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Abstract: Although the classification of breast carcinomas into molecular or immunohistochemical
subtypes has contributed to a better categorization of women into different therapeutic regimens,
breast cancer nevertheless still progresses or recurs in a remarkable number of patients. Identifying
women who would benefit from chemotherapy could potentially increase treatment effectiveness,
which has important implications for long-term survival. Metabolomic analyses of fluids and tissues
from cancer patients improve our knowledge of the reprogramming of metabolic pathways involved
in resistance to chemotherapy. This review evaluates how recent metabolomic approaches have
contributed to understanding the relationship between breast cancer and the acquisition of resistance.
We focus on the advantages and challenges of cancer treatment and the use of new strategies in
clinical care, which helps us comprehend drug resistance and predict responses to treatment.
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1. Introduction

Breast cancer is a worldwide public health problem in both developed and developing nations.
It is the second most common cancer in women, with an estimated 1.7 million invasive breast cancer
cases and 521,900 deaths in 2012 [1]. The death rate associated with breast cancer varies in different
regions, depending on the diagnosis stage, treatment quality, prevalence of various subtypes, and
therapy effectiveness [2,3]. Breast cancer treatments include surgery, radiation therapy, chemotherapy,
hormone therapy, and targeted therapy [4–6].

The main obstacle that arises from the treatment of any cancer with chemotherapeutic drugs is the
development of resistance. Chemoresistance enables cancer cells to survive drug attack and proliferate
uncontrollably, which may lead to strong metastatic potential and disease progression [7–12]. Cancer
cells can be intrinsically resistant to first-line chemotherapeutic agents or acquire resistance during
treatment after long-term drug exposure [4,13].

Long-term survival rates related to breast cancer are directly correlated to early detection of
disease. Thus, more sensitive biomarkers capable of detecting earlier stages of disease may contribute
to the identification of molecular targets necessary for successful treatment [14]. Metabolomics has
emerged as a new approach to identify and characterize biomarkers, which analyzes metabolites
associated with disease from biofluids and tissues [15].

The metabolomic approach can be applied using techniques such as nuclear magnetic resonance
(NMR) and mass spectrometry (MS), which offer information about a large number of metabolites
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through a multivariate statistical analysis. This approach allows the comparison of metabolite levels
between healthy individuals and patients with diseases such as cancer [16,17]. Metabolomic analysis is
used for early disease diagnosis, nutritional studies, toxicity analysis, and the evaluation of drug action,
as well as studying the acquisition of resistance to chemotherapy [18]. Metabolites are final byproducts
derived from the interaction between intracellular pathways and their microenvironment [19].
It has been proposed that the evaluation of a metabolite profile might allow the understanding of
biochemical processes that occurred, or were occurring, at the time of breast cancer diagnosis [13,20,21].
Additionally, in the field of chemoresistance, developing sensitive prognostic tools is important to
characterize the patient as an individual and to customize treatment with specific strategies aimed to
maximize the drug action [22,23]. This review discusses advances in metabolomics approaches that
help understand the relationship between disease and the acquisition of resistance to treatment, with a
particular focus on breast cancer.

2. Breast Cancer Treatment According to Histological Subtype

Breast cancer is a heterogeneous disease classified into several biological, molecular, and
histological subtypes that demonstrate variable prognoses and responses to chemotherapy [24].
Genetically, it can be classified into hierarchical clusters of intrinsic subtypes that have particular
tumor characteristics and clinical evolution: basal, luminal A, luminal B, human epidermal growth
factor receptor 2 overexpressed (HER2+), and normal [25,26]. Several commercially available tests,
including prediction analysis of microarray 50 (PAM50), classify breast carcinomas into the five
intrinsic subtypes [27,28]. However, other biological methods can be used for categorization, such as
the reverse phase protein array based on the expression of 171 cancer-related proteins, which defines
the subtypes of breast cancer as basal, HER2, luminal A, and luminal A/B. Additionally, the potentially
novel protein-defined subgroups reactive I and reactive II have been identified as associated with the
expression of proteins likely found in the microenvironment and/or active cancer fibroblasts around
the carcinoma [29].

