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Introduction
Psychoradiology is an emerging field that applies radiolog-
ical imaging technologies to psychiatric conditions, and 
Gong et al have been its pioneers.1 In a recent editorial 
published on JMRI which is the official journal of ISMRM, 
psychoradiology was recognized as a new subfield where the 
value of MRI for psychiatric applications had been empha-
sized.2 The term was selected to parallel that of the field of 
neuroradiology, and to reflect the evolution of the research 
field of psychiatric neuroimaging to a new medical practice 
discipline. The broad aim of this field in some ways builds 
upon advances in the RDoC initiative from the NIMH 
in the USA which was structured to advance systematic 
objective behavioral and neurophysiological measurement 

of features related to psychiatric illness. It is also an effort 
aiming to advance precision medicine in psychiatry by 
using radiological examinations to guide more individu-
alized treatment planning than is now possible using only 
traditional psychiatric evaluation.

The potential clinical utility of using brain structural 
and functional imaging to investigate cerebral alter-
ations in psychiatric disorders has been demonstrated in 
hundreds of MRI studies of major psychiatric disorders3 
including schizophrenia4 and depression.5,6 Based on these 
advances in psychiatric neuroimaging research, there has 
been growing interest in developing clinical applications 
for diagnosis, prognosis and treatment planning. These 
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Abstract:

Psychoradiology is an emerging field that applies radiological imaging technologies to psychiatric conditions. In the 
past three decades, brain imaging techniques have rapidly advanced understanding of illness and treatment effects in 
psychiatry. Based on these advances, radiologists have become increasingly interested in applying these advances for 
differential diagnosis and individualized patient care selection for common psychiatric illnesses. This shift from research 
to clinical practice represents the beginning evolution of psychoradiology. In this review, we provide a summary of 
recent progress relevant to this field based on their clinical functions, namely the (1) classification and subtyping; (2) 
prediction and monitoring of treatment outcomes; and (3) treatment selection. In addition, we provide guidelines for 
the practice of psychoradiology in clinical settings and suggestions for future research to validate broader clinical 
applications. Given the high prevalence of psychiatric disorders and the importance of increased participation of radi-
ologists in this field, a guide regarding advances in this field and a description of relevant clinical work flow patterns 
help radiologists contribute to this fast-evolving field.
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developments have led to the emergence of psychoradiology as 
a new subfield in radiology. Psychoradiology has developed to 
utilize radiological imaging approaches for differential diagnosis 
and individualized patient care for psychiatric illnesses. Given 
the high prevalence of psychiatric disorders, this is particularly 
important, where the development of the multimodal MRI has 
allowed quantification of brain characteristics at the structural, 
functional and molecular levels.

In the current review, we provide a summary of the progress 
in psychoradiology research in relation to clinical functions: 
(1) classification and subtyping heterogeneous psychiatric 
syndromes; (2) monitoring and predicting treatment response, 
and (3) guiding treatment selection. We then discuss issues 
related to implementing neuroimaging into clinical psychiatric 
practice with a suggested work flow for confirming diagnosis 
and guiding minimally invasive and optimally therapeutic inter-
ventions such as psychiatric medications, transcranial magnetic 
stimulation (TMS) and other procedures in the evolving subfield 
of interventional psychoradiology. While these clinical uses 
remain to be qualified for particular uses and validated as useful 
biomarkers, progress proceeds at a rapid pace and planning for 
the clinical emergence of psychoradiology is timely.

Rather than giving a systematic review regarding this rapid devel-
oping and large field, we will emphasize areas of research where 
promising new findings are now available and the path forward 
for the field. The potential real-world utility of these techniques 
as clinical tools will likely be based on the fusion of information 
from different imaging modalities and the selection of the most 
informative markers for particular clinical purposes. This work 
in many ways represents a translational step leveraging the exten-
sive existing psychiatric brain imaging literature for developing 
the applied field of psychoradiology. We hope that by providing 
an overview of recent developments, this review will serve as a 
guide for the practice of psychoradiology in clinical settings as 
radiologists more actively engage and advance this fast-evolving 
field.

