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Background: Osteosarcoma (OS) is a primary malignant bone tumor. Patients with different immune 
characteristics respond differently to chemotherapy and have a lower chance of survival. The potential 
pathogenesis and therapeutic targets of OS must be investigated further. 
Methods: OS expression profile data and clinical information were downloaded from the Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) and the Gene Expression Omnibus (GEO) 
databases. The immune-related gene set was obtained from the ImmPort database, and the immune-related 
gene expression profiles were used for non-negative matrix factorization (NMF) cluster analysis of patients 
in the 2 databases to find the best clustering number. In the TARGET database, OS patients were classified 
into low-risk and high-risk groups based on the differences in their survival rates. Weighted correlation 
network analysis (WGCNA) was applied to the low-risk and high-risk groups to determine the module with 
the lowest conservatism in order to differentiate the prognosis of the 2 groups. 
Results: A total of 500 key genes associated with poor prognosis were identified. Gene Ontology (GO) 
enrichment analysis revealed that the biological processes of these genes were primarily focused on the 
regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, collagen-containing 
extracellular matrix, and Rho GTPase binding. A random survival forest identified EPHB3, TEAD1, and 
KRR1P1 as key genes. Their expression level was linked to overall survival. We discovered that the core 
genes were associated to immune cell infiltration. Simultaneously, paired survival analysis of two genes 
revealed differences in survival. We also reverse-predicted the main genes and developed their competitive 
endogenous RNA (ceRNA) network. Finally, utilizing the CellMiner database, we observed that the genes 
TEAD1 and EPHB3 were connected to drug sensitivity.
Conclusions: In this study, we identified the modules and key genes related to the poor prognosis of OS 
patients by using WGCNA, and verified their impact on the prognosis of OS patients and their role in the 
immune microenvironment of OS. In addition, targeted gene related antitumor drugs were screened out. 
The discoveries may lead to novel molecular targets and treatment methods for OS patients.
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Introduction

Osteosarcoma (OS) is a malignant tumor of the skeletal 
system that is invasive. Its condition deteriorates rapidly 
and has a poor prognosis. In children and adolescents, 
it is a fatal disease (1). Despite continued advancements 
in neoadjuvant and adjuvant chemotherapy and surgical 
resection technology in recent years (2), 5-year survival for 
OS has not improved much due to its high invasiveness, 
susceptibility to drug resistance, and limited treatment 
options following drug resistance (3). Additionally, the 
complexity of the OS genome combined with the tumor’s 
low incidence creates a barrier to conducting thorough 
investigations of OS genome biology (4). Therefore, 
using bioinformatics technology combined with the data 
of public databases to group patients according to the 
expression of immune-related genes and clinical prognosis 
will facilitate more in-depth analyses. This has important 
clinical application value for finding potential biomarkers to 
evaluate the clinical prognosis of OS and determining new 
therapeutic targets.

Weighted gene co-expression network analysis (WGCNA) 
groups genes with similar expression patterns into modules 
by calculating the expression correlation between genes, 
and then examines the relationship between the module 
and sample characteristics (5). At present, due to the 
heterogeneity of OS, biomarkers for OS prognosis based 
on differential expression analysis of small samples often 
have low sensitivity and specificity, implying that they lack 
clinical utility. The WGCNA method utilizes whole-genome 
data to summarize the phenotypic characteristics of the 
gene network, avoiding bias and subjective judgment (6). 
WGCNA identifies biomarkers with broader applicability 
by comparing the connectivity and genetic significance 
of modules (7). WGCNA has developed into a powerful 
bioinformatics tool for identifying disease-related genes due 
to its high reliability and throughput. Currently, many studies 
on various malignant tumors routinely employ WGCNA 
for data mining. By analyzing DNA microarray or RNA 
sequencing data in conjunction with clinical information, a 
series of modules related to tumor prognosis is obtained, and 
the module’s hub genes are further mined to identify genes 
involved in tumor occurrence and development (7,8).

Tumor immunotherapy has emerged as a new focus of 
cancer research in recent years. Numerous research has 
focused on immune cell infiltration into tumor tissues in 
order to better understand the link between the tumor 
microenvironment and clinical prognosis. For the first 
time in the history of osteosarcoma bioinformatics analysis, 

our study began with immune-related genes in order to 
examine predictive risk stratification of patients. For this 
study, we obtained the expression profiles and clinical data 
of OS patients from the therapeutically applicable research 
to generate effective treatments (TARGET) database. 
On the basis of the expression profiles of immune-related 
genes, we clustered the patients in the target database 
using the non-negative matrix factorization (NMF) cluster 
analysis method. Based on their prognosis, the patients 
were divided into 2 groups: high- and low-risk groups. 
This was independently verified in the Gene Expression 
Omnibus (GEO) data set. WGCNA was used to build a co-
expression network of 2 groups of genes, identify modules 
related to prognosis, and obtain the important genes in the 
modules. Combining these important genes and prognostic 
information, random survival forest analysis was used 
to identify 3 genes that have a significant impact on the 
prognosis of OS patients: EPHB3, TEAD1, and KRR1P1. 
Furthermore, we performed multidimensional analysis 
and result visualization of these 3 genes from immune 
cell infiltration analysis, enrichment pathway analysis, 
gene pairing survival analysis, competitive endogenous 
RNA (ceRNA) network construction, and antitumor drug 
sensitivity analysis. These findings could greatly aid in 
the development of new therapeutic targets and could 
improve the clinical prognosis of OS patients. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-399/rc).