In clinical practice, the method for breast carcinoma classification is based on the immunohistochemical
assessment of estrogen (ER), progesterone receptor (PR), and Ki67, as well as reflex fluorescence in situ
hybridization of HER2 expression [30]. The luminal A subtype demonstrates strong expression of ER
and PR, does not express HER2, and has low Ki67 expression, while the luminal B subtype expresses
ER, high levels of Ki67, and may express PR. Tumors expressing ER and positive for HER2 are also
classified into this subtype [31]. Typically, luminal subtypes have a better prognosis than non-luminal
subtypes, while the luminal A subtype has a better prognosis than luminal B largely because cases of
the latter have an imprecise prognosis and poor response to treatment [32]. The luminal A subtype is
more common in older women who show a better response to hormone therapy and an intermediate
response to chemotherapy [28,33,34]. Luminal B/HER2-positive cases have the worst prognosis and a
higher incidence among young women compared with luminal B/HER2-negative cases [31,35]. The most
common treatments for patients with the luminal B subtype are endocrine therapy and chemotherapy.
Luminal B carcinomas have a poor response to tamoxifen because of drug resistance [36].

Trastuzumab, also known as humanized monoclonal antibody, is used as a treatment for
luminal B/HER2-positive tumors in early and metastatic cases [37]. It interacts with HER2 and
inhibits HER2/HER3 signaling and subsequent HER2 release [38]. Compared with other proteins
of the HER family, there are no known mutations or alterations that result in oncogenic activity to
HER3. Additionally, no transformations have been observed when HER3 is overexpressed or under
continuous ligand stimulation. HER3 appears to function as a signaling substrate and specialized
allosteric activation mechanism of other HER proteins [38,39]. Studies in HER2-positive breast
cancer indicate that ligand-independent HER2–HER3 heterodimers behave as oncogenic inductors in
trastuzumab-sensitive substrates. However, it is possible that overexpression of HER3 itself, or any of
its ligands, may result in trastuzumab sensitivity [40,41]. HER2-positive patients in advanced stages
who underwent trastuzumab treatment were shown to have an improved survival rate, but occasionally
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to experience disease progression [42]. Recently, national and international guidelines established
that neoadjuvant chemotherapy should involve a combination of taxanes with a dual blockade of
trastuzumab and pertuzumab in HER2-positive cases [43]. Pertuzumab acts by inhibiting HER2
dimerization with another HER (HER1–4) receptor. Its treatment choice is based on higher rates
of pathological complete response (pCR) with the addition of HER2-specific agents coupled with
chemotherapy, including the effects of pCR on disease-free survival and overall survival [43,44].
Lapatinib is another drug that acts on HER2 as an epidermal growth factor receptor (EGFR) and
inhibits tyrosine kinase. Combined with capecitabine, lapatinib is administered in HER2-positive
patients with advanced breast cancer [45,46].

Non-luminal tumors are characterized by non-expressing hormonal receptors and may express
HER2 [28,47]. They are more common in young women and have a worse prognosis despite an
initial good response to chemotherapy. The triple-negative breast cancer (TNBC) subtype is an
undifferentiated carcinoma that is biologically aggressive and is usually detected in its advanced stages.
Although TNBC presents with high rates of pCR after neoadjuvant chemotherapy with anthracycline
and taxanes, a high rate of recurrence is observed among patients [47]. Preclinical and clinical studies
suggest that women harboring TNBC may benefit from platinum-based chemotherapy. Randomized
trials of patients with initial or advanced TNBC showed that platinum-based chemotherapy was
generally associated with long-term survival [48–50]. Lapatinib may also be indicated as a treatment
for TNBC because of its selective EGFR targeting. Additionally, it has clinical benefits regarding
metastatic progression [46].

HER2-positive/ER- and PR-negative tumors are aggressive high-grade cancers that are usually
self-detected and often observed in younger women [51]. Target therapies with anti-HER2 (trastuzumab),
anti-HER2/HER3 (pertuzumab), or anti-HER2 and EGFR (lapatinib) can be used in these patients [36].

Although the classification of breast carcinomas into molecular or histological subtypes has
contributed to a better stratification of patients into different therapeutic techniques, breast cancer
nevertheless progresses or recurs in many women despite systemic therapy. Therefore, drug resistance
remains a critical unsolved problem [51].

