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Aberrant metabolism is arising interest in the scientific community not only because of the
role it plays in the development and establishment of the tumor mass but also the
possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover,
tumor metabolism provides key molecules to maintain the epigenetic changes that are
also an undisputed characteristic of each tumor type. This metabolic change includes the
Warburg effect and alterations in key pathways involved in glutaminolysis, pentose
phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways
have consequences that impact genetics and epigenetics processes such as DNA
methylation patterns, histone post-translational modifications, triggering oncogenes
activation, and loss in tumor suppressor gene expression to lead the tumor
establishment. In this review, we describe the metabolic rearrangement and its
association with epigenetic regulation in breast cancer, as well as its implication in
biological processes involved in cancer progression. A better understanding of these
processes could help to find new targets for the diagnosis, prognosis, and treatment of
this human health problem.
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INTRODUCTION

The progressive process of carcinogenesis induces molecular changes in the cell that enable it to
survive in the environment, allowing it to proliferate and grow in unfavorable conditions. Within
these changes is the so-called aberrant metabolism. Under standard conditions, normal cells depend
on glycolysis to obtain energy; a pathway that triggers the cleavage of glucose to pyruvate. Pyruvate
is processed into acetyl-CoA, which is catabolized through a cycle of tricarboxylic acids (TCA) to
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obtain energy in the form of ATP during oxidative
phosphorylation (OXPHOS) (1). On the other hand, tumor
cells reprogram the metabolism to satisfy the concentration of
essential nutrients and energy, an action known as the Warburg
effect (2). This effect consists of a change in obtaining ATP
through the degradation of glucose into lactate in the presence of
oxygen through enzyme lactate dehydrogenase (LDHA) (3, 4),
which enhances ATP production, allowing biosynthesis of
biomass to growth and the production of intermediates that
promote proliferation and survival (5).

Recent research showed that the aberrant metabolism in
cancer is not only involved in maintaining a high proliferative
rate or survival but also have consequences that impact
epigenetic mechanisms such as DNA methylation, histone
post-translational modifications, chromatin remodeler
functions, trigger oncogenes activation, and loss in tumor
suppressor genes expression to lead the tumor establishment
(6). The purpose of this review is to highlight the regulatory
implication of the aberrant metabolism in breast cancer over the
epigenetic landscape.
METABOLIC PATHWAYS: THE MASTER
REGULATORS OF THE GENE
EXPRESSION IN BREAST CANCER

Glycolysis and TCA
Glucose is the most abundant catabolite in blood and is the
principal primary energy source of cancer cells. Normal cells take
glucose from blood vessels and enter the cell through glucose
transporter proteins (GLUT). Once in the cytoplasm, it is
metabolized into two pyruvate molecules by the glycolysis
pathway (7). In breast cancer, the glucose uptake is increased
due to the overexpression and translocation of GLUT1 (8) to the
cell membrane, enhancing glucose delivery into the cell. This
glucose is employed directly for lactate production due to
overactivation of AMPK (AMP-activated protein kinase) (9)
and overexpression of 6-phosphofructose 2-kinase (6PF2K)
(10). In breast cancer cells, pyruvate is usually processed into
lactate, which is actively transported to the extracellular matrix
due to the upregulation of monocarboxylate 1 (MCT1), an
essential lactate transporter, giving them a glycolytic profile.
Lactate plays a principal role in regulating gene transcription
by inhibiting the HDAC (histone deacetylase) enzymes,
promoting hyperacetylation in nucleosomes and active
transcriptional state (11). Some reports mention that the
histone H4 acetylation levels increase when cells are treated
with lactate, promoting changes in gene expression that favors
the cancer establishment (12). In breast cancer-associated
fibroblasts, the overproduction of lactate induces tumor growth
by demethylation of HIF-1a in patients’ tissue (13).

