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Self-organizing actin patterns shape cytoskeletal cortex organization
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ABSTRACT
Living systems rely, for biological function, on the spatiotemporal organization of their structures.
Cellular order naturally emerges by dissipation of energy. Consequently, energy-consuming
processes operating far from thermodynamic equilibrium are a necessary condition to enable
biological systems to respond to environmental cues that allow their transitions between different
steady-states. Such self-organization was predicted for the actin cytoskeleton in theoretical
considerations and has repeatedly been observed in cell-free systems. We now demonstrate in our
recent work how self-organizing actin patterns such as vortices, stars, and asters may allow cells to
adjust their membrane architecture without affecting their cell mechanical properties.
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One basic question in biology is how cellular structures
are dynamically organized in space and time. While cell-
biology has gained a good understanding of important
processes including structural and functional knowledge
of many molecules, mechanisms of organization under-
lying most dynamic features in living systems remain
unclear. Two fundamentally different mechanisms exist
to generate macromolecular structures in cells: self-
assembly and self-organization. Self-assembly involves
the physical association of molecules into an equilibrium
structure with no energy dissipation and external inter-
vention, purely driven by the tendency of systems to
minimize their free energy in accordance with the second
law of thermodynamics.1,2 Self-organization requires the
collective action of interacting molecules far from ther-
modynamic equilibrium driven by the constant input of
energy into a steady-state structure.3-5 Yet, in practice,
cellular order results from both a combination of com-
plex deterministic interactions (self-assembly) and of
dynamical interactions between molecules that require
energy dissipation (self-organization).6,7 Notably, both
organization mechanisms can lead to similar phenome-
nological patterns, but their pattern evolution may vastly
differ on different length- and time-scales, as previously
computed for membranous lipid-protein interactions in
situ. For example, the self-assembly of such membrane
domains led to periodic domains on the nanoscale,
whereas the self-organization of those membrane
domains resulted in a pattern wavelength comparable to

a typical cell size.8 Conclusively, one can say with cer-
tainty – self-organization is essential for living systems
because in the absence of a continuous supply of energy
cells die.

The cortical actin cytoskeleton full-fills all criteria of
self-organization.9 It is a complex system that comprises
polydisperse filamentous actin (F-actin) of 2 different F-
actin lengths undergoing continuous turnover with con-
stant growth of the filaments at their barbed ends and
shrinkage at their pointed ends.10 These actin filaments
have 10–20-fold differing kinetic binding rates of actin
monomers and arise from distinct nucleation path-
ways11: (1) polymerization of long F-actin is driven by
formin proteins, which associate with the fast-growing
barbed end of actin; and (2) branching of short F-actin is
driven by the Arp2/3 complex, which binds to pre-exist-
ing F-actin and nucleates new filaments. The latter
population has been shown to account for 80% of the
total F-actin in different cell types.10,11 In addition, these
filaments are crosslinked over finite periods of time and
redistributed by the action of molecular motors, such as
myosin-II.12 The mechanical forces generated by these
processes operate on multiple length- and time-scales.13

Previously, these components of the cortical cytoskeleton
including actin kinetics, dynamics, and mechanics could
not sufficiently be studied, mainly due to technical limi-
tations in the observation and probing technologies. Yet
this is changing. Fortunately, with the development of
novel optical fluorescence imaging modes,10,14-17 and
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force probing technologies18,19 we have now the ability to
dissect actin architectures in enough detail to understand
the organization mechanisms of the cortical actin
cytoskeleton.

We recently demonstrated how the cortical actin cyto-
skeleton uses mechanisms of self-organization to dynam-
ically generate different actin patterns in HeLa cells.20

Employing state-of-the-art super-resolution microscop-
ies allowed the monitoring of these transitions over time
in living cells, which demonstrated that upon adherence
of the cells an active multistage coarsening process natu-
rally leads to the formation of actin vortices and subse-
quently into stars and asters. Unexpectedly, pattern
dynamics were primarily driven by the nucleation of the
Arp2/3 complex, but not by myosin motor proteins,
which is in contrast to what has been theoretically pre-
dicted and observed in vitro. Myosin-II patches localized
only to F-actin strands of both stars and asters but not to
their cores, with an active mobility along actin filaments,
suggesting that myosin-II was not actively participating
to pattern nucleation and maintenance. Nevertheless,
myosin-II was likely be involved in generating the intrin-
sic mechanical stress as it is required for the initiation of
the transitions between different actin patterns at differ-
ent steady-states. Effects of other crosslinking proteins
must be investigated in more advanced experiments with
the possibility to transiently activate and deactivate mol-
ecules involved in setting intra-cellular forces in the actin
network. Measurements of cell mechanical properties
and plasma membrane fluidity indicated that patterning
alters cellular membrane architecture but occurs at con-
stant cortical elasticity. Consequently, self-organizing
actin patterns may allow cells to adjust their membrane
architecture without affecting their macroscopic
mechanical properties.

Future investigations should make use of the above
described novel quantitative methodologies such as the
computation actin filament lengths, complementary to
super-resolution microscopy, to achieve deep mechanis-
tic understanding of the physiological importance of
self-organization compared with self-assembly. To
unravel the active role and true complexity of the actin
cytoskeleton from the bottom up in cellular function, the
dynamic interplay of all 3 components including actin
kinetics, dynamics, and mechanics must be evaluated.
Especially, scenarios involving immune cell function,
where a series of energy-consuming reorganizations of
the cortical actin cytoskeleton is required on multiple
length- and time-scales,21,22 are likely to rely on self-
organizing actin patterns to efficiently shape membrane
architecture and cellular mechanics.
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