3. Drug Resistance in Breast Cancer

Drug resistance is the main factor responsible for cancer-associated deaths, and brings significant
impairment to therapeutic interventions. Indeed, chemotherapy, the most common systemic treatment
of breast cancer, benefits only 50% of users because of the development of resistance to multiple
drugs [52]. For example, more than 30% of women with metastatic breast cancer do not respond to
first-line chemotherapy based on anthracyclics and taxanes, and their disease typically progresses in
less than 1 year [9]. Moreover, up to 50% of women with luminal carcinomas treated with endocrine
therapy develop hormonal resistance. However, ER-regulatory pathways that could contribute to a
hormone-resistant phenotype are still poorly understood [53].

Drug resistance may be inherent in first-line chemotherapy or hormone therapy, or the patient may
develop resistance leading to disease progression some years after the initial treatment [9]. Resistance
observed prior to treatment is innate (also known as intrinsic or de novo) and depends on the cancer
subtype and a variety of factors influencing the tumor microenvironment [54]. Acquired resistance occurs
through the growth of resistant cell clones, the type of drug used, or an accumulation of mutations in
initial sensitive cells. Acquired resistance can be ascribed to pharmacological mechanisms, increased or
decreased activity or gene expression, or changes in target molecules and other mechanisms [4].

Chemoresistance can be acquired through different molecular changes including epigenetic
modifications [55], the inhibition of DNA repair proteins [56], the deregulation of proliferative and
apoptotic pathways, metabolic alterations [57], an increase in autophagy [58], or the overexpression of
adenosine triphosphate (ATP)-binding cassette (ABC) [59] efflux transporter or breast cancer resistance
protein, which decreases intracellular drug concentrations. Breast cancer resistance protein is encoded
by the ABCG2 gene [60] and was shown to interact with other proteins responsible for drug transport
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mechanisms and chemoresistance [61]. Moreover, the interactions between tumor cells and their
surrounding stroma may affect tumor behavior and contribute to therapeutic responses [62]. Therefore,
tumor microenvironment pathway changes are also critical to treatment success. The deregulation of
chemokines and cytokines in therapy, for instance, leads to the selection of tumor cell clones associated
with chemoresistance [63]. Macrophages recruited after anti-cancer drug administration can protect
tumor cells from death and induce chemoresistance [64]. Breast tumors have an accumulation of
cancer-associated fibroblasts (CAFs), which are thought to promote chemoresistance [65]. Increasing
evidence shows that CAFs interact with breast cancer cells, resulting in diverse responses to anti-cancer
drugs, mostly through metabolic regulation or signaling pathway activation [66–68].

The presence of the specific sub-population of cells, the cancer stem cells (CSCs), is another factor
relevant to chemoresistance. CSCs are characterized by a self-renewing capacity, cell-surface marker
CD44+/CD24−/low expression, an enhanced capacity for tumor generation, and resistance to treatment
because of their quiescent behavior [69]. Some studies have shown that TNBCs exhibit an enriched
CSC population, which may favor tumor recurrence [70,71]. Accordingly, several reports recently
demonstrated that breast cancer patients treated with neoadjuvant chemotherapy had an enrichment
of CSCs and aggressive properties, which affect patient curability [72,73]. These factors together
constitute important mechanisms to explain the high rate of breast cancer recurrence through acquired
chemoresistance (Figure 1).
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Figure 1. Chemotherapy agent could promote selective pressure of cancer stem cells (CSCs) and
resistant cell clones and might increases the probability of recurrence. It may occur through
pharmacological mechanisms, epigenetic modification, inhibition of DNA repair proteins, deregulation
of proliferation and apoptotic pathways, metabolic alterations, autophagy increase, adenosine
triphosphate (ATP)-binding cassette (ABC) efflux transporters overexpression that decreases the drug
intracellular concentration. Moreover, the interactions between tumor cells and its surrounding
microenvironment enriched by fibroblasts may also contribute to response to therapy.

4. Current Metabolomic Approaches

MS and NMR are the main analytical tools employed in metabolome analyses. Biochemical
data obtained and interpreted using these approaches provide a broader perspective of pathological
processes than can be obtained from isolated biological markers. Metabolomics contributes to the
diagnosis or treatment response of breast cancer by interpreting molecular measures using specific
computational models to produce a clinically relevant result [70,74,75].