As a result of glycolysis and the metabolic shift orchestrated by
the Warburg effect, the pyruvate that is not oxidized into lactate is
dehydrogenated by pyruvate dehydrogenase complex (PDC), and
it is turned into acetyl-CoA, which enters directly into the
Frontiers in Oncology | www.frontiersin.org 2
tricarboxylic acid cycle (TCA). This cycle, composed of a series
of biochemical reactions, has a central role in energy production,
macromolecule synthesis, and redox balance (14). In several types
of cancer including breast, enzymes that participate in TCA such
as isocitrate dehydrogenase (IDH), succinate dehydrogenase
(SDH), and fumarate hydratase (FH) are deregulated, affecting
enzymes involved in epigenetic processes (15).

Acetyl-CoA is the sole donor of the acetyl group for the
acetylation mechanism not only of histones but in general in
protein acetylation. It is a central molecule in metabolism as it
participates in catabolic (glycolysis and beta-oxidation) and
anabolic reactions (lipogenesis, steroid synthesis, acetylcholine
synthesis, etc.) (16). HATs (Histone acetyltransferase) transfer
the acetyl group from acetyl-CoA to the amino group of lysine in
their target proteins to open the chromatin structure. On the
other hand, HDACs (Histone desacetyltransferase) catalyze the
opposite reaction; the HDACs remove the acetyl group by
hydrolysis, modulating the transcriptional repression by
closing the chromatin structure (17). Acetylation status could
be used as a biomarker to differentiate between breast cancer
subtypes. It has been observed, a genomic gain of acetylation of
H3K4 in early stages of breast cancer cells, specifically, in genes
associated with estrogen response and epithelial-mesenchymal
transition (18). The mTOR complex, the principal regulator of
cell growth in cancer, also stimulates acetyl-CoA synthesis
through ATP citrate lyase hyperphosphorylation (19). Besides,
overexpression or copy-number gain of acetyl-CoA synthetase 2
(ACS2) enhances acetyl-CoA production, correlating with breast
cancer progression. Moreover, the Warburg effect promoted
lipid biosynthesis using acetyl-CoA through acetyl-CoA
carboxylase (ACACA) in the MCF7 breast cancer cell line (20).
In MCF7, LCCP, and MCF75C cell lines, there was reported a
nuclear overactivation of two acetyl-CoA-producing enzymes:
PDC and ATP citrate lyase (ACYL); and their repression have a
crucial impact on histone acetylation status, proliferation, and
endocrine therapy resistance (21, 22).

Another key intermediate is the a-ketoglutarate, which is
required as co-substrate for JHDMs (Jumonji C domain-
containing histone demethylases) and TET (Ten-eleven
translocation) proteins, which participate in histone and DNA
demethylation. Also, JHDMs proteins, as JMJD5, interact
directly with pyruvate kinase muscle isozymes (PKM) to
change the metabolic flux; its inhibition decreases glucose
metabolism (23). JMJD4 is considered essential for breast
cancer progression given its role in chromosome segregation,
enhancing mitotic segregation errors, and triggering cell
proliferation (24). All these proteins are overactivated in breast
cancer due to a-ketoglutarate being overproduced by glycolysis
or glutamine pathway.