Methods

Data download

The TARGET database (https://ocg.cancer.gov/programs/
target) employs comprehensive molecular characterization 
to identify genes and their mutations associated with the 
initiation and progression of pediatric cancer. Through 
data analysis, the TARGET database generates useful drug 
targets and prognostic markers for researchers, allowing for 
the development and application of new and more effective 
treatments. We downloaded the original OS mRNA 
expression data and clinical data, and collected data on 85 
OS patients with a complete expression profile and survival 
information. The GEO database (https://www.ncbi.nlm.
nih.gov/gds/) is a repository for data generated by chip, 
next-generation sequencing, and other high-throughput 
sequencing technologies. We obtained GSE21257 series 
matrix files from the GEO public database and used the 

https://atm.amegroups.com/article/view/10.21037/atm-22-399/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-399/rc
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
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GPL10295 annotation platform. A total of 53 OS patients 
were enrolled, each with a complete expression profile and 
survival data. The immune gene set used in this analysis 
was obtained from the ImmPort database (https://www.
immport.org/home) and contained a total of 1,811 immune-
related genes. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Classification and validation of immune subtypes

The NMF package was used to perform unsupervised 
NMF clustering on the expression profiles of immune-
related genes. In the subsequent step, Cox regression 
analysis was performed on all candidate genes using the 
R software package “survival”. The results of this analysis 
were compared to overall survival. Then, using the NMF 
package, the unsupervised NMF clustering method was 
applied to the GEO external verification set using the 
same candidate genes. The best clustering number was 
determined by the k value where the correlation coefficient 
began to decrease. Then, using the T-SNE method, 
we verified the subtype distribution using the mRNA 
expression data for the aforementioned immune genes.

Construction of the WGCNA co-expression network

The WGCNA standard procedure was used to construct 
the gene co-expression networks of high-risk and low-risk 
patients. The WGCNA R package (http://www.r-project.
org/) was used to read and import transcriptome data and to 
eliminate genes that exhibited no variance between groups. 
The principle of soft threshold filtering is to make the 
constructed network more in line with the characteristics 
of scale-free network. The weighted adjacency matrix is 
transformed into topological overlap matrix (TOM) to 
estimate its connectivity in the network, and the hierarchical 
clustering method is used to construct the cluster tree 
structure of TOM. Different branches of the cluster 
tree represent distinct gene modules, and each module is 
represented by a distinct color. The expression patterns 
of genes were classified using their weighted correlation 
coefficients. Finally, the gene was partitioned into multiple 
modules based on its expression pattern. We compared the 
co-expression networks of high- and low-risk OS patients. 
We assessed module conservation using the Z-summary 
score, identified hub genes using the degree of gene linkage, 
and performed functional enrichment analysis.

Analysis of Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) functions

ClusterProfiler (R3.6) was used to annotate the functions 
of these genes in order to investigate their functional 
association. To evaluate related functional categories, GO 
and KEGG were used. Significant categories were defined 
as GO and KEGG enrichment pathways with P and q 
values less than 0.05.

Random survival forest

The randomForestSRC software package was used to select 
features. Additionally, we used the stochastic survival forest 
algorithm to rank the importance of prognosis-related genes 
(nrep =2,000, indicating 2,000 Monte Carlo simulation 
iterations; and nstep =5, indicating 5 forward steps). We 
chose genes with a relative importance greater than 0.1 as 
the final marker genes.

Analysis of correlations between gene expression and 
immune infiltration

The CIBERSORT algorithm was used to analyze RNA-
seq data from patients in various subgroups in order to 
infer the relative proportion of immune infiltrating cells. 
The “corrplot” package was used to analyze the interaction 
between immune cells and the effect of that interaction. The 
relative immune cell content was plotted using the “vioplot” 
package. The effect of a gene on immune infiltration was 
determined, and Spearman correlation analysis of gene 
expression and immune cell content was performed. The 
expression of important genes was retrieved, and the 
Kruskal Test was used to investigate variations in expression 
between groups.

