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Abstract

Epidemiological studies have established an association between air pollution particulate

matter exposure (PM2.5) and neurocognitive decline. Experimental data suggest that micro-

glia play an essential role in air pollution PM-induced neuroinflammation and oxidative

stress. This study examined the effect of nano-sized particulate matter (nPM) on comple-

ment C5 deposition and microglial activation in the corpus callosum of mice (C57BL/6J

males). nPM was collected in an urban Los Angeles region impacted by traffic emissions.

Mice were exposed to 10 weeks of re-aerosolized nPM or filtered air for a cumulative 150

hours. nPM-exposed mice exhibited reactive microglia and 2-fold increased local deposition

of complement C5/ C5α proteins and complement component C5a receptor 1 (CD88) in the

corpus callosum. However, serum C5 levels did not differ between nPM and filtered air

cohorts. These findings demonstrate white matter C5 deposition and microglial activation

secondary to nPM exposure. The C5 upregulation appears to be localized to the brain.

Introduction

Exposure to air pollution particulate matter (PM) is a potent generator of neuroinflammation

in the central nervous system (CNS) [1, 2] and has been associated with decreased white matter

volume and reduced cognition in older adults [3–5]. Murine studies suggest that particulate

matter exposure results in myelin loss in the CA1 stratum oriens of young mice, consistent

with myelin reduction classically evident with aging [6]. While multiple CNS cell types are

implicated in the inflammatory response, microglia have critical roles in particulate matter-

induced CNS injury [7]. Under physiologic conditions, microglial activation enables homeo-

static phagocytosis and facilitates synaptic remodeling and brain maturation. These phagocytic
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mechanisms, however, are aberrantly triggered in a host of disease processes [8]. Studies have

demonstrated that macrophages and microglia contribute to white matter injury in the setting

of multiple sclerosis[9], periventricular leukomalacia, and amyotrophic lateral sclerosis[10].

Microglia propagate neuroinflammation through expression of pro-inflammatory cytokines

and generation of reactive oxygen species[11]. When activated, microglia produce comple-

ment proteins[12, 13] and express complement-specific receptors, particularly C5aR (CD88)

[12, 14–16]. In vitro studies of activated microglia demonstrate adherence and cytotoxicity to

oligodendrocytes in the presence of complement factors[17]. The complement cascade, and

principally the C5 anaphylatoxin, may play an important role in the pathogenesis of white mat-

ter inflammation following nanoparticulate matter (nPM) exposure.

This investigation examines the association between nPM exposure and white matter (cor-

pus callosum) C5 deposition in a murine model. Immunohistochemical analysis and ELISA

studies explore the relationship between complement upregulation and the presence of reac-

tive microglia.

Materials and methods

Protocol

All procedures utilized in this study were approved by the Institutional Animal Care and Use

Committee (IACUC; protocol # 20235) of the University of Southern California and carried

out in accordance with the Guide for the Care and Use of Laboratory Animals (NIH). All mice

were male C57BL/6J mice (15–16 weeks of age; 24-29g) and housed in a barrier facility with

free access to food and water on a 12-hour light dark cycle, except during the nPM/ filtered air

exposures. The mice did not have access to food and water during the daily five-hour exposure

periods.

Particulate matter collection. Collection of nPM (particles smaller than 0.2 μm in diame-

ter) was conducted in an urban area in central Los Angeles, impacted mostly by traffic emis-

sions[18, 19]. Briefly, urban nPM (aerodynamic diameter <200 nm) is collected at 400 L/min

flow using a high-volume ultrafine particle sampler[19]. The sampler incorporates an ultrafine

particle multiple rectangular (slit) geometry jet conventional impactor that removes particles

larger than 0.2 μm, and the remaining nPM is collected on pretreated Teflon filters (8x10”,

PTFE, 2 μm pore) and transferred into an aqueous suspension by 30 min soaking of filters in

Milli-Q deionized water (resistivity, 18.2 MW; total organic compounds < 10 ppb; particle

free;endotoxin levels < 1 units/mL; endotoxin-free glass vials), followed by vortexing (5 min)

and sonication (30 min) for resuspension. No endotoxin is detected in these suspensions

(Limulusamebocyteassay: LPS<0.02EU/ml). As a control, fresh sterile filters were sham

extracted and stored. Aqueous nPM suspensions were pooled and frozen as a stock at –20˚C,

following recommended procedures by the US EPA, which show retention of chemical stabil-

ity for� 3 mo[20].