Clinical functions of psychoradiology
Classification and subtyping
Diagnostic practice in psychiatry has long been criticized for 
subjective diagnosis of ill-defined and overlapping clinical 
syndromes. Subtyping of common complex syndromes based 
on clinical symptoms has not successfully reduced the heteroge-
neity of these syndromes with robust clinical or research utility. 
As a result, current syndromal diagnoses, as in the early phase of 
most areas of medicine, are to a degree placeholders, or general 
descriptions for clinical description, necessary until neurobiolog-
ically discrete subgroups and related nosological distinctions can 
be established. These features of diagnostic practice in psychiatry 
differ from most areas of medicine that define diseases based on 
biological measures and pathophysiological models.

As a result, several investigators have proposed that new strate-
gies and nosologies are needed to guide diagnosis and syndrome 
subtyping based on objective biomarkers. Pattern recogni-
tion or machine learning techniques have shown promise for 

detecting biomarkers from neuroimaging data and making 
diagnostic predictions in clinically defined psychiatric disor-
ders.7 Subtyping patients with syndromal diagnoses using statis-
tical cluster analysis or related approaches to group individuals 
according to shared signatures of brain abnormalities has been a 
common focus of studies.8 This latter approach has the potential 
to identify biologically homogeneous groups within and across 
current diagnoses, for which novel treatments may be applied 
or developed based on identifiable shared biological abnormal-
ities rather than symptom profiles that do not robustly separate 
syndromes into meaningful patient subgroups in the current 
psychiatric nosology. Ongoing psychoradiology research may 
provide diagnostic biomarkers for known disorders, but also 
actually define new biologically distinct disorders to jump-
start neuroscience drug development that has been stalled for 
decades.

Use of support vector machine (SVM), a popular machine 
learning technique, has been widely applied in various psychiatric 
disorders to overcome univariate analysis at the patient group 
level. It has revealed patterns of brain abnormalities that differen-
tiate patient groups, but to date it has limited clinical translation 
particularly for single patients.9 This method had been applied to 
both structural or functional imaging in a number of psychiatric 
disorders including schizophrenia,10 depression,11 and obsessive 
compulsive disorder (OCD).12,13 In recent years, more advanced 
algorithms such as deep learning (DL) have been increasingly 
used to investigate the neuroimaging features of psychiatric and 
neurological disorders. DL methods differ from conventional 
machine learning methods by virtue of their ability to learn 
the optimal representation from raw data through consecutive 
nonlinear transformations. DL can achieve increasingly higher 
levels of abstraction and complexity to detect patterns of subtle 
and diffuse alterations. In this way, DL represents a powerful 
tool in the search for clinically useful biomarkers of psychiatric 
disorders14 and its utility in psychoradiology is becoming widely 
recognized.

By using rs-fMRI in a large multisite sample of 1188 subjects, 
Drysdale et al15 showed that patients with depression can be 
subdivided into four neurophysiological subtypes ("biotypes") 
defined by distinct patterns of dysfunctional connectivity in 
limbic and frontostriatal networks. In addition, clustering 
patients on this basis enabled the development of diagnostic clas-
sifiers with high sensitivity and specificity validated by out-of-
sample replication analysis. These biotypes could not be readily 
or robustly differentiated based on psychiatric clinical evalua-
tion, and show promise in predicting responsiveness to transcra-
nial magnetic stimulation therapy. More recent work from Sun et 
al16 based on structural and diffusion MRI had selected features 
representing the shape properties of gray matter and diffusion 
properties of white matter to identify significant discriminative 
power for diagnosis and subtyping of attention-deficit/hyperac-
tivity disorder (ADHD). With comprehensive analysis and robust 
validation methods, those studies illustrate the potential utility of 
radiomics and added value of psychoradiology approaches for 
clinical practice in psychiatry.17
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This biomarker approach contrasts with most psychiatric studies 
that stratified patients based on symptom clusters within a 
single diagnostic category (e.g. schizophrenia18–20 psychotic 
disorders,8,21 depression,22–26 ADHD,27–29 and autism.30–32 
One recent study33 applied a data-driven framework for iden-
tifying robust subtypes across major depression, panic disorder, 
and post-traumatic stress disorder. By recruiting 420 individ-
uals with the above diagnoses, they identified transdiagnostic 
subtypes coherent across symptom, behavioral, and neural levels. 
This kind of approach can help disentangle the symptom-level 
overlap in conventional psychiatric diagnoses with the ultimate 
goal of developing nosological categories based on biological 
rather than behavioral characteristics, and targeting treatment 
options to more homogeneous and differentiated subgroups than 
is not achieved using behavioral symptoms alone.