Metabolomics essentially uses targeted and untargeted approaches. Targeted metabolomics
aims to identify a pathway or a metabolite of interest, based on a previously known relationship
with a particular pathway or metabolite in the metabolome composition of an investigated sample.
The untargeted approach seeks to identify and quantify the largest number of metabolites in a
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sample. Among the main techniques used in metabolomics studies, MS can be coupled to separation
techniques such as liquid chromatography (LC-MS) or gas chromatography (GC-MS), as well as to
NMR. Although NMR is a conservative technique and less sensitive than MS, its key advantages are
that it is highly reproducible, quantitative, has a relatively low cost, and provides structural information
for the accurate identification of metabolites [76]. Additionally, NMR does not use ionizing radiation,
or require physical or chemical treatments prior to analysis, thus avoiding metabolite loss. Therefore,
NMR is particularly useful in applications involving sensitive samples or living organisms [77].

5. Metabolic Profile of Breast Cancer

Cancer development occurs when different factors contribute to clonal evolution. These factors
can be grouped into two major categories: the activation of oncogenes (e.g., MYC proto-oncogene
(MYC), RAS type GTPase family (RAS), and/or phosphatidylinositol 3-kinase (PI3K-AKT-mTOR)
pathways) that stimulate cell proliferation, and the inactivation of tumor suppressor genes involved in
growth suppression (e.g., retinoblastoma-associated (RB) and tumor protein p53 (TP53)), DNA repair
(breast cancer type 1/2 (BRCA1/2)), or proliferation-restrictive signaling (phosphatase and tensin
homolog (PTEN)) [78,79]. When these changes are present in early stage cells, the affected individual
has a high chance of developing cancer. However, in addition to these genetic alterations, the metabolic
reprogramming of cells and adjacent stroma is required for cancer development. The current biological
model of carcinogenesis and drug resistance considers various pathways, such as cell proliferation,
evasion of the mechanisms involved in suppression of cell growth, resistance to cell death, genomic
instability and mutations, replication of immortalized cells, induction of angiogenesis invasion and
metastasis capability, tumor-induced inflammation, and evasion of the immune system [79,80].

Cancer and metabolism are deeply interconnected. Changes in metabolic networks, such as those
involved in biosynthetic pathways, can greatly affect the metabolism of cancer cells [81]. Processes
such as tumor development, tissue remodeling, cell survival changes, and metastasis are responsible
for triggering these metabolic changes. Studies indicate that metabolism determines cancer evolution,
and is allied with the action of a particular drug. In other words, metabolic adaptation is influenced
by tumor microorganization [82]. The production of metabolites changes when tumor cells show
altered metabolism, which results in a signature capable of characterizing the presence or even the
behavior of the cancer. The metabolomic profile can also be altered by the surrounding stroma and
immune response, providing complementary information about the tumor development and treatment
response [83].

The metabolic profile of breast cancer cells differs from that of normal breast epithelial cells, and
the metabolic profile of drug-sensitive breast cancer cells differs from resistant ones. Therefore, the
analysis of metabolic pathways enables a better understanding of changes in metabolism that could
promote carcinogenesis [22]. Normal human cells use glucose as a source of energy in the presence
of oxygen. The glucose metabolized in the cytosol results in the production of pyruvate that enters
mitochondria, is oxidized by the Krebs cycle, and culminates in the generation of ATP, the main source
of cellular energy storage. However, even in aerobic conditions, most of the pyruvate in cancer cells
is directed away from mitochondria and, under the action of lactic dehydrogenase, results in lactate.
This process is typically observed in low oxygen environments. Lactate production in the presence of
oxygen is known as aerobic glycolysis or the “Warburg effect” [78,84–86].

Breast cancer cells have an increased absorption of glucose [78], which is associated with
activated oncogenes (RAS and MYC) and mutant tumor suppressors (TP53). These both interfere
with proliferation, the inactivation of growth suppression, and the decrease of apoptosis. During
neoplastic growth, progressive hypoxia occurs because of inefficient neovascularization leading to
the expression of multiple enzymes involved in the glycolytic pathway [79]. As well as providing
energy and biomolecules to cancer cells, glycolytic deviation contributes to cell–cell communication,
thus reinforcing the hypothesis that a symbiosis known as the tumor microenvironment exists between
cancer cells and adjacent stroma. In cancer, lactate acts as a source of energy and molecular signaling,
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mimicking physiological mechanisms of high anaerobic performance. The complexity of a tumor
microenvironment and the interconnections between different cell types make it difficult to understand
the lactate circuit [87].