Glutamine Metabolism as a Driver of
Epigenetic Changes
Glutamine is a key amino acid that relieves the high growth rates
in cancer cells. High amounts of glutamine are utilized for
survival and proliferation. This amino acid is required not only
for biosynthetic pathways (i.e., nucleic acid synthesis) but also for
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glutaminolysis, which is converted into TCA cycle intermediates
and lactate (25). Thought this way, cancer cells get an extra
energy source. The expression of enzymes involved in glutamine
metabolism varies widely depending on the cancer type and is
affected by tissue of origin and oncogenotypes. The glutamine
addiction is suggested to be due to alterations in components of
the glutaminolysis pathway in cancer cells. For example, the
glutamine uptake principally through solute carrier family 1
neutral amino acid transported member 5 (SLC1A5), also
known as ASCT2, is hyperactivated in several types of cancer,
leading to the progression and malignancy (26, 27). In head and
neck squamous cell carcinoma and breast cancer cells, the
inhibition of glutamine transport abolishes cell growth and
proliferation and increases apoptosis and autophagy (28).
When glutamine is in the cell, it is converted into glutamate by
the glutaminase enzyme (GLS). It has been demonstrated that
GLS levels correlate with tumor growth rates and malignancy as
well as poor prognosis (29). GLS is overexpressed in breast
cancer, liver cancer, colorectal cancer, brain cancer, cervical
cancer, lung cancer, prostate cancer, and melanoma (30–34).
The important role of GLS overexpression in tumor progression
is reflected in breast cancer which is related to high-grade tumors
and high metastasis rates (35). Also, basal-like triple-negative
and HER2+ breast tumors express large amounts of GLS,
whereas luminal B tumors have elevated levels than luminal B
tumors (36), and the deregulation of glutaminolysis by GLS
knockdown induces breast tumor growth inhibition (37).
Moreover, the decrease of two alternative transcripts of GLS
(KGA and GAC) by alkyl benzoquinones and specific siRNA
induces autophagy through mTORC1 inhibition (38).
Additionally, it has been widely observed the role of glutamine
metabolism in other cellular processes such as purine,
pyrimidine, and non-essential amino acid synthesis, fatty acid
synthesis, and the support of the effect of reactive oxygen species
(ROS) to prevent apoptosis under stress-energy conditions
during cancer progression (39). Furthermore, glutaminolysis
components regulate signaling pathways that promote tumor
growth in breast cancer. The mTOR signaling pathway is
activated by glutamate dehydrogenase (GLUD) levels (40), and
a-ketoglutarate induces mTOR dimerization and activation (25,
37) to hyperactivated cell proliferation. Also, glutamine fasting
induces low levels of STAT3 phosphorylation in high invasive
cancer cells (41). For this reason, glutaminolysis inhibition by
GLS or GLUD knocking down inhibits migration and invasion
and the epithelial-mesenchymal transition (EMT) mediated by
STAT3 (42). Alterations in components downstream of the
glutaminolysis pathway also induces epigenetic changes that
could lead to the repression of anti-oncogenes and trigger
cancer progression. It has been demonstrated that mutations of
the isocitrate dehydrogenase 1 and 2 induces the conversion of
a-ketoglutarate (a-KG) to 2-hydroxyglutarate to inhibit DNA
demethylases and histone demethylases, leading to DNA
methylation and histone 3 methylation in lysine (K) residues 9,
27, and 20 (43, 44). Also, glutaminolysis regulates histone
demethylases as Jumonji domain-containing protein 3 (JMJD3)
and ubiquitously transcribed tetratricopeptide repeat X
Frontiers in Oncology | www.frontiersin.org 3
chromosome (UTX) that are specific demethylase of lysine 27
of histone 3 (H3K27). Recently, Bai et al. (45) showed that in
absence of glutamine, JMJD3 activity decreases, whereas
H3K27me3 levels are increased. It was also demonstrated that
JMJD3 interacts with promoter regions of XIAP and survivin, in
a glutamine-dependent manner promoting apoptosis resistance
in idiopathic pulmonary fibrosis fibroblast. Moreover, the
chemical inhibition of GLS induces the diminish of the
H3K4me3 mark and increases the acetylation of lysine 16 of
histone 4 (H4K16ac) to alter the expression of anti-apoptotic as
well as metastatic-associated genes in human breast cancer cells
(46, 47). Histone acetylation is another epigenetic mechanism
that controls gene expression and regulates cancer development
and progression. Due to the significant role of glutaminolysis in
cancer biology, the use of several pathway components as
therapeutic targets has been proposed (48). However, a
glutaminolysis-focused therapy is not available for the clinical
management of cancer patients. Therefore, studies that allow us a
better understanding of the complexity of glutamine metabolism
and its molecular effects in cancer are still needed.