Predicting and monitoring
Clinical syndromal diagnosis can be reliably accomplished using 
psychiatric evaluations in the large majority of patients. For this 
reason, developing diagnostic biomarkers represents more of a 
step to show clinical utility of MRI rather than a primary aim 
in itself. What is more appealing to the clinical psychiatric field 
is the potential of radiological imaging markers not to assist 
with differential diagnosis, but to help with subgroup identifi-
cation, prediction of treatment outcomes, and early detection 
of outcomes to make treatment modifications earlier than is 
now possible. There is also interest in objective markers to help 
predict onset or relapse of a syndrome, and risk for adverse 
events that cannot be well predicted by psychiatric examination 
such as suicide risk and adverse drug responses.

Predictions of illness onset, relapse and long-term 
prognosis
The prediction of psychosis onset in, at risk individuals (based 
on familial background or subclinical behavioral difficulties) 
has been actively studied based on clinical symptoms including 
attenuated or brief psychotic symptoms and a marked decline 
in functioning.34 It has been found that about one-third of 
individuals presenting with these prodromal features develop a 
psychotic disorder within 3 years. However, predicting which 
individual is at increased risk to develop psychosis has been a 
challenge for clinical management because clinical/behavioral 
and family background on their own are weak predictors of 
transition to a psychotic disorder. With advances in image acqui-
sition and analysis, it has been suggested that the structure, func-
tion, and biochemistry of the brain in high-risk individuals who 
will become psychotic differ from those in individuals who do 
not become psychotic.35 Thus, the development of techniques 
that allow clinicians to tailor interventions to the level of risk is a 
major translational goal for research in this field.36

Using structural MRI, Das et al37 performed graph-based gyrifi-
cation connectome analysis in the early stages of psychosis and 
tested the accuracy of this systems-based approach to predict a 
transition to psychosis among clinical high-risk (CHR) individ-
uals. They found that gyrification-based connectomes provided 
a promising means to improve individual prediction of a transi-
tion to psychosis in CHR individuals.

Mario et al38 examined functional connectivity (FC) in the reward 
network at baseline to predict depressive disorder in a commu-
nity sample of adolescents. They found that ventral striatum FC 
related to reward sensitivity predicted future risk for depressive 
disorder. This striatal node FC strength did not predict other 
common adolescent psychopathology, such as anxiety, attention 
deficit hyperactivity, and substance use disorders.

Relapse prediction is especially important in psychiatry given 
the risks of relapse such as suicide and unemployment, and the 
relatively long time often needed to fully benefit from psychi-
atric drug therapy. Zaremba et al39 examined whole-brain and 
region-of-interest changes in gray matter volume (GMV) and 
cortical thickness over 2 years in 60 patients with acute major 
depressive disorder (MDD) and 54 healthy controls. They found 
that patients with relapse showed a significant decline of insular 
volume and dorsolateral prefrontal volume which are crucial for 
regulation of emotions from baseline to follow-up. Early iden-
tification of these changes may allow for early intervention to 
reduce risk for relapse, which would represent a use of neuroim-
aging studies for guiding maintenance treatment in patients with 
recurrent MDD.

With the development of imaging data algorithm, Gifford et al40 
used machine learning methods to predict onset of psychosis 
in individuals at high risk by incorporating multiple imaging 
modalities in the predictive model and found that ML methods 
predicted clinical outcomes. Other researchers41 have developed 
multicenter MRI prediction models and performed multimodal 
fusion of MRI data to enhance prediction accuracy to enable 
individualized prediction regarding multiple clinical measures 
and outcomes.42

The cutting-edge of using ML to predict onset of psychiatric 
disorders is now combining neuroimaging markers with psychi-
atric clinical profiles in prediction models. For example, Lebe-
deva et al43 has shown that adding the baseline Mini-Mental 
State Examination (MMSE) scores to imaging data can improve 
the accuracy/sensitivity/specificity beyond what is possible for 
either measure alone for predicting mild cognitive impairment 
(MCI) and dementia 1 year prior to diagnosis in late life depres-
sion (LLD) patients.

A recent study by Koutsouleris et al44 established machine-
learning prediction models trained on clinical, imaging-based, 
and combined information to determine social-functioning 
outcomes at 1 year for patients in CHR states and with recent-
onset depression across geographically distinct populations. 
They found that lower functioning before study entry was a 
transdiagnostic predictor of outcome. Medial prefrontal and 
temporo-parieto-occipital GMV reductions and cerebellar and 
dorsolateral prefrontal GMV increments had predictive value 
regarding psychosis onset in the CHR group; reduced medio-
temporal and increased prefrontal-perisylvian GMV had predic-
tive value in patients with recent-onset depression. This study 
demonstrated that psychoradiology has potential as a tool in 
precision medicine for predicting future clinical outcomes and 
events. With such information, psychiatrists might augment and 
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individualize therapeutic interventions aiming to improve social 
functioning and clinical outcomes.