Recent research aimed to identify metabolic pathway changes associated with breast carcinogenesis.
Using a large-scale methodology, Jain et al. [88] recognized that the glycine biosynthetic pathway was
highly correlated with fast proliferating breast cancer cells. They suggested that glycine consumption is
required for cancer cell proliferation, and is associated with worse prognosis in breast cancer patients.
Their findings also suggested a potential cancer biomarker and therapeutic response tracking [88].

In an in vitro analysis, Xie et al. [89] reported that aspartate levels were higher in the MCF-7
cell line than in MCF-10A cells. The low levels of aspartate found in the blood of breast cancer
patients suggested that amino acids were being consumed as part of tumor development. These results
indicated that circulating aspartate is a key metabolite characteristic of human breast cancer [89].
Another in vitro analysis of MCF-7 and MDA-MB-231 cells used NMR to identify metabolites and
quantify inositol 1,4,5-trisphosphate receptors (IP3R). This revealed the functional relevance of IP3R
in causing metabolic disorders, resulting in reduced glucose uptake in both cell lines. Metabolomic
analysis was also used to study changes in breast cancer metabolism with an emphasis on glutamine
and its transporters. Glutamine is considered one of the main amino acids involved in tumor
development. The authors used in vivo analysis to identify serum metabolites in breast cancer patient,
which showed that IP3R expression was up-regulated in many cases. An increase in lipoprotein
content and levels of metabolites such as lactate, lysine, and alanine, and a decrease in serum pyruvate
and glucose levels, were also observed in patients who presented with high IP3R levels compared with
healthy individuals [90].

In an analysis of serum from breast cancer patients and healthy controls, GC-MS was used
to obtain metabolic profiles, followed by chemometric analysis to differentiate which metabolites
showed substantial changes. Pathway analysis revealed metabolic alterations in breast cancer patients
evidencing increased glycolysis, lipogenesis, and the production of volatile organic metabolites
compared with healthy women [91]. Also comparing the metabolic profile of serum samples from
healthy women with subtype-independent breast cancer patients, Jové et al. [92] identified 1269
metabolites with different serum concentrations in both groups and 354 metabolites belonging to
aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and primary bile acid biosynthesis
pathways. Caproic acid and stearamide were identified as metabolites significantly associated with
disease. Patients with early stage cancer had increased serum levels of choline, tyrosine, valine,
lactate, isoleucine, and decreased glutamate levels. However, in women with metastatic cancer,
serum glucose and glutamine levels were shown to decrease. The authors argued that differences in
oncogene expression are correlated with the metabolic profile, which may lead to disease relapse [92].
In another study, serum lipid concentrations were evaluated in women with newly diagnosed invasive
breast cancer at stages I and II. NMR was used for the metabolomic analysis of serum lipoprotein
subfractions, which revealed an association between lipoproteins and ER expression. However, an
inverse association between subfractions of high density lipoprotein and Ki67 was noted, and low
density lipoproteins were positively associated with nodal metastasis. Therefore, it was possible to
associate subfractions of lipoproteins with a characteristic of breast cancer acting on the aggressiveness
and prognosis of the tumor. These results suggested an association between different lipoprotein
subfractions and the expression of PR and Ki67 in breast tumors [93].

Through the metabolomic analysis of serum and plasma samples from two groups of patients with
primary breast cancer, Xie et al. showed that breast cancer was associated with low plasm levels
of aspartate due to higher levels of aspartate in breast cancer tissues in consequence of increased
tumor aspartate utilization [89]. Evaluating the plasma metabolism of patients with early or metastatic
breast cancer by NMR, they also observed variations in glucose, lactate, pyruvate, alanine, leucine,
isoleucine, glutamate, glutamine, lysine, glycine, threonine, tyrosine, phenylalanine, acetate, acetoacetate,
β-hydroxybutyrate, urea, creatine, and creatinine. In particular, lactate levels were inversely correlated
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with tumor size in the cohort of patients with early breast cancer. It has been suggested that tumor cells
are capable of inducing modulation of the patient’s metabolism even in early stages of the disease [94].