For mouse exposure, the nPM were re-aerosolized by an atomizer using compressed parti-

cle-free filtered air as discussed in detail in previous publications [1, 19]. During mouse expo-

sure, the particle size and concentration were continuously monitored by a scanning mobility

particle sizer (SMPS model 3080; TSI Inc., Shoreview, MN) in parallel with the animal expo-

sure chambers. We maintained the average nPM mass concentration at approximately 330

(+/- 25) ug/m3- roughly twice that of busy roadways [21]. From the total of 15 l/min of aerosol

flow generated, the majority (10 l/min) was drawn through the exposure chamber. The

remaining 5 l/min was diverted to filters for particle collection and characterization. Teflon

and quartz filters, sample concurrently the aerosol during exposure. The mass concentration

of the nPM was determined by pre- and post- weighing the Teflon filter under controlled
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temperature and relative humidity. Inorganic ions [ammonium (NH4
+), nitrate (NO3

–), sulfate

(SO4
2–)] were analyzed by ion chromatography, and PM-bound metals/ trace elements were

assayed by magnetic-sector inductively coupled plasma mass spectroscopy. Water-soluble

organic carbon collected on the quartz filter was assayed by a GE-Sievers liquid analyzer

(GE-Sievers, Boulder, CO). More details about the inorganic and organic compound contents

of these samples have been previously described[1]. Exposures were conducted in temperature

and air controlled sealed whole-body exposure chambers with adequate ventilation to mini-

mize buildup of animal-generated contaminants[1, 22, 23].

Particulate matter exposures. Mice were group-housed with four mice in each cage and

randomized to re-aerosolized nPM or filtered air exposure cohorts. Exposures occurred for

five hours/day, three-days/ week for a 10-week period. The mice were humanely euthanized 72

hours after the last exposure. While under anesthesia with ketamine (80 mg/kg IP) and xyla-

zine (10 mg/kg IP), serum (up to .22ml) was collected via a direct cardiac puncture. The mice

were then transcardially perfused with PBS and heparin (5 U/mL) saline followed by a fixative

solution (4% paraformaldehyde and .2% picric acid in .1 mol/L phosphate buffer). The brains

were harvested and stored in paraformaldehyde for 24 hours at 4˚C. Tissue was then dehy-

drated in ethanol (70%) and sent to pathology for paraffin embedding.

Immunohistochemistry. Immunohistochemical analysis was performed on paraffin

embedded brain sections as described below:

Slides were deparaffined, and hydrated using a series of different alcohol concentrations

(ranging from 100% to 70%). Antigen was retrieved with Dako target retrieval solution, dipped

in 3% H2O2 for 10 min, and then blocked with serum. Slides were incubated overnight with a

rabbit anti- glial fibrillary acidic protein (GFAP) antibody (diluted 1:10 000; Dako, Denmark)

or a rabbit anti-ionized calcium-binding adapter molecule 1(IBA1) antibody (1:200; Wako,

Japan). Subsequently, sections were treated with the appropriate biotinylated secondary anti-

body Vectastain Elite ABC kit (Vector Laboratories, Burlingame, California, USA) and visual-

ized with diaminobenzidine (DAB). A LAS AF microscope (Leica, Germany) was used to

capture images of the immunostained slices. NIH Image J software was employed to quantify

the optical density of DAB signal for analysis (rsbweb.nih.gov/ij/). The number of GFAP and

IBA-1 positive cells in one high powered field (40x) were counted in the left medial and right

medial corpus callosum and the two values subsequently averaged. IBA-1/GFAP cells that

exhibited double immunopositivity with DAPI were only counted. For IBA-1 analysis, only

heavily stained cells larger than 5 μm were counted. Separately, mean cell density of IBA-1/

GFAP positive cells was counted in the left medial and right corpus callosum and the two val-

ues were subsequently averaged. To assess microglia morphology, images were evaluated using

Image J software following a protocol previously described [24]. Briefly, the corpus callosum

was selected and the “Adjust Threshold” function was applied as the intensity threshold. Total

cell size was measured at this intensity threshold without a size filter. Cell body size was mea-

sured by lowering the threshold 5 points and applying a size filter of 100 pixels using the “Ana-

lyze Particles” function. To calculate the overall size of the dendritic processes, cell body size

was subtracted from total cell size. From this, the cell body to dendritic process size ratio was

calculated.