These studies document potential clinical utility for psychora-
diology, and indicate that future efforts may need to combine 
psychiatric and psychoradiological data in prediction models 
to achieve optimal clinical utility. With such advances, replica-
tion studies and ongoing optimization of imaging parameters for 
various clinical applications, psychoradiology offers potential for 
a quantum leap forward in diagnostic and treatment planning 
practice in clinical psychiatry.

Predicting and monitoring treatment response
The ability to predict an individual patient’s response to treat-
ment would permit clinicians to more prudently plan and 
modify treatment to improve patient outcomes and ultimately 
better allocate patient care resources. Psychoradiological 
biomarkers of abnormal brain function have proven utility 
in the prediction of treatment response45–49 in depression 
and outcome of global functioning of patients with CHR for 
psychosis.50,51

MDD is the second leading cause of disability worldwide.52 
Important problems such as the low rate of remission after first 
treatment53 and the high relapse rate54 both contribute to the 
high level of disability associated with this illness. For this reason, 
the prediction of treatment response and relapse has profound 
clinical significance. Identifying neural mechanisms underlying 
those issues has been a central aim in previous correlational 
neuroimaging studies.55–59

One recent study60 used measurements of hippocampal subfield 
volumes to predict early response to antidepressant treatment in 
drug-naïve patients with MDD. This study found that pre-treat-
ment volumes of specific hippocampal subfields were associated 
with antidepressant treatment response. Another study related 
increased hippocampal tail volume to remission following 
antidepressant medication treatment in patients with major 
depression.61 Smaller hippocampal volume has previously 
been associated with poorer outcomes following antidepressant 
medication treatment.62 All those studies aim to predict treat-
ment response with available imaging analysis techniques. Clin-
ically, this is important because slow acting standard treatments 
for psychosis and depression means medication trials often 
continue for 4–6 weeks to evaluate clinical benefit, and new 
ways to guide earlier decisions about changing treatments or 
dose could greatly improve standard clinical care and improve 
clinical outcomes.

Reggente et al63 used machine learning with cross-validation to 
assess the utility of FC patterns for predicting individual patient 
posttreatment symptom severity in OCD patients after 4 weeks 
of daily cognitive behavioral therapy (CBT). They found that 
pretreatment FC patterns within the default mode network and 
visual network significantly predicted post-treatment OCD 
severity, and did so more robustly than pretreatment clinical 
psychiatric ratings.

Treatment selection
Selecting specific drugs and even drug classes is a challenge in 
clinical psychiatry. It is particularly important because of the 
slow gradual onset of action of many widely used psychiatric 
medications. Imaging biomarkers of abnormal brain function 
appear to have some utility in treatment selection for psychiatric 
disorders.

In a recent study by Zhang et al64 of pediatric bipolar disorder, 
the authors began with a cluster analysis of cortical thickness 
data and identified two patient groups, one with regional 
decreases in cortical thickness and one with increased 
regional thickness. After scans, patients were enrolled in a 
randomized clinical trial (RCT) to either lithium or queti-
apine therapy. Patients with increased cortical thickness 
responded better to quetiapine than the group with decreased 
thickness, but the groups did not differ in lithium response. 
This approach of doing cluster analysis with pre-treatment 
data before a RCT has considerable appeal, as it allows for 
identifying discrete heterogeneity in complex syndromes and 
then an evaluation of treatment outcome prediction in the 
identified subgroups.

To date, many of the studies have predicted response to a 
single-intervention, which has the limitation that they do not 
provide information about whether an alternative treatment 
would have been more or less effective than the evaluated 
one. This makes it difficult to determine whether the imaging 
marker of interest indicates response regardless of treatment, 
or is specific to the intervention in the study.65 Thus, treat-
ment outcome-based studies are more valuable if they precede 
a RCT comparing different treatments, especially when those 
approaches work via differing mechanisms (e.g. medication vs 
psychotherapy vs TMS).

