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Abstract: This paper is devoted to understanding a few characteristics of static irrotational matter
content that assumes hyperbolical symmetry. For this purpose, we use metric f (R) gravity to carry
out our analysis. It is noticed that the matter distribution cannot fill the region close to the center
of symmetry, thereby implying the existence of an empty core. Moreover, the evaluation of the
effective energy density reveals that it is inevitably negative, which could have utmost relevance
in understanding various quantum field events. To derive the structure scalars, we perform the
orthogonal splitting of the Riemann tensor in this modified gravity. Few relationships among matter
variables and both Tolman and Misner Sharp are determined. Through two generating functions,
some hyperbolically symmetric cosmological models, as well as their physical interpretations, are
studied. To delve deeply into the role of f (R) terms, the model of the less-complex relativistic system
of Einstein gravity is presented.

Keywords: mathematical cosmology; gravitation; anisotropy; mathematical techniques

1. Introduction

General Relativity (GR) has emerged as one of the best theories to explain various cos-
mic issues, such as gravitational redshift, orbital precession, light deflection, gravitational
lensing, black hole prediction, and frame transition of spinning bodies in spacetime [1].
In spite of this fact, various theoretical physicists suggested that this theory needs to modify
for a better understanding of our cosmos. Our understanding towards universe formation
as well as its ultimate fate is mystifying, and thus requires more explanation. It is also
well-known that astrophysicists and cosmologists discovered some pieces of evidence
that paint a surprising accelerating expanding picture of our cosmos. As a consequence,
the idea of modified theories of gravities has become among the most attractive approaches
to explain these queries. Therefore, f (R) gravity theory was introduced by modifying the
gravitational field of GR [2]. In this gravitational model, the Ricci scalar R, which appears
in the GR action integral, was replaced with its generic function. Over the last few years,
those alternative gravity theories that are based on a f (R) Lagrangian gained significant
emphasis [3–5]. Few researchers [6–12] presented their analysis based on f (R) theory.
They proposed a cosmic model that could be considerably useful to explain unknown
universe matter components and inflation.

In order to deduce equations of motion from the f (R) action, there are three applicable
ways of variational principles. These are named as metric formalism (metric f (R) gravity),
Palatini formalism (Palatini f (R) gravity) and metric-affine formalism (metric-affine f (R)
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gravity). In metric formalism [13,14], the action varies with respect to the metric tensor
and the metric is minimally coupled to the matter. This approach leads to second order
differential equation. In Palatini formalism [15–17], the action varies with regard to both
the metric tensor and Christoffel symbols. The matter action in it does not only depend
upon Christoffel symbols. The f (R) theories are conserved and hence to show that Tπβ

is divergence-free, one can utilize the typical arguments based on the action’s invariance
under diffeomorphisms of the spacetime manifold. It is all about the transformation of the
coordinates (xβ → x

′β = xβ + ηβ), with the vanishing field on the considered boundary
of spacetime region. In all of this process, physics remains conserved [18]. For a concise
discussion of metric and Palatini f (R) gravity see [19]. Also look at [20] for a comprehensive
examination of all variations of f (R) gravity and other alternative theories of gravity.

Cavity is an astronomical object with an apparent hollow structure, such as a large hole
on the surface of a molecular cloud generated by the ultraviolet photons of a big star. Cavity
forms around condensation, which gradually spreads and deepens over time, due to the
conservation of mass. An energy depletion of cellular structures produces condensation and
a cavity around it. In some situations, a narrow shell of matter with a density significantly
higher than the mean cosmological value surrounds the cavity. However, there are initial
density profile options that lead to the creation of deep voids. Large-scale holes in galaxy
distribution can be used to identify these “walled-in" cavities. Astronomers were looking
through 3D maps of the shapes and sizes of surrounding molecular clouds when they made
the latest finding.