Immunofluorescence. Similar to the protocol for IBA-1 and GFAP staining, slides were

deparaffined, and hydrated using a series of alcohol concentrations (ranging from 100% to

70%). Antigen retrieval was achieved with Dako target retrieval solution, dipped in 3% H2O2

for 10 min, and then blocked with 5% donkey serum. Slides were incubated overnight with

anti-C5 (mouse 1:50 Hycult Biotech, Netherlands; clone BB5.1), anti-CD88 (rat 1:200 Hycult

Biotech, Netherland; HM1076) or rabbit complement component C5α (125kDa) antibody

(1:50 Santa Cruz, SC-21941). Subsequently, sections were washed, incubated with secondary
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antibodies (Alexa Fluor 568, Invitrogen, Carlsbad, CA) for one hour, and nuclei were stained

with DAPI (Invitrogen) for 10 minutes. Slides were mounted with Dako fluorescent mounting

media, coverslipped, and then visualized using Zeiss 510 confocal microscopy and BZ-9000

fluorescent microscopy (Keyence, NJ). NIH Image J software was used to quantify immunoflu-

orescence. The images were converted to 8-bit and adjusted to threshold to count the positive

cells. Mean density area for C5, C5α and CD88 was measured in one high powered field (C5:

400x, C5α: 400x, CD88:200x) in the left and right medial corpus callosum and the two values

were averaged. Protocols followed the NIH Image J user guide.

Double immunofluorescence staining was carried out following a similar protocol to what

was described above. Slides were incubated overnight with mouse anti-C5 (diluted 1:50,

Hycult Biotech, Netherlands, HM1073) and one of the three primary antibodies: 1) rabbit

anti-glial fibrillary acidic protein (GFAP) (diluted 1:10,000, Dako, Denmark), 2) rabbit anti-

ionized calcium-binding adapter molecule 1 (IBA1) antibody (1:200; Wako, Japan), or 3) rab-

bit anti-choline acetyltransferase (ChAT) antibody (diluted 1:150, MilliporeSigma, Germany).

ChAT is a marker for choline acetyltransferase and can be used to identify cholingeric neurons

[25]. Sections were then washed and incubated for one hour with one of the three secondary

antibody solutions based on the previous primary antibody solution: 1) Alexa Fluor 800 and

Alexa Fluor 647, 2) Alexa Fluor 800 and Alexa Fluor 647, or 3) Alexa Fluor 568 and Alexa

Fluor 647 (Invitrogen, Carlsbad, CA). Nuclei were stained with DAPI (Invitrogen), slides were

mounted with mounting media, and subsequently imaged following the above protocol. Three

images were taken with different channels to visualize the different stains. NIH Image J soft-

ware was used to merge the images using the “Image Calculator” function.

ELISA analysis. Serum was obtained by direct cardiac puncture at the time of euthanasia

from nPM and filtered air groups. ELISA was performed for C5 (ηg C5 protein/ mg total pro-

tein) and TNF-alpha (ηg TNF-alpha protein/ mg total protein) according to manufacturer’s

instructions (C5; Kamiya Biomedical Company, KT– 11775, Seattle, WA) (TNF-alpha; R&D

Systems P134505, Minneapolis, MN).

Statistical analyses

The differences between nPM and filtered air cohorts were analyzed with two-tailed unpaired

Student’s t-tests. Data in the text are presented as mean±standard deviation. P� .05 is consid-

ered statistically significant.

Results

The mass concentration during the 150 hours of the exposure was 330 (±25) μg/m3 whereas

the number concentration was 1.6 (±0.3) �105 particles/cm3. Total Organic Carbon (TOC) was

the most predominant chemical species, accounting for 68 (± 9)% of the total mass. The mass

fractions of other trace elements and metals (in units of ng/μg of PM mass) are listed in the

table below (Table 1). The size distribution of the exposure aerosol is presented below

(Table 2) and is typical of particulate matter in an urban area impacted by traffic emissions[1].