Lipid Biosynthesis, Lipolysis, and
Derived Metabolites
There is an astounding amount of information on the role of
hyperactive lipogenesis in the maintenance of tumor progression.
The role of lipid membranes in sustaining high rates of cell
replication in the tumor mass is evident; however, other functions
of key enzymes in lipid biosynthesis have been characterized. Fatty
acid synthase (FASN) catalyzes palmitate biosynthesis using acetyl-
CoA and malonyl-CoA in the presence of NADPH; FASN is
overexpressed in treatment-resistant mammary tumors (49, 50),
and fatty acid syntheses are increased in brain metastases in
mammary tumors (51). Other functions of FASN in addition to
lipid synthesis are mainly associated with oncogenic signaling
derived from tyrosine receptor kinases; it has been described that
FASN can be directly phosphorylated by HER2, leading to the
increased enzymatic activity of FASN enhancing tumor cell invasion
and migration (52). One of the most important metabolites in lipid
biosynthesis is Acetyl-CoA which is synthesized in the
mitochondria via various reactions such as oxidative
decarboxylation of pyruvate, catabolism of different amino acids,
or beta-oxidation of fatty acids, among others. However, since lipid
biosynthesis occurs in the cytosol, the generation of Acetyl-CoA is
derived mainly from citrate synthesized in the mitochondria and
transported to the cytosol where ACL (ATP-Citrate lyase) catalyzes
its conversion to Acetyl-CoA (53). In turn, the metabolic pathway
responsible for the oxidative degradation of fatty acids is
b-oxidation, which provides ATP, NADPH, and acetyl-CoA, and
is used in the acetylation of proteins.

Tumor characterizes for a deregulated chromatin architecture.
In particular, the cancer stem cells (CSCs) have an open chromatin,
where the main donor of acetyl groups to histones is the acetyl-CoA.
For instance, histone H4 (H4K8ac, H4K12ac, and H4K16ac)
acetylation plays a main role for the maintenance of the stem
phenotype of TNBC cells cultured under hypoxic conditions (54).
Besides, CSCs have a widely demonstrated participation in drug
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resistance. Hence the understanding of the metabolic pathways of
this type of cells will bring light to different aspects of tumors and
their treatment response.

One Carbon Metabolism and Methylation
Cytosine methylation is the epigenetic modification process most
studied since the 1970s. Its mechanism consists of the addition of a
methyl group at the 5-position of the cytosine ring catalyzed byDNA
methyltransferases. The importance of DNA methylation is that at
the promoter level (methylation of CpG islands), hypermethylation
promotes silencing of gene expression; whereas global methylation
(associated with regions without CpG islands) maintains genomic
stability (55, 56). The methylation mechanism occurs not only in
DNA but also in RNA and proteins. Nonetheless, the epigenetic
role is associated with the methylation of proteins involved in
chromatin organization, particularly histones H3 and H4 (57).
S-adenosylmethionine (SAM) is the methyl group donor in
cellular metabolism; in general, methyl group transfer is
catalyzed by methyltransferases (in the case of DNA-by-DNA
methyltransferases, DNMTs), which oxidize SAM to S-adenosyl-
homocysteine. SAM is the product of the metabolism of one carbon
that couples two different cycles, the folate cycle, and themethionine
cycle (58). In breast cancer, all the isoforms of DNMT1, 3A, and 3B
are overexpressed (59), and overexpression of DNMT3A was
associated with poor prognosis in sporadic breast cancer (60).
Cancer progression involves chromatin reorganization, a highly
complex process in which regions near the promoters of tumor
suppressor genes are hypermethylated, inhibiting their transcription;
for example, the levels of BRCA-1 and MGMT hypermethylation
may not have prognostic value in overall survival (61).