Occhionero [21] examined the evolution of inhomogeneities using Tolmann models
that asymptotically become uniform Friedmann models, and demonstrated that cavities
arise around condensations in those circumstances. Speaking briefly, they have discussed
the formation of cavities around cosmological condensation. Hausman et al. [22] inves-
tigated the genesis and nonlinear evolution of those spherically symmetric objects that
occupy negative density. They deduced some results about the structural evolution of
the cavities inside the galaxies. Occhionero et al. [23] offered an algorithm that describes
non-linear growth of cavities and ridges in the Hubble flow. The main idealization in that
was the pressureless spherical symmetry. Moreover, they constructed the models on the
basis of two parameters that relate the initial perturbation’s amplitude with the shape
function of the surrounding cavity (or mass ridges). Goryachev et al. [24] demonstrated
that detecting hypothesized particles such as paraphotons and axions, which make up the
universe’s dark sector, can be reduced to detecting extremely weak linkages or couplings
between cavities and modes.

Harrison [25] was the first to examine a solution to the Einstein equations of the
particular form, which was determined by the hyperbolic symmetry and it has since been
the topic of investigation in several contexts [26–34]. Herrera et al. [35] have done a detailed
investigation on static fluid distributions with hyperbolical symmetry in the framework
of GR. Furthermore, it is discovered that the fluid distribution is unable to fill the region
around the symmetry center.

Bhatti et al. continued the Herrera’s work under the influence of electromagnetic
force [36] and modified gravity [37] in order to provide a coherent analysis of hyperbolically
symmetric static sources. They investigated the physical effects of such a force on the
substantial characteristics of the hyperbolically symmetric spacetime. Herrera et al. [38]
examined the generic features of dissipative fluid distributions with hyperbolical symmetry
in GR. They discovered some intriguing thermodynamical features of these fluids by
assuming a causal transport equation. Along with this, the vanishing complexity factor
models are presented in the quasi–homologous regime. Lobo and Mimiso [39] used static
and pseudo-spherically symmetric spacetime tunnels to produce solutions of a specific class.
They also examined the physical elements of these solutions and looked into the concept of
tunnels in hyperbolic spacetime. Herrera et al. [40] analyzed the fluid distributions with
hyperbolic symmetry, which are similar to Lemaitre–Tolman–Bondi (LTB) solutions, when
the system experienced geodesic, non-conformally flat and shearing limits. They examined



Entropy 2022, 24, 150 3 of 19

the pure dust models as well as the dissipative models with anisotropic pressure. Moreover,
they deduced the noteworthy fact that all solutions satisfying the vanishing complexity
factor criterion are non-dissipative and satisfy the stiff equation of state.

This article is the continuation of the analysis conducted by Herrera et al. [35] in
the metric f (R) gravity. In order to achieve that, we used modified field equations to
determine the effects of modified gravity on hyperbolically symmetric self gravitating
objects. The following is a description of how we systematized our paper. In Section 1,
the basic formalism of f (R) gravity as well as interpretation of effective matter are presented.
In Section 2, field equations are evaluated for the aforementioned gravity. For our system,
the Riemann tensor, Weyl tensor, and active gravitational mass are derived in Section 3.
The orthogonal splitting of the curvature tensor is evaluated in Section 4. In Section 5,
various hyperbolically symmetric solutions accompanying two generating functions are
examined. All the outcomes are summarized in Section 6.

2. Basic Formalism of the f (R) Theory

The action for metric f (R) gravity is

S f (R) =
1

2κ

∫
d4x
√
−g f (R) + Sm, (1)

where Sm indicates the action’s matter part and κ is the coupling constant whose value is
8π in our case, as the normalized units G = c = 1 are taken into consideration. The action
varies in the metric formalism [41,42] with regard to the metric gπβ. The field equations
that arises after the implementation of aforementioned condition are as follows

fRRπβ −
f (R)gπβ

2
= ∇π∇β fR − gπβ� fR + κTπβ, (2)

where the covariant derivative of gπβ is represented by ∇π . The d’Alembert operator is
symbolized and defined as � = gγβ∇γ∇β. Equation (2) generates

fRR + 3� fR − 2 f (R) = κT.

On the other hand, the trace equation of GR is just the algebraic equation R = −κT,
indicating that fR is a propagating degree of freedom. Equation (2) can be expressed as

Gπβ = κT(e f f )
πβ =

κ

fR

(
Tm

πβ + TD
πβ

)
, (3)

where TD
πβ and Tm

πβ are

Tm
πβ =(µ + P)VπVβ − Pgπβ + Ππβ, (4)

TD
πβ =

1
κ

(
f (R)− R fR

2
gπβ +∇π∇β fR − gπβ� fR

)
,

where P and Παν represent the anisotropic pressure and anisotropic tensor of the fluid.
The vector Vµ is a fluid’s four velocity and µ is the corresponding energy density of the
matter. They are described as follows

P =
Pr + 2P⊥

3
, Ππβ = Π

(
KπKβ +

hπβ

3

)
,

hπβ = gπβ −VβVπ , Π = Pr − P⊥.