Gene set enrichment analysis (GSEA)

GSEA ranks genes based on their degree of differential 
expression between 2 types of samples and then determines 
whether the predefined gene sets are enriched at the top or 
bottom of the ranking table. In this study, we used GSEA 
to compare the signaling pathway differences between high 
and low expression groups in order to deduce the molecular 
mechanism underlying the difference between the 2 groups, 
with the number of replacements set to 1,000 and the type 
of replacement set to phenotype.

http://www.r-project.org/
http://www.r-project.org/
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Construction of a regulatory network for ceRNA

In recent years, ceRNAs have garnered considerable 
attention in academic circles. They represent a novel 
model of gene expression regulation. In comparison to 
the miRNA regulatory network, the ceRNA regulatory 
network is more refined and complex, involving a greater 
number of RNA molecules, such as mRNAs, pseudogene 
encoding genes, long-chain non-coding RNAs, miRNAs, 
and lncRNAs. NPInter is a frequently used database for 
querying the relationships between lncRNAs and miRNAs. 
The NPInter database was used to predict lncRNA-miRNA 
interaction pairs in this study. Additionally, using FunRich 
software, the interactions between mRNAs and miRNAs 
were predicted inversely. The lncRNA-miRNA-mRNA 
network was then constructed by combining the lncRNA-
miRNA and mRNA-miRNA interactions, and the network 
was visualized using Cytoscape software.

Drug sensitivity analysis

The CellMiner database is based on a list of 60 cancer 
cells compiled by the National Cancer Institute’s (NCI) 
Cancer Research Center. The NCI-60 cell line is the most 
frequently used cancer cell line for anticancer drug testing 
at present. In this study, we downloaded NCI-60 drug 
sensitivity and RNA-seq gene expression data and used 
correlation analysis to investigate the relationship between 

genes and common antineoplastic drug sensitivity, and 
P<0.05 indicated statistical significance.

Statistical analysis

The statistical analysis was carried out using the R 
programming language (version 3.6). All statistical tests were 
bilateral, and statistical significance was defined as P<0.05.

Results

We collected the expression profiles and clinical data 
of patients from TARGET and GSE21257, extracted 
immune-related genes from the immune gene set, and 
finally screened characteristic genes in TARGET patients 
with OS using the Cox univariate regression feature 
selection algorithm. Cox univariate regression analysis 
revealed that a total of 147 prognostic-related genes were 
screened (available online: https://cdn.amegroups.cn/static/
public/atm-22-399-01.xlsx). We clustered the TARGET 
data set containing OS samples using the NMF consensus 
clustering method and determined the optimal k value 
based on the expression profiles of the above 147 candidate 
genes. After careful consideration, we concluded that k=2 
was the optimal cluster number (Figure 1A). The GEO 
database’s dataset of OS samples was then independently 
validated using the previously mentioned k=2 classification, 
which revealed 2 distinct molecular subtypes. Significant 
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differences in prognosis were observed in the TARGET 
data set, with the C1 subgroup exhibiting superior survival 
to the C2 subgroup (Figure 1B). Additionally, in the 
GSE21257 dataset, similar prognostic differences were 
observed between the 2 subgroups, and the overall survival 
time for the C2 subgroup was significantly shorter than that 
of the C1 subgroup (Figure 2).

We classified OS patients into 2 subgroups using NMF 
clustering. Because C2 had a significantly lower survival 
rate than C1 in both data sets, we classified C2 as a high-
risk subgroup and C1 as a low-risk subgroup. We started by 
preprocessing the TARGET data set, which contained 85 
patients. We obtained the gene set required for subsequent 
analysis by removing genes with zero variance between 
groups. We then used the hclust function to check for 
outliers in the data set samples and then set the cutting 
height of the 2 cluster trees to 90 (Figure 3A,3B). Because 
the WGCNA algorithm is predicated on the assumption 
that the gene network exhibits a scale-free distribution, the 
appropriate soft threshold must be screened out in order 
to bring the network closer to the characteristics of a scale-
free network. We set the soft threshold to 4 for the high-risk 
group and 3 for the low-risk group (Figure 3C,3D). R-square 
values of 0.89 and 0.9 were obtained by calculating the scale-
free topology fitting index (Figure 3E,3F). These results 
confirmed and demonstrated the feasibility of WGCNA.

We created 2 co-expression networks of OS patients, 
one for high-risk and one for low-risk. Based on weighted 
correlation, hierarchical clustering analysis was carried 
out. The clustering results were segmented according to 
the set criteria, and different gene modules were obtained 
(Figure 4A,4B). Using the WGCNA algorithm for low-
risk groups, we identified 29 modules of varying sizes and 
represented them with cluster tree branches and different 
colors. Then, the module with the high-risk group network 
was mapped to the module with the low-risk group 
network. This approach enabled us to identify modules 
that were not conservative. The non-conservative module 
can be thought of as a change in network characteristics 
between low-risk group networks. Additionally, these non-
conservative modules may be associated with the survival 
and progression of tumors in patients with OS. We used 
module functions to calculate module conservatism in order 
to verify WGCNA’s stability. The median and Z-summary 
scores for conservatism for various colored modules are 
shown in Figure 4C. The turquoise module had the highest 
Z-summary score, indicating that it retained high-risk 
group network characteristics. The purple module with the 
lowest Z-summary score was more conservative, implying 
that it can be used as a module feature to differentiate 
between high- and low-risk patients (Figure 4D).

