Data
were analyzed using the xPONENT” software (Luminex,
Austin, TX, USA). Serum levels of hepatic dysfunction
indicators: aspartate aminotransferase (AST) and alanine
aminotransferase (ALT) were analyzed 48 h after LPS
administration (SRL, Tokyo, Japan) [24, 25]. To assess
whether hAFSC administration induces hyperinflam-
mation, we also evaluated TNF-a levels in serum by
enzyme-linked immunosorbent assay (ELISA); Rat
TNF-alpha Quantikine ELISA Kit® (R&D Systems,
Minneapolis, MN).

Immunohistochemical analysis

The brain, lung, and liver were harvested 48 h after LPS
injection. Excised specimens were fixed with 4% parafor-
maldehyde for paraffin embedding. Paraffin sections
(4 pm) were subjected to hematoxylin-eosin (H&E), peri-
odic acid-Schiff (PAS) staining, and immunohistochem-
istry. The white matter around the hippocampus was
assessed in the brain sections [26]. Astrocytes were eval-
uated by anti-glial fibrillary acidic protein (GFAP) anti-
bodies (Dako Corporation, Carpinteria, CA) visualized
by Vectastain ABC Kit (Vector Laboratories, Burlingame,
CA, USA). Microglial cells were assessed by rabbit anti-
ionized calcium-binding adapter molecule 1 (Iba-1;
Wako, Osaka, Japan, 1:100), and nuclei were counter-
stained with Hoechst (Wako, Osaka, Japan, 1:100). Im-
munohistochemistry was performed using the rabbit
anti-myeloperoxidase (MPO; Abcam, Cambridge, UK, 1:
50) antibody, or mouse anti-Iba-1 (Iba-1; Wako, Osaka,
Japan, 1:500) and the nuclei were counterstained with
Hoechst (Wako), in all other organ samples. Antibodies
used for immunohistochemistry are listed in Table S3.
Images were captured using a BZX-810 camera (Key-
ence, Osaka, Japan), and morphometric analysis was per-
formed using Image] software (www.rsb.info.nih.gov/ij).
To investigate neuroinflammation, we counted GFAP-
positive cells and Iba-1 positive cells in the brain sec-
tions [26]. To evaluate neutrophil infiltration, we de-
termined the percentage of MPO-positive cells in the
lung and liver [27]. Thereafter, we counted the Iba-1
positive cells to evaluate macrophage activation
(Fig. 3). Lung injury was determined by radial alveolar
count (RAC) and mean linear intercepts (MLI) using
the Image] software [28-30].
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Fig. 1 hAFSCs improved mortality and serum cytokine levels in LPS-induced neonatal sepsis. a Timecourse of the experimental protocol. Three-
day-old rat pups were injected LPS intraperitoneally. Three hours before LPS exposure, rats were treated with hAFSCs or saline. b Survival rate
until 30 days after LPS administration in control (n = 30), LPS (n =40), and hAFSCs+LPS group (n = 28). hAFSCs treatment significantly improved
survival compared to saline-treated animals after LPS exposure. ¢ Levels of the pro-inflammatory cytokine TNF-a, IFN-y, IL-1(3, and IL-6 in serum in
the control (n=5), LPS (n=7), and hAFSCs+LPS group (n =6). Results are presented as mean + SEM. *p < 0.05

hAFSC tracking after intraperitoneal application administration. The collected organs were imaged using
hAFSCs were labeled with the fluorescent tracer Xeno-  the IVIS® Spectrum (Caliper Life Sciences). Filter condi-
Light DiR (Xenogen Corporation, Caliper Life Sciences, tions and illumination settings for DiR imaging were set
Alameda, CA) following the manufacturer’s protocol [31]. as 710/760 nm (excitation/emission), high lamp level,
DiR-labeled hAFSCs were administered intraperitoneally = medium binning, filter 1, and 1.0 s exposure time. Gray-
at P3 3 h before LPS injection. The organs were harvested  scale and fluorescent images of each organ were analyzed
12, 24, 48, 72h, and 7 days after DiR-labeled hAFSC  using Living Image software version 4.3 (Xenogen).
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Table 1 The optimal timing of hAFSC administration for
eliciting significant therapeutic effect in LPS-induced neonatal
sepsis