Entropy 2022, 24, 150 4 of 19

where P⊥ and Pr are the tangential and radial pressure components and Kµ is a four vector.

For Equations (3) and (4) formulates T(e f f )
πβ as

T(e f f )
πβ =

1
fR

{
Tm

πβ +
1
κ

(
f (R)− R fR

2
gπβ +∇π∇β fR − gπβ� fR

)}
. (5)

3. Modified Field Equations

The state variables and equations required to describe a static self-gravitating lo-
cally anisotropic fluid admitting the four Killing vectors will be discussed in this section.
To achieve this goal, we have taken the hyperbolically symmetric static fluid, which is
enclosed from the outer surface. This boundary can be mathematically represented with the
equation r = rΣe =constant. However, the fluid distribution cannot fill the central region,
therefore we may suppose that this region is portrayed by an empty vacuole, suggesting
that the fluid distribution is likewise restricted from the inside by a surface and is expressed
with the equation r = rΣi =constant. We model our system with the line element described
as below

ds2 = eλ(r)dt2 − eν(r)dr2 − r2dθ2 − r2 sinh2 θdφ2. (6)

W obtain the following modified field equations with the use of Equation (3) as well as the
line element (6) as

8πµ(e f f ) = −1 + e−ν

r2 +
λ′e−ν

r
, (7)

8πP(e f f )
r =

1 + e−ν

r2 +
ν′e−ν

r
, (8)

8πP(e f f )
⊥ =

e−ν

2

(
λ′′ − λ′ν′

2
+

λ′2

2
− ν′

r
+

λ′

r

)
, (9)

where µ(e f f ), P(e f f )
r , and P(e f f )

⊥ denote effective matter density and pressures in various
directions, respectively, and prime denotes derivatives relative to r. Their values are
defined in the Appendix A. It is noteworthy to accentuate the differences between these
equations and those mentioned in [43] by taking into account the spherically symmetric
case. Moreover, the f (R) theory is conserved, so its conservation equation is evaluated as
follows

∂P(e f f )
r
∂r

+
λ′

2
(µ(e f f ) + P(e f f )

r ) +
2Π(e f f )

r
= 0, (10)

where P(e f f )
r = P(e f f )

⊥ + Π(e f f ). The distribution of hyperbolically symmetric fluid has
mass function m(r) as

m(r) =
r
2
(1 + e−ν). (11)

After substituting Equation (11) into Equation (7), the value of m(r) becomes

m(r) = −4π
∫ r

0
µ(e f f )r2dr. (12)

The mass m and the effective density µ(e f f ) should be regarded as positive and negative
quantities, respectively, according to Equations (11) and (12). As previously discovered
in [33], the weak energy requirement is therefore disobeyed. Some intriguing statements
on the physical significance of Equation (12) have been mentioned in [35]. Finally the mass
function turns out to be

m(r) = 4π
∫ r

rmin

|µ(e f f )|r2dr. (13)
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Equation (13) is obtained by substituting −|µ(e f f )| for µ(e f f ). Utilizing Equations (9) and (11)
we achieve

λ′ =

{
8πP(e f f )

r r3 − 2m
r(2m− r)

}
. (14)

We calculate the hydrostatic equilibrium condition by substituting the obtained value of λ′

from Equation (14) into Equation (10), which is as follows

∂P(e f f )
r
∂r

+

(
4πP(e f f )

r r3 −m
r(2m− r)

)
(P(e f f )

r − |µ(e f f )|) + 2Π(e f f )

r
= 0. (15)

In [35], a complete discussion on the physical influence of Equation (15) has also been given.