Reactive microglia (IBA-1) and astrocytes (GFAP)

IBA-1 cell counts in the medial corpus callosum were increased 30% by exposure to nPM: fil-

tered air (67.3 ± 23.6, n = 8) and nPM mice (86.9 ± 9.4, p = 0.047, n = 8) (Fig 1A and 1B). How-

ever, no differences existed in the medial corpus callosum for GFAP cell counts between

filtered air (85.5 ± 13.2, n = 8) and nPM mice (85.6 ± 11.0, p = 0.98, n = 8) (Fig 1D and 1E).

Further, IBA-1 cell density in the medial corpus callosum was increased 25% by exposure to

nPM: filtered air (140.2 ± 7.9, n = 8) and nPM mice (177.9 ± 4.1, n = 8, p<0.001). No

nPM exposure and white matter inflammation
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differences in cell density existed in the medial corpus callosum for GFAP cell density between

filtered air (178.3 ± 5.9, n = 8) and nPM mice (179.3 ± 8.4, p = 0.78, n = 8). IBA-1 cell body to

dendritic process size ratio was significantly increased following nPM exposure (1.25 ± 0.27,

n = 8) compared to filtered air (0.68 ± 0.27, p< 0.001, n = 8) (Fig 1C).

Complement deposition and receptor expression: C5, C5α, CD88

Exposure to nPM caused 2-fold increases in C5 (Fig 2A–2C) and C5α (Fig 2D–2F) integrated

density staining in the corpus callosum between mice in the filtered air (C5: 6.3 ± 2.2; C5α
1.8 ± 0.60, n = 8) and nPM groups (C5: 10.7 ± 2.5, p = 0.001; C5α: 3.96 ± 2.2, p = 0.02, n = 8).

CD88 increased by 15% in the medial corpus callosum (Fig 2G–2I) between filtered air

(14.9 ± 3.4, n = 18) and nPM mice (17.3 ± 3.6, p = 0.04, n = 18).

There was co-localization of C5 and ChAT (Fig 3C). There was a scattering of C5 on and

nearby IBA-1 (Fig 3A) and GFAP positive cells (Fig 3B).

Serum TNF-alpha levels and Serum C5 levels

Serum ELISA C5 values (ηg/mg total protein) did not significantly differ between filtered air

(32.4 ± 4.8, n = 8) and nPM mice (31.6 ± 6.6, p = 0.79, n = 8). See Fig 4A. However, Serum

ELISA TNF-alpha values (ηg/mg total protein) were elevated 28% in nPM mice (2.4 ± 0.50,

n = 8) compared to filtered air mice (1.9 ± 0.5, p = 0.04, n = 7) (Fig 4B).

Table 2. Size distribution of the exposure aerosol.

Mean Std. Dev.

Median (nm) 55.2 0.6

Mean (nm) 68 0.7

Geo. Mean (nm) 55.9 0.5

Mode (nm) 53.3 3.9

Geo. Std. Dev. 1.8

Total Concentration (particles/cm3) 3.9E+05 3.3E+03

https://doi.org/10.1371/journal.pone.0206934.t002

Table 1. Mass fractions of trace elements and metals (ng/μg of PM mass) during exposure.

Metal / Trace Element Mass Fraction

Na 36.88 ± 0.46

Mg 10.34 ± 0.02

Al 8.85 ± 0.04

S 37.69 ± 0.27

K 6.67 ± 0.07

Ca 33.28 ± 0.35

Ti 0.35 ± 0.04

V 0.04 ± 0.00

Cr 0.16 ± 0.00

Mn 0.33 ± 0.00

Fe 8.65 ± 0.07

Ni 0.26 ± 0.01

Cu 0.58 ± 0.01

Zn 2.98 ± 0.02

Pb 0.11 ± 0.00

https://doi.org/10.1371/journal.pone.0206934.t001
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Discussion

Clinical and epidemiological investigations have demonstrated strong associations between air

pollution particulate matter exposure and neurocognitive injury[26–29]. Both laboratory and

translational studies suggest white matter pathology as an anatomic correlate for particulate

matter induced neuropsychological decline and advocate an inflammatory mechanism of

action. Data from the present study demonstrates increased immunostaining of complement

C5 protein, C5a receptor 1 (CD 88), and reactive microglia in the brain white matter (corpus

callosum) of mice exposed to nPM. Previously published results suggest that astrocytes, neu-

rons, and microglia express CD88, while only astrocytes and neurons express C5 [30, 31]. Our

co-staining analysis suggests that neurons express C5 following air pollution exposure [30, 31].