Chromatin organization is also regulated by histone
methylation, which occurs at lysine and arginine residues in the
tails of histones H3 and H4 (62). In humans, this reaction is
catalyzed by histone methyl transferases (HMTs) (63). In breast
cancer, an increase in SAM leads to the overactivation of HMTs,
allowing the progression of the tumor phenotype (64). The
methyltransferase Suv39h1 promotes epithelial-mesenchymal
transition by adding the H3K9me3 mark on the E-cadherin
promoter (65). Also, Suv39h1 interacts with DNMT1 to
hypermethylate the estrogen receptor-alpha (ER) promoter,
silencing its expression (66). Therefore, the patterns of both DNA
and histone methylation, mediated by aberrant metabolism in
breast cancer, are highly relevant to tumor progression.
Frontiers in Oncology | www.frontiersin.org 4
THERAPEUTIC TARGETS

The reprogramming of cellular metabolism is of high relevance in
the hallmarks of cancer (67). Table 1 compiles information on
different drugs used to block fundamental enzymes of tumor
metabolism. Several reports have shown that alterations in
glycolysis, glutamine, lipid, and folate metabolism in breast cancer
cells could be used as therapeutic targets. Inhibitors of glycolytic
enzymes and transporters of glycolytic products such as GLUT1,
hexokinase (HK), 6-phosphofructo 2-kinase-fructose-2,
6-b iphosphatase E (PFKFB3) , PMK2, LDHA, and
monocarboxylate transporter 1 (MCT1) have been studied in
numerous preclinical studies (7). The non-metabolizable glucose
analog 2-deoxy-D-Glucose (2-DG) blocks the first step in glycolysis.
It is phosphorylated by hexokinase to produce 2-DG-6P, which
cannot be metabolized, reducing proliferation (78). It has
demonstrated that 2-DG exhibits a cytotoxic effect in breast cancer
cells with mitochondrial respiratory (79). Another report revealed
that 2-DGacts as a radiation and drug sensitizer of breast cancer cells
(80). Moreover, a current study using a murine model showed that
the combination of 2-DG with oncolytic virotherapy (NDV)
induced tumor cell death and inhibited tumor growth (78). At this
moment, the effects of this inhibitor in normal and tumor cells of
patients remain unexplored; thus, exhaustive clinical studies
are desirable.

Glutaminolysis is also considered a potential target in cancer.
A critical step in the utilization of glutamine is its conversion to
glutamate by the mitochondrial enzyme glutaminase (81).
Glutamine analogs as 6-diazo-5-oxo-L-norleucine, azaserine,
and acivicin bind irreversibly to the active site of glutaminase,
showing antitumoral activity (82). The molecule CB-839, a GLS
inhibitor, was tested in cell lines derived from breast cancer
tumors showing activity only in triple-negative subtype and not
in Her2+ cells (83). But the low potency, poor metabolic stability,
and low solubility of these drugs limit their potential for
clinical development.

However, in vitro and in vivo studies have demonstrated that
enzymes of lipid metabolism are involved in tumor development
and progression, supporting the search for inhibitors to lipids
metabolism components. For instance, inhibitors to Fatty Acid
Synthase (FAS) as C75, orlistat, C93 have shown effects in
stopping tumor growth of xenograft models (77, 84, 85).
Nevertheless, these inhibitors have limitations such as low cell
TABLE 1 | Drugs used to target tumor metabolism.

Pathway Inhibitor Target molecule Clinical trial References

Glycolysis BAY-876 GLUT1 Preclinical (68)
Glycolysis Apple polyphenol phoretin (Ph) GLUT2 Preclinical (69)
Glycolysis Gen-27 Hexokinase II Preclinical (70)
Glycolysis Silibinin GLUT1 in vitro (71)
Glycolysis Butyrate PKM2 Preclinical (72)
TCA Butyrate SIRT3 Preclinical (73)
Glutaminolysis l-g-glutamyl-p-nitroanilide (GPNA) ASCT2/SLC1A5 Preclinical (27)
Glycolysis Oxamate LDH-A, aspartate aminotransferase Preclinical (74)
Glycolysis Galloflavin LDH-A Preclinical (75)
Glycolysis Lonidamide Hexokinase II Phase II (76)
Lipid synthesis Orlistat Fatty acid synthase Preclinical (77)
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permeability, poor solubility, lack of selectivity, among others,
precluding the use as a systemic drug (86).