Timing of hAFSC injection Survival rate (%) N p value
LPS only 50.0 40 -

-3h 785 28 0.015%
0 56.3 16 0.67
+3h 500 18 1.00
+24h 50.0 20 1.00

The chi-squared test between the LPS only and each of the other groups
*)
p <0.05

Macroscopically, the cellular aggregates appeared as
small clusters, which varied in the number and the size
of the cluster. Microscopic analysis of a single aggregate
was carried out using an anti-human mitochondria anti-
body (Sigma-Aldrich, St. Louis, MO) for the hAFSCs
and an anti-CD68 antibody (Bioss antibodies, Woburn,
MA) for the peritoneal macrophages. Antibodies used
for immunocytochemistry are listed in Table S3. Images
were captured using a BZX-810 camera (Keyence).

Analysis of LPS-stimulated macrophages co-cultured with
hAFSCs

Peritoneal macrophages were obtained, as previously de-
scribed [32]. Briefly, rat peritoneal exudate cells were elic-
ited by intraperitoneal injection with 2mL of 3% sterile
sodium thioglycolate (BD, Franklin Lakes, New Jersey) in
SD male rat pups (P3). Peritoneal cells were obtained
3 days later by peritoneal lavage with cold PBS and
washed in cold RPMI medium. A minimum of 25% of the
cells were macrophages as determined by flow cytometry
analysis using FITC Mouse Anti-Rat CD11b (BD Biosci-
ences) according to the manufacturer’s protocol.

To determine whether hAFSCs could regulate the se-
cretion of pro-inflammatory cytokine in LPS-stimulated
macrophages in a cell-cell contact independent/
dependent manner, the two types of cells were co-
cultured either in a transwell (0.4 um pore size; Costar;
Corning, NY) system or a standard well, and then stimu-
lated with LPS. CD11b-positive macrophages were incu-
bated with RPMI 1640 containing 10% FBS and 1%
penicillin/streptomycin. To evaluate the effects of co-
culture with cell-cell contact, peritoneal macrophages
and hAFSCs were co-incubated in the presence of LPS
(0.1 pg/mL) for 4h at 37°C in a standard 24-well plate
(Costar®; Corning). To test the effects of co-culture with-
out cell-cell contact, the macrophages (1 x 10° cells per
well) were placed in the upper insert of a transwell sys-
tem (0.4 um pore, Corning), and hAFSCs (1 x 10° cells)
were placed in the lower well. The study groups in-
cluded the following: control group, LPS group,
hAFSCs+LPS (no contact between macrophage and
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hAFSCs) group, and hAFSCs+LPS (cell-cell contact be-
tween macrophage and hAFSCs) group (Fig. 4a).

Cell-free supernatants and macrophage RNA were col-
lected 4h after LPS stimulation. RNA was extracted
using the RNeasy Mini Kit (Qiagen), and reverse tran-
scription of total RNA was performed using the Prime
Script RT Master Mix (Takara Bio Inc., Shiga, Japan).
M1 (TNF-a) and M2 (IL-10) marker levels in the super-
natants were determined by ELISA using Rat TNF-alpha
Quantikine ELISA Kit® and Rat IL-10 Quantikine ELISA
Kit® (R&D Systems), and gene expressions of M1 (TNEF-
a and IL-1p) and M2 (IL-10 and Arginase-1) markers
were assessed by RT-qPCR. Gene expression values were
normalized to S-actin levels as an internal control. The
primer sets are listed in Table S2. Additionally, gene ex-
pressions were assessed using two different donor-
derived hAFSC cell lines.

DNA microarray analysis of the spleen

Six hours after LPS administration, total spleen RNA
was extracted using the RNeasy Mini Kit (Qiagen, Hil-
den, Germany). Genome-wide expression analysis was
performed using the total RNA, which was labeled and
hybridized to GeneChip® Clariom S array, Rat (Affyme-
trix, Santa Clara, CA). Principal component analysis
(PCA) was performed before the analyses of each sam-
ple. Gene expression patterns were compared between
the control group, LPS group, and hAFSCs+LPS group.
Once genes with significant differences in expression
were identified, fold changes were calculated between
the LPS group and hAFSCs+LPS group [33]. The path-
way analysis was performed using WikiPathways.

Statistical analysis

All values were expressed as mean * standard error. Stat-
istical differences between groups were assessed using
analysis of variance and Tukey’s honest significant
difference.

The chi-squared test and log-rank test were used for
comparing survival data. Statistical analyses were per-
formed using JMP14.0 software (SAS Institute, Cary,
NC). P values less than 0.05 were considered statistically
significant.