The studies from Mayberg et al were performed with such 
aims. They had two RCTs to identify neuroimaging patterns 
that could differentially predict outcomes to treatment with 
an antidepressant medication or CBT. Their first study used 
fluorodeoxyglucose-PET to establish that resting metabo-
lism of the right anterior insula could distinguish remitters 
from non-responders to treatment with the antidepressant 
escitalopram and CBT.66 Their later resting state fMRI study 
identified FC patterns in the subcallosal cingulate cortex and 
three other brain regions that distinguished responders and 
non-responders to antidepressant medication (escitalopram 
or duloxetine) and to CBT.67

These treatment outcome prediction studies establish the 
promise of clinical psychoradiology. Imaging studies appear 
to have potential for predicting failure to standard first line 
treatments for depression even before treatment initiation. In 
this event, application of interventions usually reserved for 
treatment-resistant depression, such as TMS, electroconvul-
sive therapy, or ketamine might be initiated earlier to avoid 
months of ineffective treatment.
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Guidelines for the practice of 
psychoradiology in clinical settings
Current studies4,20,58 provide support for the potential clinical 
value of psychoradiology in clinical diagnosis, prediction and 
treatment evaluation of patients with psychiatric disorders. In 
this context, it seems prudent to begin to think through appro-
priate clinical guidelines for this emerging field at the interface of 
radiology and psychiatry. Recently, the MR group in the Chinese 
Society of Radiology published the first expert consensus report 
on the clinical psychoradiological MR examination of patients 
with schizophrenia in China68 . This consensus paper proposed 
that patients with suspected diagnosis of schizophrenia should 
have MR examination including high spatial (1 mm at least) 
resolution structural imaging besides traditional clinical MR 
scans with higher slice thickness. Quantitative analysis of GMV 
and cortical thickness are recommended to identify patterns of 
regional gray matter changes.4 Besides the scanning sequences 
and data analysis, the consensus also suggested additional 
requirements for the safety of patients and additional environ-
mental considerations before and during MR examinations that 
are of special importance for psychiatric patients.

Interventional psychoradiology
One potential future role of psychoradiology may be to guide 
minimally invasive or non-invasive procedures for psychiatric 
patients under radiological imaging guidance. This is a compo-
nent of “interventional psychoradiology,” which is a new subfield 
of interventional radiology. A similar role might be considered 
for neuromodulation therapies. Its ultimate goal is to precisely 
localize the optimal brain regions for the targeted neurostimula-
tion treatment under imaging guidance to improve therapeutic 
efficacy for psychiatric patients.

Helen Mayberg et al have been pioneers in interventional 
psychoradiology, performing the deep brain stimulation (DBS) 
for patients with major depression.69–72 DBS has been approved 
by the FDA in the USA for movement disorders and for human-
itarian use in severe treatment-nonresponsive OCD, with 
different target areas in brain. For example, the striatum, subtha-
lamic nucleus or internal capsule have been selected as a targets of 
DBS, but the response rate and side-effects vary among different 
patient groups.73 In the case of depressive disorder, subcallosal 
cingulate cortex is the target for many studies, while the medial 
forebrain bundle has been another target. However, the results 
of clinical trials to date have not been positive.74 Current imag-
ing-guided placement of electrodes using conventional radio-
logical facilities may not be sufficiently accurate, and greater 
precision for the targeted intervention might be achievable using 
MRI to advance research and practice in this area. One would 
see this as a potential future area for psychoradiology research.

Challenges to the clinical application 
of psychoradiology
In the past two decades, radiological imaging methods and image 
analysis techniques have rapidly evolved to provide powerful 
quantitative tools in studying the human brain. These methods, 
which are more precise and sophisticated, have made possible 
the identification of the subtle structural and functional brain 

changes associated with psychiatric disorders. While method-
ological issues continue to be addressed and resolved, progress 
may not have been sufficient to warrant enthusiasm and the initi-
ation of large multisite validation studies to establish the clinical 
utility of MRI in psychiatry. There are multiple practical chal-
lenges on the path to developing MRI measures as diagnostic and 
predictive biomarkers in psychiatry.

First, because neuroimaging findings were rarely replicated 
(using identical settings) in psychiatric samples in the past, the 
optimal acquisition parameters and analytical methods to extract 
pertinent clinically useful information for individual patient care 
planning will need to be determined. In addition, with the devel-
opment of technologies and the availabilities of a large number of 
complimentary imaging methods, the approaches for combining 
and using the multimodal information provided using MRI 
examination needs to be established.