We chose the purple module for more detailed analysis 
because it was the least conservative, and based on the 
correlation analysis of the purple module’s first principal 
component, we obtained heat maps for 500 genes  
(Figure 5A). Following that, we performed enrichment 
analysis on these 500 genes and discovered that their 
biological processes were primarily enriched in the 
regulation of small GTPase mediated signal transduction, 
collagen-containing extracellular matrix, and Rho GTPase 
binding (Figure 5B). Additionally, we described in detail the 
relationship between significant cellular signaling pathways 
and critical genes (Figure 5C).

To further identify the core genes among the key genes 
affecting OS progression, we performed a random survival 
forest analysis on these 500 genes and chose the genes with a 
relative importance greater than 0.1 as the final marker. The 
order of importance of the 5 genes is depicted in Figure 6A.  
Finally, we analyzed the survival of these 5 critical genes, 
and the results indicated that EPHB3, KRR1P1, and TEAD1 
were significant (Figure 6B-6D), and these 3 genes would 
serve as the core genes in subsequent research.

The immune microenvironment is primarily composed 
of immune cells, extracellular matrix, a variety of growth 
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factors, inflammatory factors, and unique physical and 
chemical characteristics, all of which have a significant 
impact on the sensitivity of disease diagnosis and treatment. 
We further investigated the molecular mechanisms by which 
core genes affect the progression of OS by analyzing the 
relationship between core genes and immune infiltration 
in an OS data set. The analysis of the immune infiltration 
content demonstrated that M0 macrophages and M2 
macrophages accounted for a significant proportion of 
the sample (Figure 7A). Figure 7B depicts the interaction 
between immune cells, with the highest correlation between 
regulatory T cells (Tregs) and CD8+ T cells (person 
correlation coefficient =0.59). Additionally, when compared 
to cluster 2, cluster 1 patients had significantly fewer resting 
dendritic cells, while activated memory CD4+ T cells and 
CD8+ T cells increased significantly (Figure 7C). The  
3 genes were strongly correlated with the content of immune 
cells. Among them, the EPHB3 gene was significantly 
positively correlated with resting mast cells, and negatively 
correlated with M2 macrophages, M1 macrophages, mast 
cells activated, and dendritic cells resting. The KRR1P1 gene 
was significantly negatively correlated with B cells memory. 

The TEAD1 gene was significantly positively correlated 
with plasma cells and negatively correlated with dendritic 
cells resting and macrophages M2 (Figure 7D-7F). Three 
essential genes’ expression levels were compared in two 
subgroups. We discovered that cluster 1 had a higher level of 
EPHB3 and TED1 expression than cluster 2 (Figure 7G).

We then investigated the signaling pathways that 
were associated with the 3 core genes and the molecular 
mechanisms by which the core genes affect OS progression. 
The primary bile acid biosynthesis, circadian rhythm, and 
hedgehog signaling pathways were the primary enrichment 
pathways for EPHB3. Long-term depression, nicotine 
addiction, and nitrogen metabolism were the primary 
enrichment pathways for KRR1P1. Endometrial cancer, 
circadian rhythm, and type II diabetes mellitus were the 
primary enrichment pathways for TEAD1 (Figure 8).

We conducted paired survival analyses on the 3 core 
genes, each paired with 2 other genes, and classified patients 
into 4 groups based on the median expression of the 2 genes.  
The results indicated that in the EPHB3 and KRR1P1 paired 
groups, group 1 versus 3 had a significant difference, and 
the survival of group 3 was significantly lower than that of 

Figure 4 WGCNA identified and characterized co-expression modules. Clustering dendrograms of (A) samples at high risk and (B) samples 
at low risk. (C) The median rank of 29 co-expression modules in terms of preservation. (D) The Z-summary score for the preservation of 29 
co-expression modules. WGCNA, weighted correlation network analysis.
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other groups (Figure 9A). In the EPHB3 and TEAD1 paired 
groups, group 2 versus 3 and group 2 versus 4 had significant 
differences, and the survival of group 2 was significantly 
lower than that of other groups (Figure 9B). In the TEAD1 
and KRR1P1 paired groups, group 1 versus 3 had a 
significant difference, with the survival of group 3 possibly 
being significantly lower than other groups (Figure 9C).  
Additionally, 14 miRNAs with a total of 14 mRNA-miRNA 
pairs were predicted using FunRich (version 3.1.3), and a 

total of 2,436 mRNA-miRNA-lncRNA pairs were predicted 
using NPInter (version 4.0), resulting in the successful 
construction of the core gene-related ceRNA network 
(Figure 10).