Results

Isolation, culture, and immunophenotypic
characterization of hAFSCs

CD117" amniotic fluid cells were isolated using a mag-
netic cell sorting kit. After immunoselection and passage
in culture, spindle-shaped cells were expanded as stable
lines (Additional file 1: Fig. Sla). Markers of cell surface
antigens on hAFSCs were evaluated by flow cytometry.
hAFSCs were positive for mesenchymal markers (CD73,
CD90, and CD105) and negative for hematological
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markers (CD14, CD34, and CD45) (Additional file 1: Fig.
S1b). We also determined the differentiation capability
of CD117" amniotic fluid cells. These cells could differ-
entiate toward adipogenic, osteogenic, and chondrogenic
lineages, as shown by the expression of the respective
molecular markers (Additional file 1: Fig. Slc).

Prophylactic therapy with hAFSCs improved survival in
LPS-induced neonatal sepsis

P3 rat pups were treated with hAFSCs dissolved in saline
or saline alone at either 3 h before, 0 h, 3h, or 24 h after
LPS exposure (Table 1). The survival rate of the LPS
group was 50.0%, which was significantly increased by
up to 78.5% by hAFSC pretreatment (Table 1). However,
no therapeutic effect was observed when hAFSCs were
administered after LPS treatment. Treatment with
hAFSCs alone did not affect the survival rate (100%). All
pups surviving at 48 h after LPS administration could
survive for a longer period (Fig. 1b). There were no sig-
nificant differences between the therapeutic effects of
the two hAFSC cell lines (Additional file 2: Fig. S2a).

hAFSCs reduced pro-inflammatory cytokines in serum
after LPS administration

We investigated the pro-inflammatory cytokines, TNF-a,
IFN-y, IL-1B, and IL-6 in serum 6 h after LPS adminis-
tration. There were significant elevations in the concen-
trations of all cytokines in the serum of the LPS group
compared to those of the control group. hAFSC pre-
treatment significantly attenuated the LPS-stimulated in-
crease in cytokine levels (Fig. 1c). On the other hand,
treatment with hAFSCs alone did not affect the levels of
inflammatory cytokines in rats, as demonstrated by the
levels of TNF-a in the study groups (control group, LPS
group, hAFSCs+LPS group, and hAFSCs group) (Add-
itional file 3: Fig. S3).

hAFSCs attenuated multiple organ dysfunction following
inflammation

LPS administration induced neuroinflammation in the
brain, as indicated by the presence of the GFAP-positive
cells and Iba-positive cells. However, hAFSCs pretreat-
ment significantly reduced neuroinflammation (Fig. 2a).
Likewise, in the lungs and liver, LPS induced tissue in-
flammation, as indicated by the presence of MPO-
positive cells and Iba-positive cells. Inflammation-
induced tissue damage after LPS administration was in-
dicated by RAC and MLI in the lungs and by glycogen
storage capacity and serum AST and ALT in the liver.
hAFSC pretreatment significantly attenuated tissue in-
flammation induced by LPS and subsequently amelio-
rated organ dysfunctions (Fig. 2b, c).
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hAFSCs were transiently localized in the liver and
mesentery

To study the fate of hAFSCs after intraperitoneal injec-
tion, we tracked DiR-labeled hAFSCs administered intra-
peritoneally, using an in vivo imaging system (IVIS®
Spectrum). The fluorescence accumulated in the abdom-
inal cavity (Fig. 3a) and DiR-labeled hAFSCs migrated to
and were transiently localized in the liver and mesentery
within 72 h after administration, although the fluores-
cence intensity of hAFSCs gradually decreased (Fig. 3b).
These findings indicated that hAFSC pretreatment atten-
uated inflammation-induced dysfunctions even in organs
where hAFSCs have barely reached, such as the brain
and lung.

hAFSCs assemble with peritoneal macrophages in the
peritoneal cavity

We observed cellular aggregates in the peritoneal cavity
of rats that received hAFSCs. Macroscopically, the ag-
gregates appeared as small clusters, which varied in the
number and the size of clusters (Fig. 3c). Microscopic
analysis of single aggregates showed that the cellular
aggregates were mainly composed of human
mitochondria-positive hAFSCs and CD68" peritoneal
macrophages (Fig. 3d).