C5 and GFAP positive cells did not precisely co-localize, so C5 may be produced from astro-

cytes or the surrounding neurons. Our IBA-1 and C5 immunostaining appeared to co-localize,

suggesting either microglial or nearby neuronal expression of C5. C5 may be binding to CD88,

resulting in this co-localization or microglia may produce increased levels of C5 following par-

ticulate matter exposure.

The C5 complement immunostaining likely results from a local response within the brain

rather than upregulation of complement in the blood and entrance through the blood brain

Fig 1. IBA-1 and GFAP staining for reactive glial cells in the medial corpus callosum of mice exposed to filtered air or nanoparticulate matter (nPM). (A) IBA-1

positive cell counts in each experimental group. The nPM group showed significantly greater microglial cell count (n = 8) compared to the filtered air group (n = 8,

p = 0.047). � signifies p< 0.05. (B) Below; low magnification representation of region analyzed. Above; filtered air and nPM exposed mice stained for IBA-1 in the

corpus callosum (40x). The upper left hand corner is a high magnification representation of a single cell. (C) IBA-1 cell body to dendritic process ratio in each

experimental group. The nPM cohort had a significantly increased ratio (n = 8) compared to the filter group (n = 8, p< 0.001). �� signifies p< 0.001. (D) GFAP positive

cell counts in each experimental group. There was no significant difference in astrocyte cell count between groups (p = 0.983) (E) Below; low magnification

representation of region analyzed. Above; filtered air and nPM exposed mice stained for GFAP in the corpus callosum (40x). The upper left hand corner is a high

magnification representation of a single cell. Error bars represent standard deviation. Scale bars are presented on the lower right corner of the images.

https://doi.org/10.1371/journal.pone.0206934.g001
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barrier. While both C5 and C5α staining densities were greater in the white matter of mice

exposed to nPM, serum C5 levels did not differ between the groups (nPM vs. filtered air). By

contrast, TNF-alpha levels were greater in the nPM-exposed mice, supporting a generalized

peripheral inflammatory response that is well recognized in the setting of nPM exposure[32–34].

Prior studies demonstrate that diesel exhaust particles activate the complement cascade,

particularly the anaphylatoxins, C3a and C5a[35]. Complement modulation (C3 deficiency)

has, in turn, been leveraged to decrease exposure-generated inflammation in a murine model

of particulate matter-induced lung/ airway hyperresponsiveness[36]. These findings may be

generally applicable to other organ systems, including the brain [37]. Our results demonstrate

the importance of the complement C5 component in brain white matter inflammation follow-

ing particulate matter (PM2.5) exposure and specifically focus on the role of microglia. C5a, a

chemotaxin for leukocytes and inflammation, induces calcium mobilization and enhances

microglial activation[38]. In vitro studies demonstrate transient calcium elevations in micro-

glia on the tissue surface of corpus callosum slices exposed to C5a complement fragments. The

investigators observed calcium elevations in microglial cell cultures that were supplemented

with complement C5a and C3a[16]. In the resting state, microglia are characterized by small

cell bodies, roughly 2–5 μm in diameter [39, 40] with long, branching processes [24, 41].

Fig 2. Immunohistochemical analysis of C5, C5α, and C5a receptor (CD88) in the corpus callosum of animals exposed to filtered air or nanoparticulate matter

(nPM). (A) Filtered air (n = 8) or nPM (n = 8) exposed mice stained for C5 (red) in the corpus callosum. Nuclei (DAPI) are stained in blue (400x). (B) Low

magnification representation of region analyzed. (C) C5 immunostaining in the corpus callosum was significantly higher in nPM exposed animals compared to the

filtered air group (p = 0.001). (D) Filtered air (n = 8) and nPM (n = 8) exposed mice stained for C5α (red) in the corpus callosum. Nuclei (DAPI) are stained in blue