The effect of different drugs with the ability to block tumor
metabolism has been studied in breast cancer, such as the
combination of metformin and oxamate, mTOR, and LDH-A
inhibition, leading to apoptosis and autophagy activation (87).
This drug combination dramatically reduced the triple-negative
breast tumor growth in mice in a short time, and effectiveness
Frontiers in Oncology | www.frontiersin.org 5
lasted for 5 months after finishing the treatment. These drugs seem
to act directly on tumor cells by inhibiting glycolysis and mTOR
signaling and activating mechanisms that eventually drive to
apoptosis. So, a metabolic shift in breast cancer affects the
epigenome directly and has repercussions on gene expression and
tumor development. The unraveling of these epigenetic enzymes
modulated by the metabolism could serve as pharmacological
targets, having a deep impact on the treatment of breast cancer.
FIGURE 1 | Therapeutic targets of tumor metabolism. Tumor cells have a high glycolytic rate and overexpress key enzymes of glucose metabolism. Several drugs
have been used in preclinical trials to test their effectiveness, such as 2DG, a glucose analog whose metabolic product (2-DG-P) is unable to be metabolized,
therefore inhibiting glycolysis. Oxamic acid is a competitive inhibitor of LDHA, an enzyme overexpressed in breast cancer cells; the result of this inhibition is lower
levels of lactate, a critical oncometabolite for cell migration and tumor progression. In tumor cells, approximately 90% of glucose is metabolized to lactate; to
replenish the deficit of carbon molecules, there is an increase in glutamine metabolism. The ASCT2 transporter is overexpressed in breast cancer; glutamine is
metabolized in the cytosol to glutamate and subsequently transported to the mitochondrial matrix and incorporated into TCA in the form of a-KG. The antitumor
effect of two glutamine analogs (6-diazo-5-oxa-L-norleucine and Aza-L-serine) has been shown. Acetyl-CoA is a central molecule in metabolism as it participates in
catabolic (glycolysis and beta-oxidation) and anabolic reactions (lipogenesis, steroid synthesis, acetylcholine synthesis, etc.). In addition to this crucial role in cellular
metabolism, Acetyl-CoA is the sole donor of acetyl groups for the acetylation of proteins and particularly histones. Histone acetylation is catalyzed by histone
acetyltransferases (HATs), whereas removal of the acetyl group is mediated by histone deacetylases (HDACs). It has been shown that short-chain fatty acids such as
valproic acid and butyrate, among others, can inhibit HDACs. Increased levels of acetyl-CoA promote fatty acid synthesis associated with FASN overexpression.
Different inhibitors of the key enzyme in fatty acid synthesis have been used (C75, C93, and orlistat, among others), which are inhibitors of the thioesterase domain of
fatty acid synthase (FASN). The epigenetic mechanism classically described is DNA methylation. The pathway that supplies methyl groups for both DNA methylation
and histone and protein methylation is the one-carbon (1C) pathway metabolism, in which two distinct pathways, the folate and methionine cycle, converge, resulting
in the product S-adenosylmethionine. The epigenetic mechanism classically described is DNA methylation. While no inhibitors of these metabolic pathways have
been identified, several molecules have been used to inhibit the activity of enzymes involved in DNA methylation (DNMT1, DNMT3/B).
October 2021 | Volume 11 | Article 676562

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Coronel-Hernández et al. Aberrant Metabolisms and Epigenetic Changes
For a summarized graphical representation of the ideas outlined in
this mini-review, see Figure 1.
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