Fuss et al. [95] emphasized the importance of evaluating a complete metabolomic profile rather
than correlating isolated metabolites because of its greater ability to predict prognosis. They analyzed
the role of cancer metabolism using ex vivo high-resolution magic angle spinning (HR-MAS) to study
the metabolic profiles of intact breast tissue. Compared with benign tissue, levels of compounds
containing taurine and choline were elevated in breast tissue. Patients reported to be healthy up to
five years after surgery were found to have increased levels of taurine, glycerophosphocholine, and
creatine, with decreased levels of glycine and phosphocholine in their malignant tissues [95]. In an
analysis of primary tumor samples from un-treated breast cancer patients, the authors used HR-MAS
magnetic resonance spectroscopy (MRS) to identify three significant metabolic clusters: one had the
highest levels of glycerophosphocholine and phosphocholine, the second had the highest levels of
glucose, and the third had the highest levels of lactate and alanine. Interestingly, the genetic subtypes
were uniformly found among the three metabolic clusters. The metabolic clusters could contribute to
explaining the heterogeneity of breast cancer [96].

Ansari et al. [97] concluded that understanding the metabolic pathways of different breast cancer
subtypes may lead to the discovery of potential biomarkers to help in the orientation of personalized
treatments. Discrepancies among molecular classes of breast cancer are apparent for some metabolic
pathways, such as the glutamine pathway in TNBC, which has an aggressive metabolic pattern.
Although previous studies have undoubtedly shown the usefulness of the metabolomics approach,
the establishment of future validation using independent cohorts is essential to understanding the
relevance of specific metabolic biomarkers [97].

6. Metabolomic-Based Breast Cancer Chemoresistance

Recently, several in vitro, ex vivo, and in vivo studies have been performed to understand the
metabolic pathways involved in breast cancer drug resistance (Table 1). Among the major in vitro
studies, Ryu et al. [98] observed that glycolysis, as well as the production of lactates and ATP,
is associated with resistance to adriamycin in MCF-7 cells. Their results suggest that the regulation
of sulfur amino acid metabolism may be a therapeutic target for chemoresistant cells [98]. Using the
same cell line, Cao et al. [99] observed that adriamycin deaccelerated several metabolic pathways,
including purine, pyrimidine, glutathione, and glycolysis routes, as well as aggravating oxidative stress.
These findings suggest that cellular metabolomics and the quantitative measurement of metabolic
markers can be used to evaluate antitumor effects and investigate antitumor candidate agents [99].
In MCF-7 cells exposed to ascididemine, Morvan [100] observed an increase in citrate, gluconate, and
polyunsaturated fatty acids, and a decrease in glycerophosphocholine and ethanolamine associated
with severe oxidative stress in vitro. He concluded that central metabolic changes in breast cancer
cells are responses to high oxidative stress [100]. Similarly, Bayet-Robert and Morvan [101] reported
changes in glutathione and lipid metabolism as well as glucose use in MCF-7 and MDA-MB-231 cells
exposed to curcumin and docetaxel [100,101].

Comparing metabolic pathways in luminal A breast cancer cells (BT474 and MCF-7) and
triple-negative cells (MDA-MB-231 and MDA-MB-468), Stewart et al. [102] observed different metabolic
responses to paclitaxel treatment. For example, in both luminal A and triple-negative cells, choline and
its metabolites increased in the presence of paclitaxel. Moreover, choline, acetylcholine, phosphocholine,
and sn-glycero-3-phosphocholine increased under treatment in MDA-MB-468 but not MDA-MB-231 cells,
except for sn-glycero-3-phosphocholine. The myo-inositol level also increased during treatment and was
higher in luminal A cells compared with triple-negative cells. Based on these studies, it was notable that
glycolysis and glutathione pathways were deregulated when cells were treated with adriamycin and
docetaxel. This suggested that new studies should focus on these biochemical pathways to expand our
understanding of chemotherapeutic effects as well as possible mechanisms of resistance [102].
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Table 1. Studies involving metabolic pathway changes based on different treatments.