(400x). (E) Low magnification representation of region analyzed. (F) C5α immunostaining in the corpus callosum of nPM exposed animals was significantly greater

than in the filtered air group (p = 0.02). (G) Filtered air (n = 18) and nPM (n = 18) exposed mice stained for CD88 (red) in the corpus callosum. Nuclei (DAPI) are

stained in blue (200x). (H) Low magnification representation of region analyzed. (I) CD88 immunostaining in the corpus callosum was significantly higher in nPM

exposed animals compared to the filtered air group (p = 0.04). � signifies p< 0.05, �� signifies p� 0.001. Error bars represent standard deviation. Scale bars indicate

50 μm.

https://doi.org/10.1371/journal.pone.0206934.g002
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When microglia become activated, their cell bodies enlarge and their dendritic processes

shorten and thicken [24, 42–44]. In the present study, the increased cell body to dendritic pro-

cess ratio following air pollution exposure demonstrates a change in microglial morphology,

characteristic of activated microglia[24].The interplay between complement C5 and reactive

microglia represents a logical effector of neuroinflammation/ neurotoxicity in our model sys-

tem, as microglial activation and production of potentially injurious byproducts have been

previously demonstrated in the setting of particulate matter exposure. In vitro nanosize tita-

nium dioxide exposure stimulates microglial production of reactive oxygen species[45]. These

findings are consistent with human data. Autopsy studies of individuals exposed to high levels

of air pollution in Mexico City have shown increased CD14 expression, a marker of both resi-

dent microglial cells and infiltrating monocytes[46].

Previous data supports a specific role for complement receptor-mediated microglial activa-

tion in the setting of diesel exhaust exposure[47, 48]. MAC-1 receptor (complement receptor

3) is expressed exclusively on myeloid lineages, such as microglia. The MAC-1 receptor facili-

tates reactive microgliosis in response to multiple neurotoxins, including MPTP[49], LPS[50],

and alpha-synuclein [51]. Levesque et al have demonstrated that MAC1 is an essential receptor

in the process of H2O2 production by activated microglia following DEP exposure[47]. Com-

plement component C5a receptor 1 (CD 88) is known to play a critical role in the calcium sig-

naling required for phagocytosis in microglia[52]. It is constitutively expressed on multiple

Fig 3. Double immunofluorescence staining of C5 with IBA-1, GFAP, or ChAT in the corpus callosum of animals exposed to nanoparticulate matter (nPM). (A)

Co-staining of IBA-1 (red) with C5 (green) in the corpus callosum of a mouse exposed to nPM. Nuclei (DAPI) are stained in blue (200x). (B) Co-staining of GFAP (red)

with C5 (green) in the corpus callosum of a mouse exposed to nPM. Nuclei (DAPI) are stained in blue (200x). (C) Co-staining of ChAT (red) with C5 (green) in the

corpus callosum of a mouse exposed to nPM. Nuclei (DAPI) are stained in blue (200x). Scale bars are presented on the lower right corner of the images.

https://doi.org/10.1371/journal.pone.0206934.g003

nPM exposure and white matter inflammation
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glial cell lines[14]; however, CNS CD88 expression is influenced by inflammation[53–58], of

which particulate matter is a potent source. Mixed neuron-glia cultures exposed to nanosized

diesel exhaust particles produce dopaminergic neurotoxicity only in the presence of microglia

[59]. Similarly, our data demonstrates a significant increase in corpus callosum CD88 staining

and reactive microglia in mice exposed to nPM.

Block et al. suggest that CNS pathology secondary to nPM exposure results from a combi-

nation of soluble compounds reaching the brain and peripheral mechanisms involving circu-

lating cytokines from a systemic inflammatory response with the ultimate activation of

microglia [7]. In our model system, brain complement C5 deposition could be triggered either

by direct nPM toxicity (through the olfactory bulb or blood brain barrier) or a systemic inflam-

matory response that permeates the blood brain barrier and upregulates complement produc-

tion via endogenous neurons or glia. Enhanced complement deposition/ upregulation, in turn,

may affect microglial migration or activation via CD88 receptors on primarily microglia.