Early OS has a favorable prognosis, and the effect 
of surgery in combination with chemotherapy is well 
established. We used the CellMiner database to investigate 
the sensitivity of TEAD1 ,  KRR1P1 ,  and EPHB3  to 
commonly used anticancer drugs and calculated the 
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correlation between gene expression and the drug IC50. 
TEAD1 and EPHB3 were found to be associated with 
resistance to a variety of anticancer drug types (Figure 11,  
available online: https://cdn.amegroups.cn/static/public/
atm-22-399-02.xlsx). TEAD1 was positively correlated with 
irofulven, erlotinib, simvastatin, dasatinib, and staurosporine, 
but negatively correlated with imexon, cyclophosphamide, 
XK-469, hydroxyurea, and chelerythrine. EPHB3 was 
positively correlated with tyrothricin, benzimate, and 
okadaic acid, but negatively correlated with dacarbazine. 
Figure 11 depicts the most significant drug sensitivities 
associated with TEAD1 and EPHB3.

Discussion

OS is the most common primary bone malignant tumor 
in children. There is a significant correlation between the 
period of rapid bone growth and the development of the 
disease (9,10). OS has one of the lowest survival rates in 

children. In patients with local disease, the 5-year survival 
rate is 70%, but when there is metastasis, it is only 30% 
(11,12). The standard treatment is sandwich therapy 
combined with neoadjuvant chemotherapy, surgery, and 
adjuvant chemotherapy (13). However, because of its highly 
invasive characteristics, poor prognosis, and high mortality, 
there is an urgent need to explore molecular targets and 
treatments. Many key factors affecting the occurrence and 
development of OS have been identified through years of 
molecular research, especially with the progress of high-
throughput genome technology, and it is possible to discover 
more potential molecular markers by bioinformatics.

In this study, OS patients with complete clinical data 
were obtained from the TARGET database. According to 
the follow-up time and survival status, patients were divided 
into 2 groups: high-risk group and low-risk group. In this 
study, WGCNA was used to construct survival-related co-
expression modules in the 2 groups of patients for the first 
time. WGCNA has a lot of advantages over other methods. 
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As a result, its results are more reliable and biologically 
important because it looks at how co-expression modules 
are linked to the clinical features of interest (14). We 
mapped the high-risk group network to the low-risk group 
network module. This approach helped us identify non-
conservative modules. The lower the Z-summary score, the 
lower the conservatism of the module, indicating that it can 
be used as a modular feature to distinguish between high-
risk and low-risk patients.

The saved Z-summary score of Figure 4C identified the 
purple module as the most conservative. Therefore, we 
focused on the purple module to investigate patient survival 
factors. We created a heat map of 500 key genes from the 
purple module. These genes influence the survival time and 
survival status of OS patients. In order to further identify 
the core genes that affect the progression of OS, we carried 
out random survival forest analysis of these 500 genes, and 
finally selected EPHB3, KRR1P1, and TEAD1 as core genes.

Ephrin-type B receptor 3 (EPHB3 )  i s  an EPH 

transmembrane tyrosine kinase receptor (TKR) which plays 
a key role in the progression or regression of many tumors. 
EPHB3 is a direct target motif for Wnt/β-catenin and 
Notch signal transduction (15,16), consistent with the key 
role of these pathways in tumorigenesis (17). In the early 
stage of tumorigenesis, the expression of EPHB3 increases 
dramatically, followed by a secondary downregulation in 
up to 30% of cancers (18). The histological expression 
and function of EPHB3 may explain its invasive and 
tumor inhibition abilities in colorectal cancer. Repulsive 
interactions between cells expressing the EPHB3 receptor 
and EphrinB ligands, respectively, compartmentalize tumors 
and thereby impede detachment of cells from the primary 
tumor, so as to reduce the distant spread of tumor (19,20). 
In addition, EPHB/EphrinB signaling affects the distribution 
and function of the intracellular adhesion molecule 
E-cadherin, which helps to stabilize the phenotype of non-
invasive epithelial cells. In our study, we found that the low 
expression of EPHB3 is associated with the poor prognosis 
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of OS. Similarly, Zhang et al. demonstrated that EPHB3 is 
also a negative regulator of cell proliferation in colon cancer 
cell lines (21).

TEA domain (TEAD) transcription factor, also known 
as transcription enhancer factor, is a key component of 
Hippo-YAP1 signal transduction. In mammals, 4 members 
(TEAD1–4) have highly conserved domains. By binding 
to coactivators, TEAD plays a key role in tumorigenesis, 

including liver cancer (22), ovarian cancer (23), breast 
cancer (24) and prostate cancer (25), and is overexpressed in 
these tumors. Some studies have found that the activation 
of the Hippo/TEAD1-Twist1 pathway can inhibit the 
growth and metastasis of renal clear cell carcinoma (26). 
Furthermore, some previous studies have suggested that 
TEAD1 silencing can inhibit the malignant phenotype of 
OS cells, including cell proliferation, apoptosis resistance, 

Figure 10 Competing endogenous RNA interaction network of lncRNA-miRNA-mRNA. The lncRNAs and mRNAs are represented by 
pink square nodes, while miRNAs are represented by green square nodes. Hub genes are indicated by yellow squares.
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and invasive potential. However, in our study, we found that 
OS patients with high expression of TEAD1 had a better 
prognosis. In both single gene analysis of TEAD1 and the 
pairwise survival analysis of core genes, high expression 
of TEAD1 showed a better prognosis. Therefore, high 
expression of TEAD1 may play a beneficial role in the 
prognosis of OS through the activation of other pathways, 
which is a direction that needs to be explored in depth.