hAFSCs induced a macrophage phenotypic switch from
M1 to M2 in both cell-cell contact-independent and
contact-dependent manners at the transcriptional level
M1/M2 polarization of macrophages regulates the in-
flammation and regeneration process [34]. To explore
the effect of hAFSCs on peritoneal macrophages, we ex-
amined TNF-a secreted from macrophages as an Ml
marker and IL-10 as an M2 marker (Fig. 4b). TNF-a
levels secreted from macrophages after LPS administra-
tion was significantly reduced by hAFSCs in a cell-cell
contact-independent manner. Cell-cell contact between
the macrophages and hAFSCs further reduced the TNEF-
a level (Fig. 4b). Also, TNF-a reduction was induced by
cell-cell contact at the transcriptional level (Fig. 4b). Al-
ternatively, the IL-10 level in supernatants was radically
increased by the cell-cell contact between LPS-
stimulated macrophages and hAFSCs (Fig. 4b). These
changes were also regulated at the transcriptional level.

In addition, these phenotypic changes were confirmed
by IL-1p and Arginase-1 as M1 and M2 markers, re-
spectively (Additional file 4: Fig. S4). Further, both the
hAFSC cell lines tested had similar effects on macro-
phage polarization (Additional file 2: Fig. S2b).

hAFSC administration reduced the expression of genes
involved in inflammation and apoptosis in the spleen

The spleen regulates systemic immune responses of the
whole body [35]. To determine the immune responses to
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Fig. 2 hAFSCs attenuated inflammation in the brain, lung, liver, and kidney after LPS challenge. Histology of the brain, lung, and liver tissues from
the control (n=6), LPS (n=8), and hAFSCs+LPS (n=8) 48 h after LPS exposure. a Representative image of brains. GFAP staining, upper row (scale
bars, 50 um); and Iba-1 staining, lower row (scale bars, 50 um). The graphs showed the number of GFAP-positive cells/HPF and Iba-1-positive
cells/HPF in each group. b Representative image of the lungs. H&E staining, upper row (scale bars, 100 um); MPO staining, middle row (scale bars,
50 pm); and Iba-1 staining, lower row (scale bars, 50 pum). Radial alveolar counts and mean linear intercepts were performed by averaging seven
measurements per rat. The other graphs in the lower row show the percentage of MPO-positive cells/HPF and the number of Iba-1-positive cells/
HPF in each group. ¢ Representative image of livers. H&E staining, the first row (scale bars, 100 um); MPO staining, the second row (scale bars,

50 um); Iba-1 staining, the third row (scale bars, 50 um); and PAS staining, the last row (scale bars, 200 um). The graphs in the upper row show
the percentage of MPO-positive cells/HPF and the number of Iba-1-positive cells/HPF in each group. The graphs in the lower row show the levels
of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum in each group 48 h after LPS exposure. Results are presented as
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12h 24h 48h

72h 7days

Fig. 3 Distribution of hAFSCs after intraperitoneal transplantation. Distribution of hAFSCs after intraperitoneal injection. The distribution of hAFSCs
(n=3) after injection was detected by in vivo imaging (IVIS®). Cells were labeled with DiR and injected 3 h before hAFSCs injection. a The
representative pictures from the ventral side. b Pictures and graphs of each organ in the time-course of distribution in LPS and hAFSCs+LPS
groups. ¢ In vivo image in the peritoneal cavity 48 h after LPS administration. DiR-labeled hAFSCs were aggregated as white dashed lines outlines
(scale bars, 10 mm). d Microscopic analysis of a single aggregate showed that the cellular aggregates were mainly composed of human
mitochondria-positive hAFSCs surrounded by CD68" peritoneal macrophages (scale bars, 100 um)

LPS administration, we performed DNA microarray
analysis on spleen tissue. The patterns of PCA
mapping in the spleen demonstrated that gene ex-
pressions were significantly changed by LPS adminis-
tration and that prophylactic treatment with hAFSCs
modulated the gene expression (Fig. 5a). There were
228/23,188 genes differentially expressed between the
LPS group and the hAFSCs+LPS group (Fig. 5b). We
focused on genes that exhibited significant differ-
ences in expression between the LPS group and the
hAFSCs+LPS group (p <0.05) in the DNA microarray
analysis (Fig. 5c). LPS treatment upregulated the
expressions of genes involved in apoptosis and in-
flammation. hAFSC pretreatment attenuated the up-
regulation of the genes involved in apoptosis such as
BCL2-like 11 and those involved in inflammation
such as CC or CXC chemokine ligand, colony-stimu-
lating factor 3, IL-1 and 6, and TNF-a-induced
proteins.