The neuroinflammatory response evident in the corpus callosum in our model appears to

be microglia-specific as the nPM cohort showed increases in both cell count and density, as

well as a change in morphology, consistent with activated microglia [24]. No significant differ-

ences in cell count and cell density of reactive astrocytes were observed between the two

groups (nPM and filtered air). The relative lack of astrocytic reactivity in our experiments is

supported by a study demonstrating that GFAP levels are unaltered in the brains of rats

exposed to combustion products derived from burning of 100% soy bean oil [60]. By contrast,

increased GFAP reactivity has been demonstrated following air pollution exposure in the gray

matter of the developing brain [61, 62]. Our model focused on the effect of particulate matter

in the adult brain, specifically the corpus callosum. The developing brain is more susceptible

to injury[63], but also has greater plasticity [64], which may allow for faster recovery. In addi-

tion, white matter contains myelin and is suggested to be more susceptible than gray matter to

certain types of injury, such as ischemia [65–67]. Calderón-Garcidueñas and colleagues also

Fig 4. ELISA of serum C5 and TNF-alpha in animals exposed to filtered air or nanoparticulate matter (nPM). Protein concentrations expressed as log values. (A)

Serum C5 levels did not differ between the nPM and filtered air groups (p = 0.785). (B) TNF-alpha levels were significantly elevated in the nPM group compared to

the filtered air group (p = 0.0419). � signifies p< 0.05. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0206934.g004
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found that canines exposed to highly polluted air in Mexico City exhibited increased astrocyte

reactivity, particularly in white matter, when compared to canines from a less polluted envi-

ronment[68]. The air pollution in the Mexico City study had relatively higher ozone, PM2.5

and aldehydes than the Los Angeles air sample in our exposure paradigm. Additional environ-

mental factors may have also impacted results, as subjects in the studies by Calderon-Garci-

duenas et al [34, 46, 68] were not separated directly by air pollution exposure, but rather by

geographical location.

White matter damage has been linked to complement upregulation and microglial activa-

tion in other experimental systems of neuroinflammation. In the autoimmune encephalitis

(EAE) model of multiple sclerosis (MS), microglial cells were found to participate in early

stages of myelin destruction[69]. C5 deficient mice demonstrated greater axonal preservation

and myelin formation following EAE[70]. In an LPS model of oligodendrocyte death, Li et al.

mechanistically demonstrated a role for microglial-derived peroxynitrite, a deleterious

byproduct of NADPH oxidase, suggesting that activated microglia could play a critical role in

white matter disorders[71]. An investigation of post-mortem brains of healthy children resid-

ing in highly polluted environments demonstrated significant staining with CD 68 (a micro-

glial marker) in white matter regions[46]. In an AD transgenic mouse model, Hong et al found

that microglia engulf synaptic material in a complement dependent process when exposed to

soluble Aβ oligomers[72]. Taken together, these findings suggest that critical interactions

between complement components and activated macrophages/ microglia may play an impor-

tant role in the white matter response to a host of neuroinflammatory states.

The fact that our cohort consisted of exclusively male mice is a potential limitation of this

study. Previous studies have suggested that estrogen may have a protective effect against white

matter injury [61, 73]. This effect, particularly in the setting of inflammatory damage, may be

explained by microglial expression of estrogen receptors. It is hypothesized that estrogen bind-

ing serves to prevent microglial activation and resulting injury[74]. Future studies investigat-

ing air pollution exposure in female mice can be leveraged to assess the sex differences and

estrogen’s role in white matter damage. The potential effects of the anesthetic regimen at the

time of euthanasia must also be considered when interpreting the cellular data. Given the find-

ings of previous studies[75–77], it is unlikely that ketamine-xylazine anesthesia significantly

altered the levels of inflammation.

The size and chemical composition of the particulate matter used in this experiment are

comparable to that present in an urban area. nPM exposure levels of approximately 330 μg/m3

are roughly twice the levels present on busy Los Angeles freeways with a high volume of diesel

trucks [21, 78, 79]. This concentration is similar to those used in previous studies [42, 60, 80].

In conclusion, this study demonstrates increased complement C5 immunostaining and

microglial activation secondary to nPM exposure. The complement upregulation appears to

be localized to the brain, as serum C5 levels did not differ between nPM and filtered air-

exposed mice. These findings indicate that interaction between the complement anaphylatox-

ins (particularly C5a) and activated microglia may play an important role in white matter

injury following nPM exposure.
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