Interestingly, in our study, we found that high expression 
of KRR1P1 was associated with the poor prognosis of 
patients with OS. KRR1P1 is a pseudogene. In general, more 
attention is paid to the functional groups that can express 
proteins, with little research on pseudogenes. However, 
in the past decade, the completion of a large number of 
large-scale sequencing projects has provided a wealth of 
functional genomics data, revealing the importance of 
pseudogenes as active participants in genomic biology. 
Some pseudogenes can regulate the expression of protein-

coding genes through their RNA products. Pseudogenes, 
previously thought to be “dead” genomic components, have 
been shown to be transcribed in a variety of tissues and 
diseases, including cancer. Pseudogene transcripts have been 
shown to interfere with the expression of protein-coding 
genes by acting as antisense transcripts (27), competing 
endogenous RNAs (28,29), endogenous siRNAs (30), and 
even forming chimeric RNAs with target protein-coding 
genes (31). KRR1P1 is a pseudogene of KRR1. However, 
there is not much data on the function of KRR1 in tumors. 
Only KRR1 has been reported to be associated with the 
metastasis of malignant fibrous histiocytoma (32). Through 
bioinformatics analysis in this study, we obtained the 
pseudogene KRR1P1 which was closely related to prognosis, 
opening up a new approach to explore the prognosis-related 
targets of OS.

In this study, we also analyzed immune infiltration in 
patients with OS. Zhang et al discovered that the number 

Figure 11 Correlation analysis between the level of TEAD1 and EPHB3 expression and drug sensitivity. Gene expression is depicted 
horizontally, while drug sensitivity is depicted vertically. Correlation coefficient R>0 was considered as a positive correlation, and P<0.05 was 
considered as a significant difference.
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of resting dendritic cells in high immune score tissues was 
significantly increased in OS patients (P<0.05), implying a 
poor prognosis for patients (33). In our study, we showed 
that resting dendritic cell infiltration was higher in patients 
with high-risk OS. One study showed that basal-like breast 
cancer rich in activated memory CD4+ T cells has a better  
prognosis (34). We found that activated memory CD4+ 
T cells were significantly increased in low-risk patients. 
Previous studies on bladder, prostate, renal, and colorectal 
cancer have reported that the level of CD8+ T cell 
infiltration is positively correlated with tumor prognosis and 
immunotherapy responsiveness (35-37), which is consistent 
with our finding that CD8+ T cells were significantly 
increased in low-risk patients. According to literature reports, 
the TEAD family includes TEAD1–4, which is a key regulator 
of Hippo pathway. The imbalance of Hippo pathway and 
YAP/TAZ-TEAD activity is related to a variety of diseases, 
especially cancer. The changes of Hippo protein pathway 
in cancer cells can affect the interaction between cancer 
cells and host immune system (38). For example, in a mouse 
model of liver cancer, high YAP activity in cancer initiating 
cells promotes the recruitment of immunosuppressive type II 
macrophages to inhibit the host immune response and may 
help protect cancer cells from immune surveillance, which 
recruits macrophages through the expression of YAP-TEAD 
dependent cytokines (39). This suggests that TEAD1 may 
play a potential role in immunotherapy. One of the initial 
processes of establishing immune response is to activate 
immune cells. There is evidence that Eph receptor and ephin 
ligand may mediate the activation of immune cells (40). 
However, given the paucity of studies in the literature, it is 
still unknown how the signals conveyed by the Eph-eparin 
junction effect activation and how their expression on distinct 
immune cell subsets in cis and in trans affects this process. 
However, it is clear that EPHB3 receptors are expressed on 
immune cells (41), which indicates that they are also expected 
to become therapeutic targets in the future, but scientists 
still need to further explore. At the end of this study, we 
also screened some antineoplastic drugs based on EPHB3 
and TEAD1 genes, in order to provide more options for the 
medical treatment of OS patients.

Although this study provides potential clinical targets, there 
are some limitations in this study, and further experiments 
need to be conducted to verify our analysis results.

Conclusions

In this study, WGCNA was used to construct a co-

expression module associated with survival in patients with 
OS. We identified unpreserved modules and key genes 
associated with poor prognosis in patients with OS. EPHB3, 
TEAD1, and KRR1P1 were screened by random survival 
forest and their effects on the prognosis of patients with OS 
were verified. This study also explored the roles of EPHB3, 
TEAD1, and KRR1P1 in the immune microenvironment of 
OS. In addition, this study also screened out targeted gene-
related antitumor drugs, providing new molecular targets 
and intervention strategies for improving the prognosis of 
patients with OS.

Acknowledgments

Funding: None.