Biological Materials Approach Specific Treatment Metabolic Pathways Identified Reference

MCF-7 Immunoblot analyses Adriamycin Sulfur amino acid metabolism [98]

MCF-7 GC-MS Adriamycin Increase in glycerol metabolism and decrease in
glutathione biosynthesis. [99]

MCF-7 NMR Ascididemin
Increase in citrate, gluconate and

polyunsaturated fatty acids and decrease in
glycerophospho-choline and ethanolamine.

[100]

MCF-7
MDA-MB-231 NMR curcumin +/− docetaxel (dose- and

time-response)

Changes in glutathione metabolism, lipid
metabolism, and glucose utilization—some
biphasic changes depending on exposure.

[101]

BT474 MCF-7
MDA-MB-231
MDA-MB-468

NMR Paclitaxel

In luminal A cell lines: lactate and creatine
decreased while certain choline metabolites and
myo-inositol increased with paclitaxel. In TNBC
cell lines: glutamine, glutamate, and glutathione

increased, whereas lysine, proline, and valine
decreased in the presence of drug.

[102]

Human serum samples LC-MS Trastuzumab-placlitaxel Changes in spermidine and tryptophan. [103]

MDA-MB-231 HR-MAS NMR Tamoxifen, cisplatin and doxorubicin Changes in acetate, lactate and phosphocholine. [104]

MCF-7 UHPLC-MS Polybrominated diphenyl ethers (PBDEs) Change in the pentose phosphate pathway. [105]

Tissue samples mouse model HR-MAS Docetaxel

In docetaxel-sensitive tumors: increase in choline
metabolites. In tumors resistant to docetaxel:

metabolites derived from choline did not
increase during treatment.

[106]

Human breast tumor tissue HR-MAS
5-Fluorouracil, epirubicin,

cyclophosphamide followed by taxane
randomized to bevacizumab

Lower glucose and higher lactate was observed
in patients exhibiting a good response compared

to those with no response
[107]

Human serum samples LC-MS
NMR

Epirubucin and cyclophosphamide
followed of doxorubicin in association to

trastuzumab in HER2-positive cases

Concentrations significantly different threonine,
isoleucine, glutamine and linolenic acid. [108]
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Using human serum samples, Miolo et al. [103] investigated biomarkers potentially associated
with pCR in the treatment of neoadjuvant trastuzumab-paclitaxel in HER2-positive breast cancer
patients through a pharmacometabolomics approach. Serum levels of spermidine and tryptophan
identified patients who achieved pCR with a high sensitivity. These results were useful for elucidating
individual metabolic responses to treatment, and may help select the most suitable patients for
treatment with trastuzumab-paclitaxel [103].

Using HR-MAS NMR spectroscopy technology, Maria et al. [104] studied the in vitro metabolic
profile of human breast cancer cells treated with tamoxifen, cisplatin, and doxorubicin. The study
findings emphasized that different breast tumor lines respond in remarkably different ways to
chemotherapy. It was also observed that changes in acetate, lactate, and phosphocholine helped
identify tumor response to a given treatment based only on molecular properties [104].

Wei et al. [105] investigated the toxicity mechanism of 2,2′,4,4′-tetra-bromodiphenyl ether (BDE-47)
in MCF-7 breast cancer cells. Metabolomic analysis using ultra-high performance LC-MS showed that
toxicity to MCF-7 cells increased gradually when the concentration of BDE-47 exceeded 1 mM. BDE-47
was found to induce oxidative stress by inhibiting pathways involving pyrimidine and purine, and the
pentose phosphate pathway (PPP), and disrupting the entire cell metabolism. Thus, pyrimidine and
purine metabolism could be reduced by downregulating mRNA transcripts, and oxidative stress could
be induced by inhibiting nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) in the
PPP observed in MCF-7 cells exposed to BDE-47 [105].