hAFSC administration suppressed the Toll-like receptor
signaling pathway and cytokines and inflammatory
response pathway in the spleen

The WikiPathways database was used to annotate the differ-
entially expressed genes, and they were identified to be in-
volved in the Toll-like receptor (TLR) signaling pathway
(https://www.wikipathways.org/index.php/Pathway:WP1309)
and cytokine and inflammatory response pathway (https://
www.wikipathways.org/index.php/Pathway:WP271).

The genes that were downregulated in the hAFSCs+
LPS group compared to that in the LPS group (negative
log2 fold change) are shown in shades of green, and
those that were upregulated are shown in shades of red
(Fig. S5 and S6). hAFSC pretreatment downregulated
TLR4 signaling and inhibited the expression of inflam-
matory cytokines such as Tnuf, 1l-1b, Il-6, and Ccl5 by
modulating the expression of cdI14, Nfkb family, and
Jun/Fos in the spleen (Additional file 5: Fig. S5). Also,
hAFSCs generally suppressed the expression of
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inflammatory genes, including Csf3, Il-1a, 1l-1b, 1I-6, and
Tnf in the macrophages (Additional file 6: Fig. S6).

Discussion
In this study, we established a rat model of neonatal sep-
sis by LPS administration into rat pups, particularly
mimicking neonatal sepsis of preterm infants in humans,
and demonstrated the therapeutic effects of prophylactic
treatment with hAFSCs on neonatal sepsis using our
model. Specifically, prophylactic treatment with hAFSCs
suppressed systemic inflammation and multiple organ
dysfunction and improved the survival rate in LPS-
induced neonatal rat sepsis. These effects might be me-
diated by the phenotypic switch of peritoneal macro-
phages from M1 to M2, which was induced by hAFSCs
both in a cell-cell contact-dependent and contact-
independent manner, and the subsequent immunomo-
dulation of the spleen.

To date, rodent models have been used extensively to
investigate the physiological process of sepsis [11]. In

systemic challenge models, bacteria (i.e., E. coli) or
bacteria-derived toxins (i.e., LPS) are administered into
adult rodents [7, 11]. However, the distinct differences
in immune responses between neonates and adults have
been reported in both rodents and humans, possibly
contributing to the higher mortality observed in neo-
nates compared to adults [3, 4]. It has been reported that
neonatal rodents were hyper-susceptible to LPS in an
age-dependent manner [6, 33]. Consequently, 3- to 5-
day-old rodents have been utilized to mimic the immune
response of human preterm infants [36, 37]. We demon-
strated that hAFSC pretreatment improved the survival
rate in neonatal rat sepsis from 50 to 80%, following the
reduction of pro-inflammatory cytokine levels in serum
after LPS administration (Fig. 1). Zhu et al. revealed that
MSCs derived from the human umbilical cord signifi-
cantly improved survival in E. coli-induced neonatal rat
sepsis [15], which is consistent with our findings. In
addition to the high mortality rate, sepsis presents an in-
creased level of inflammatory activation, which results in
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multiple organ impairments. In the present study,
hAFSC pretreatment improved tissue inflammation and
attenuated LPS-induced tissue damages in the lung,
liver, and brain as determined by the histological analysis
(Fig. 2), which is in agreement with the demonstrated
therapeutic effects of other MSCs [7, 10, 15, 25, 26].

It has been demonstrated that hAFSCs have the poten-
tial to reduce local inflammation in rodent models of
perinatal diseases mainly via paracrine factors secreted
from hAFSCs locally transplanted or migrated to the
damaged tissue regions [16—18, 38—40]. In contrast, our
study showed that prophylactic treatment with hAFSCs
could systematically reduce the inflammatory damages
in the whole body. hAFSCs injected into peritoneal cav-
ity aggregated with peritoneal macrophages and formed
spheroid, or migrated to and transiently accumulated in
the liver, mesentery, and peritoneum (Fig. 3). Conse-
quently, few hAFSCs were detected in the lung and
brain where the therapeutic effects of hAFSCs were ob-
served. These results were consistent with those of the
previous study on MSCs using a colitis model [8, 41,
42]. Thus, hAFSCs could protect multiple organs from
severe inflammation by adapting an immune regulatory
and regeneration-supporting status in the whole body.