Footnote

Reporting Checklist: The authors have completed the 
REMARK reporting checklist. Available at https://atm.
amegroups.com/article/view/10.21037/atm-22-399/rc

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-399/
coif). Jintao Huang is from OrigiMed Co., Ltd. The other 
authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Ren C, Liu J, Zheng B, et al. The circular RNA circ-

https://atm.amegroups.com/article/view/10.21037/atm-22-399/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-399/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-399/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-399/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-399/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Bian et al. A bioassay based on public genetic dataPage 16 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(6):296 | https://dx.doi.org/10.21037/atm-22-399

ITCH acts as a tumour suppressor in osteosarcoma via 
regulating miR-22. Artif Cells Nanomed Biotechnol 
2019;47:3359-67.

2.	 Huang C, Wang Q, Ma S, et al. A four serum-miRNA 
panel serves as a potential diagnostic biomarker of 
osteosarcoma. Int J Clin Oncol 2019;24:976-82.

3.	 Papakonstantinou E, Stamatopoulos A, I Athanasiadis D, 
et al. Limb-salvage surgery offers better five-year survival 
rate than amputation in patients with limb osteosarcoma 
treated with neoadjuvant chemotherapy. A systematic 
review and meta-analysis. J Bone Oncol 2020;25:100319.

4.	 Chen X, Bahrami A, Pappo A, et al. Recurrent somatic 
structural variations contribute to tumorigenesis in 
pediatric osteosarcoma. Cell Rep 2014;7:104-12.

5.	 Langfelder P, Horvath S. WGCNA: an R package 
for weighted correlation network analysis. BMC 
Bioinformatics 2008;9:559.

6.	 Wan Q, Tang J, Han Y, et al. Co-expression modules 
construction by WGCNA and identify potential 
prognostic markers of uveal melanoma. Exp Eye Res 
2018;166:13-20.

7.	 Tian Z, He W, Tang J, et al. Identification of Important 
Modules and Biomarkers in Breast Cancer Based on 
WGCNA. Onco Targets Ther 2020;13:6805-17.

8.	 Chen P, Wang F, Feng J, et al. Co-expression network 
analysis identified six hub genes in association with 
metastasis risk and prognosis in hepatocellular carcinoma. 
Oncotarget 2017;8:48948-58.

9.	 Cotterill SJ, Wright CM, Pearce MS, et al. Stature of 
young people with malignant bone tumors. Pediatr Blood 
Cancer 2004;42:59-63.

10.	 Longhi A, Errani C, De Paolis M, et al. Primary bone 
osteosarcoma in the pediatric age: state of the art. Cancer 
Treat Rev 2006;32:423-36.

11.	 Chou AJ, Kleinerman ES, Krailo MD, et al. Addition of 
muramyl tripeptide to chemotherapy for patients with 
newly diagnosed metastatic osteosarcoma: a report from the 
Children's Oncology Group. Cancer 2009;115:5339-48.

12.	 Meyers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: 
the addition of muramyl tripeptide to chemotherapy 
improves overall survival--a report from the Children's 
Oncology Group. J Clin Oncol 2008;26:633-8.

13.	 Lamplot JD, Denduluri S, Qin J, et al. The Current and 
Future Therapies for Human Osteosarcoma. Curr Cancer 
Ther Rev 2013;9:55-77.

14.	 Chou WC, Cheng AL, Brotto M, et al. Visual gene-
network analysis reveals the cancer gene co-expression in 
human endometrial cancer. BMC Genomics 2014;15:300.

15.	 Jägle S, Rönsch K, Timme S, et al. Silencing of the 
EPHB3 tumor-suppressor gene in human colorectal cancer 
through decommissioning of a transcriptional enhancer. 
Proc Natl Acad Sci U S A 2014;111:4886-91.

16.	 Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 
is the pathological link between Wnt and Notch 
pathways in colorectal cancer. Proc Natl Acad Sci U S A 
2009;106:6315-20.

17.	 Fre S, Pallavi SK, Huyghe M, et al. Notch and Wnt signals 
cooperatively control cell proliferation and tumorigenesis in 
the intestine. Proc Natl Acad Sci U S A 2009;106:6309-14.

18.	 Rönsch K, Jägle S, Rose K, et al. SNAIL1 combines 
competitive displacement of ASCL2 and epigenetic 
mechanisms to rapidly silence the EPHB3 tumor 
suppressor in colorectal cancer. Mol Oncol 2015;9:335-54.

19.	 Batlle E, Bacani J, Begthel H, et al. EphB receptor 
activity suppresses colorectal cancer progression. Nature 
2005;435:1126-30.

20.	 Cortina C, Palomo-Ponce S, Iglesias M, et al. EphB-
ephrin-B interactions suppress colorectal cancer 
progression by compartmentalizing tumor cells. Nat 
Genet 2007;39:1376-83.

21.	 Zhang G, Liu X, Li Y, et al. EphB3-targeted regulation 
of miR-149 in the migration and invasion of human 
colonic carcinoma HCT116 and SW620 cells. Cancer Sci 
2017;108:408-18. Retraction in: Cancer Sci 2018;109:483.