Based on an ex vivo model, van Asten et al. [106] observed that breast cancer tissues of syngeneic
mice (K14cre; Brca1F/Fp53F/F) resistant and sensitive to docetaxel showed different modifications
of metabolic pathways during treatment. Evaluating the tumors sensitive to docetaxel, the authors
observed that the metabolic profile 48 h after drug treatment was characterized by a high level of
phosphocholine compared with untreated tumors. Within the first 48 h of treating sensitive tumors,
the observed proportion of total choline, glycerophosphocholine, phosphocholine, and creatinine was
significantly increased. They concluded that docetaxel-sensitive tumors have an increase of metabolites
containing choline, as observed 1–2 days after beginning therapy, which corresponded with the time
of higher apoptotic activity. In docetaxel-resistant tumors, the metabolites derived from choline did
not increase during treatment. However, relative concentrations of choline components were higher in
the pre-treatment of docetaxel-resistant tumors than in sensitive tumors [106].

Euceda et al. [107] used HR-MAS MRS to analyze human breast tumor samples. The tumors
were biopsied before, during, and after neoadjuvant chemotherapy. Metabolites of all observed
constituents of total choline significantly decreased post-treatment, and were significantly lower in
sensitive patients compared with a resistant patient. A significantly lower level of succinate was also
observed in sensitive patients. Unexpectedly, the authors found a significant increase in lactate with
treatment progression in sensitive patients. Both an increase in lactate production and rapid glucose
consumption are characteristic of the Warburg effect. They also observed changes in glutathione
metabolism identified as a possible effect of bevacizumab [107].

Few studies have evaluated serum metabolomic changes in women with breast cancer.
Wei et al. [108] compared the serum metabolic profile of HER2-positive women with a pCR, a partial
response, and with stationary disease following neoadjuvant chemotherapy with epirubicin and
cyclophosphamide followed by doxorubicin associated with trastuzumab. They identified a
progressive increase in threonine, glutamine, and linoleic acid in patients with a pCR, followed
by those with a partial response and stationary disease with the progressive reduction of isoleucine.
The underlying mechanism of this distinction in resistant and sensitive patients is not fully understood.
In vivo analyses showed that the linoleic acid pathway was the most affected after doxorubicin
treatment [108].
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7. Future Perspectives

Metabolomic analytical techniques are distinguished by the level of sensitivity, volume of material
to be analyzed, and sample preparation methods. Analytical platform improvements have allowed the
high-throughput collection of different molecular levels with large amounts of data. These multi-layer
data omics enable a clearer view of biological systems to be obtained because they do not only focus
on single-layer omics. Given the complementary nature of different molecular levels, multi-layer
data omics facilitate understanding and applicability in clinical routine. Metabolomics is therefore an
attractive approach for providing information about cancer biology because it is obtained through a
metabolic profile and is associated with complementary methods [96].

Recent studies have focused on in vitro and in vivo approaches. However, few have correlated
both approaches to validate the methodology. Additionally, few have evaluated the different subtypes
of breast cancer with respect to functions of time, stage, drugs, and duration of treatment. Studies in
clinical cohorts should therefore be performed to recognize the potential of data to predict results and
follow up on breast cancer treatment. It is also important that specialized oncologists work with other
health professionals to improve the analysis of results obtained from methodological tools and present
them in a format that is helpful for managing routine patients. Use of the metabolomic approach
in clinical routine helps decipher the main regulatory pathways in different breast cancer subtypes.
The clarification of individual behavioral changes in both disease development and treatment response
is essential for developing more effective treatments and customizing cancer treatments [109].

Breast cancer is a heterogeneous disease, and chemotherapy failures are caused by drug resistance,
which is a leading cause of breast cancer mortality. The metabolic analysis of fluids and tissues of
cancer patients contributes to an understanding of the metabolic pathway reprogramming involved in
neoplastic transformation, prognosis, and drug resistance [78,79]. Several studies have been proposed
to evaluate metabolic pathway reprogramming in chemoresistance, and identify patients who are
resistant to chemotherapy. However, studies that verify whether metabolic pathways are associated
with the response to chemotherapy are lacking. Such studies could provide evidence for use in clinical
practice, while the identification of different metabolic profiles may suggest new molecular targets and
metabolic biomarkers that will contribute to patient stratification of different breast cancer subtypes.
Finally, the knowledge of specific metabolic pathways could impact on the evaluation of new drugs
with possible repercussions on the survival of breast cancer patients. The prompt identification of
chemotherapy-resistant tumors would aid with earlier and more accurate stratification of patients,
and the choice of adjusted therapeutic regimens [74,105].
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