In addition, recent scientific and methods development will 
require reexamination of some previous observations. For 
example, most prior resting fMRI studies investigating different 
frequency focused on the traditional low-frequency band (0.01–
0.1 Hz). However, recent studies have demonstrated the presence 
of resting state FC patterns at frequency bands higher than 0.1 
Hz.75,76 Gohel et al77 investigated the amplitude of frequency 
fluctuations within discrete frequency bands and higher than 0.1 
Hz in patients with psychosis at different illness stages. More-
over, study of dynamic as well as static FC, and explorations of 
clinical significance of connectivity in specific frequency bands 
may provide additional clinically useful information.78

Second, as in any field, there can be considerable discrepan-
cies across studies. Some of this may be due to differences in 
patient recruitment strategies, demographic considerations or 
MR protocols, but some variations may be true within disorder 
inconsistency. The way forward to address this issue is the need 
to conduct larger-scale consortia multisite studies that collect 
sufficiently large samples that within disorder heterogeneity 
can be leveraged to identify more biologically homogeneous 
subgroups of patients than comprise the original syndromal 
diagnosis. Ideally, advances along these lines will identify groups 
with differential optimal treatments, so that MRI data can be 
used to guide personalized care for patient subgroups who meet 
criteria for a particular syndrome but whose psychiatric presen-
tation may not differ significantly. These data collection could be 
further enhanced using statistical methods to harmonize these 
data collected across multiple data sites.

Future directions
Although numerous clinical studies have identified imaging 
biomarkers for mental disorders and clarified their patholog-
ical mechanisms, their capacity to identify the unique structural 
and functional architecture of an individual’s brain is a critical 
step towards individual-specific brain analysis for psychora-
diology. Wang et al79 have developed a novel cortical parcella-
tion approach to accurately map functional organization at the 
individual subject level using resting-state fMRI. More work 
will be needed in this field to validate and determine optimal 
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parcellation approaches and other optimal applications for new 
imaging methods.

Moreover, diagnostic biomarkers need to demonstrate utility in 
the differential diagnostic challenges most frequently encoun-
tered in psychiatry, such as schizophrenia vs bipolar disorder, 
bipolar disorder vs major depression, and ADHD vs high func-
tioning autism vs bipolar disorder in pediatric patients. Addi-
tionally, clinical samples will need to be examined, not the 
relatively confound-free samples used in mechanistic research, 
but maybe more complex sample with comorbidity which is the 
real clinical situation.

Improvements in quantitative analyses makes MRI an indis-
pensable tool to elucidate the neurobiological substrates that 
underlie psychiatric illnesses.80 While longitudinal clinical trials 
are needed to solidify those findings before final clinical imple-
mentation, we already stand at the cross-road with new paths for 
radiologists to play an important role in diagnosis and treatment 
of psychiatric disorders.

Finally, pharmacological MRI based on the principle that 
neurotransmitter-specific drug challenges evoke regional changes 
in neurovascular coupling and resultant changes in brain hemo-
dynamics, such as the CBF, will be another type of marker worth 
more notification for the psychoradiology practice. In a recent 
RCT, by using noninvasive pharmacological MRI, Schrantee 
et al demonstrate age-dependent effects of methylphenidate 
treatment on human extracellular dopamine striatal–thalamic 
circuitry in young vs adult patients with ADHD.81

Conclusion
In summary, using high-field MRI (i.e., 3.0 Tesla and higher 
field MRI), the structural and functional correlates of a 

number of psychiatric disorders have been identified. These 
results provide the basis for a major step forward towards 
the translational use of psychiatric imaging for diagnosis, 
prediction of treatment response, and monitoring therapeutic 
interventions. For success of this field, we note that interdis-
ciplinary teams involving radiologists, psychiatrists, psychol-
ogists, and physicists, biochemists, mathematicians and 
engineers with computer science skills are needed to develop 
optimal measurements for the examination of psychiatric 
patients.

Radiologists need to take an active role in carrying out clinical 
trials to establish and validate the utility of imaging markers and 
the use of quantitative imaging measures that can be readily used 
in clinical settings. They also need to become familiar with the 
quantitative procedures required to detect the relatively subtle 
brain changes typically associated with neuropsychiatric disor-
ders, and the functional brain system conceptualizations of 
psychiatric disorders. We hope that more clinically orientated 
validation studies will be carried out in the near future to achieve 
this end given the urgent need for improving clinical outcomes 
of psychiatric patients.
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