22.	 Bai N, Zhang C, Liang N, et al. Yes-associated protein 
(YAP) increases chemosensitivity of hepatocellular 
carcinoma cells by modulation of p53. Cancer Biol Ther 
2013;14:511-20.

23.	 Xia Y, Zhang YL, Yu C, et al. YAP/TEAD co-activator 
regulated pluripotency and chemoresistance in ovarian 
cancer initiated cells. PLoS One 2014;9:e109575.

24.	 Wang C, Nie Z, Zhou Z, et al. The interplay between 
TEAD4 and KLF5 promotes breast cancer partially 
through inhibiting the transcription of p27Kip1. 
Oncotarget 2015;6:17685-97.

25.	 Knight JF, Shepherd CJ, Rizzo S, et al. TEAD1 and c-Cbl 
are novel prostate basal cell markers that correlate with 
poor clinical outcome in prostate cancer. Br J Cancer 
2008;99:1849-58.

26.	 Yin L, Li W, Xu A, et al. SH3BGRL2 inhibits growth 
and metastasis in clear cell renal cell carcinoma via 
activating hippo/TEAD1-Twist1 pathway. EBioMedicine 
2020;51:102596.

27.	 Jasra N, Sanyal SN, Khera S. Effect of thiabendazole 
and fenbendazole on glucose uptake and carbohydrate 
metabolism in Trichuris globulosa. Vet Parasitol 



Annals of Translational Medicine, Vol 10, No 6 March 2022 Page 17 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(6):296 | https://dx.doi.org/10.21037/atm-22-399

1990;35:201-9.
28.	 An Y, Furber KL, Ji S. Pseudogenes regulate parental 

gene expression via ceRNA network. J Cell Mol Med 
2017;21:185-92.

29.	 Poliseno L, Salmena L, Zhang J, et al. A coding-
independent function of gene and pseudogene mRNAs 
regulates tumour biology. Nature 2010;465:1033-8.

30.	 Chan WL, Yuo CY, Yang WK, et al. Transcribed 
pseudogene ψPPM1K generates endogenous siRNA 
to suppress oncogenic cell growth in hepatocellular 
carcinoma. Nucleic Acids Res 2013;41:3734-47.

31.	 Chakravarthi BV, Dedigama-Arachchige P, Carskadon S, 
et al. Pseudogene Associated Recurrent Gene Fusion in 
Prostate Cancer. Neoplasia 2019;21:989-1002.

32.	 Kyyamova RG, Filonenko VV. Tumor-associated antigens 
and development of immunotherapeutics strategies. 
Biopolym Cell 2005;21:220-9.

33.	 Zhang C, Zheng J H, Lin Z H, et al. Profiles of immune 
cell infiltration and immune-related genes in the tumor 
microenvironment of osteosarcoma. Aging 2020;12:3486. 

34.	 Liu D, Vadgama J, Wu Y. Basal-like breast cancer with low 
TGFβ and high TNFα pathway activity is rich in activated 
memory CD4 T cells and has a good prognosis. Int J Biol 
Sci 2021;17:670-82.

35.	 Ali HR, Chlon L, Pharoah PD, et al. Patterns of 
Immune Infiltration in Breast Cancer and Their Clinical 
Implications: A Gene-Expression-Based Retrospective 
Study. PLoS Med 2016;13:e1002194.

36.	 Jansen CS, Prokhnevska N, Master VA, et al. An intra-
tumoral niche maintains and differentiates stem-like CD8 
T cells. Nature 2019;576:465-70.

37.	 de Andrea CE, Schalper KA, Sanmamed MF, et al. 
Immunodivergence in Metastatic Colorectal Cancer. 
Cancer Cell 2018;34:876-8.

38.	 Dey A, Varelas X, Guan KL. Targeting the Hippo pathway 
in cancer, fibrosis, wound healing and regenerative 
medicine. Nat Rev Drug Discov 2020;19:480-94.

39.	 Guo X, Zhao Y, Yan H, et al. Single tumor-initiating 
cells evade immune clearance by recruiting type II 
macrophages. Genes Dev 2017;31:247-59. 

40.	 Darling TK, Lamb TJ. Emerging Roles for Eph Receptors 
and Ephrin Ligands in Immunity. Front Immunol 
2019;10:1473.

41.	 Yu G, Luo H, Wu Y, et al. Mouse ephrinB3 augments 
T-cell signaling and responses to T-cell receptor ligation. J 
Biol Chem 2003;278:47209-16.

(English Language Editor: C. Betlazar-Maseh)

Cite this article as: Bian Y, Huang J, Zeng Z, Yao H, Tu J, 
Wang B, Zou Y, Xie X, Shen J. Construction of survival-related 
co-expression modules and identification of potential prognostic 
biomarkers of osteosarcoma using WGCNA. Ann Transl Med 
2022;10(6):296. doi: 10.21037/atm-22-399