There are two possible steps of immune regulation in
the whole body. One is a phenotypic switch of peritoneal
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macrophage from M1 to M2; the other is immune reac-
tions of the spleen following a phenotypic switch of peri-
toneal macrophages (Fig. 6). Macrophages represent the
majority of immune cells, and lymphocytes are fewer in
neonates compared to adults [3, 6]. Our data indicated
that the beneficial effects provided by hAFSCs adminis-
tration were triggered by their action on peritoneal mac-
rophages. hAFSCs could regulate peritoneal macrophage
polarization from M1 to M2 via paracrine factors in a
cell-cell contact-independent and/or contact-dependent
manner (Fig. 4 and Additional file 4: Fig. S4) [43, 44].
Moreover, hAFSCs spontaneously aggregated in the
peritoneal cavity and formed spheroids (Fig. 3c, d). Self-
activation of hAFSCs by assembly into aggregates could
enhance their beneficial effects [41, 45, 46]. Thus, in our
study, hAFSCs could act on peritoneal macrophages as
the first responder.

The spleen, the central immune organ, plays a role in
regulating systemic immune responses in the whole
body [35]. Therefore, we focused on the responses in the
neonatal spleen after local immunomodulation via peri-
toneal macrophage. DNA microarray analysis of the
spleen revealed that hAFSC administration reduced the
expression of genes involved in apoptosis and inflamma-
tion and subsequently suppressed the TLR signaling
pathway (Fig. 5). Sepsis can induce apoptosis by the
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Fig. 6 hAFSCs regulated immune reaction by two steps: peritoneal macrophages and spleen. hAFSCs regulated immune reaction in the whole
body by two steps—phenotypic switch of peritoneal macrophages from M1 to M2 and the immune reactions of the spleen following the
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mechanisms related to oxidative stress and inflamma-
tion [47-49]. Spleen cells undergo apoptosis leading
to immune cell loss and immune cell dysfunction
[15]. MSCs are capable of attenuating apoptosis by
regulating the anti-apoptotic BCL-2 family proteins
[50]. With regard to inflammation, hAFSCs downreg-
ulated TLR signaling and inhibited the expression of
inflammatory cytokines such as Tuf, Il-1b, and II-6,
which could directly contribute to reducing pro-
inflammatory cytokines in the serum and regulating
inflammation in the whole body. In this study, the ex-
pression levels of multiple regulatory factors control-
ling TLR signaling, such as cdi14, Nfkb family, and
Jun/Fos, were significantly reduced by hAFSC pre-
treatment. These results suggest that hAFSCs could
suppress TLR signaling in the spleen in a multimodal
way. Furthermore, hAFSCs generally suppressed the
expression of inflammatory genes in macrophages in
the spleen, which are considered important regulators
of the innate immune response in neonates [3-6].
Thus, the spleen plays central roles in regulating im-
mune responses in the whole body after local immu-
nomodulation via peritoneal macrophage.

The timing of hAFSCs transplantation may be im-
portant for interpreting our findings. In contrast to
the previous reports on MSC treatment in an adult
sepsis model [7, 11], in our study, beneficial effects
were only observed when hAFSCs were administered
before LPS exposure (Table 1). This suggests that the
pre-formation of cellular aggregates of hAFSCs and
macrophages in the peritoneal cavity might be key to
the therapeutic effect, and thus, appropriate timing of
hAFSCs administration is critical. From an obstetri-
cian’s point of view, neonatal sepsis frequently occurs
in premature newborns following preterm premature
rupture of the membranes during pregnancy [51]. If
the amniotic fluid could be collected during the pre-
term premature rupture of the membranes or amnio-
centesis, autologous hAFSCs could be prepared and
administered as “preemptive therapy” before neonatal
sepsis develops in high-risk pregnancies.

Conclusions

In conclusion, this study demonstrated that prophy-
lactic therapy with hAFSCs improved survival in an
LPS-induced neonatal sepsis model. These effects
might be mediated by local adaptation via peritoneal
macrophages, induced by hAFSCs could act in a cell-
cell contact-dependent or contact-independent man-
ner, and the subsequent immune modulation of the
spleen. These results suggest that prophylactic therapy
with hAFSCs could have therapeutic potential for
neonatal sepsis.
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