4. Intrinsic Curvature and Conformal Tensor

On the basis of the Riemann tensor, Ricci tensor, and Ricci scalar [44], the curvature of
spacetime can be measured intrinsically. These three curvature tensors are used to illustrate
the Conformal tensor [45], which is written as follows

Rπ
ηρβ = Cπ

ηρβ +
1
2

Rπ
ρ gηβ +

1
2

Rηρδπ
β +

1
2

Rηβδπ
ρ −

1
2

Rπ
β gηρ −

1
6

R
(

δπ
ρ gηβ − gηρδπ

β

)
. (16)

In our scenario, the conformal tensor can be seen by looking at its electric portion only (as
the magnetic part becomes zero)

Cξπµλ = EβδVρVγ(gξπρβgµλγδ − ηξπρβηµλγδ),

where
gξπρβ = gξρgπβ − gξβgπρ,

where ηξπρβ depicts the Levi-Civita tensor. In favor of our metric, the electric component of
Conformal tensor, i.e., Eµβ is defined as

Eπβ = ε

(
KπKβ +

1
3

hπβ

)
, (17)

where the conformal scalar is indicated by ε. The electric portion of the conformal tensor
has physical consequences that coincide with tidal forces. It uses an appropriately rescaled
curvature on the hyperboloid D to show how neighboring geodesics break apart from each
other when approaching spatial infinity. The ε is calculated in this case as

ε = −λ′′e−ν

4
+

ν′λ′e−ν

8
− λ′2e−ν

8
+

λ′e−ν

4r
− ν′e−ν

4r
− e−ν

2r2 −
1

2r2 . (18)

Through Equations (7), (9), (11) and (18) we evaluate

3m
r3 + ε = 4π|µ(e f f )|+ 4πΠ(e f f ). (19)

Taking into account Equation (12) along with the derivative of Equation (19) corresponds
to r produce

ε− 4πΠ(e f f ) =
4π

r3

∫ r

0

∂|µ(e f f )|
∂r

r3dr. (20)

On the behalf of Equation (20) one can say that the effective anisotropic pressure tensor
and the inhomogeneity of effective matter density can be used to express the conformal
scalar. Computing Equation (20) in Equation (19) causes it to assume the form

m +
4π

3

∫ r

0

∂|µ(e f f )|
∂r

r3dr =
4π|µ(e f f )|r3

3
. (21)
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Equation (21) illustrates that the homogeneous effective energy density as the sum of the
inhomogeneity induced in the effective energy density and the mass function.

Tolman Mass

Several years back, Tolman [46] described a general formula to study the mass function
of a fluid sphere. The active gravitational mass for every static hyperbolically symmetric
fluid distribution, is then formalized as

mT =
∫ 2π

0

∫ π

0

∫ r

0
r2e

λ+ν
2 sinh θ(T0(e f f )

0 − T1(e f f )
1 − 2T2(e f f )

2 )dr̃dθdφ, (22)

where the standard stress-energy tensor components are depicted by T0(e f f )
0 , T1(e f f )

1 and

T2(e f f )
2 . Computing their respective values in Equation (22), we achieve

mT = 2π(coshπ − 1)
∫ r

0
e

ν+λ
2 r̃2

(
−|µ(e f f )|+ P(e f f )

r + 2P(e f f )
⊥

)
dr̃. (23)

Integration of Equation (22) and utilization of modified field Equations (7)–(9),
respectively, generate

mT = λ′r2e
λ−ν

2
cosh π − 1

4
. (24)

Utilizing Equation (24) with that of Equation (14) produces

mT =
cosh π − 1

2

(
4πP(e f f )

r r3 −m
)

e
λ+ν

2 . (25)

The typical physical analysis of the Tolmann mass (mT) can be studied through
Equations (10), (15), (24) and (25). It can therefore be seen that, if 4πP(e f f )

r r3 < m then
mT becomes negative, thereby suggesting the repulsive nature of the spacetime. The four
acceleration aπ is defined as

aπ = aKπ , (26)

where a = λ′e
−ν
2

2 . Substituting the value of λ′ from Equation (24), Equation (26) turns into

a =
2mTe

−λ
2

r2(cosh π − 1)
. (27)

It is possible to achieve the radially inward flow of four accelerations, if we take 4πP(e f f )
r r3 < m,

thus making mT as a negative quantity. This leads towards the repulsive character of gravita-
tional force. Afterwards, utilizing Equation (25) with the r-derivative of Equation (22), we obtain

m′T −
3mT

r
= −

(
cosh π − 1

2

)
r2e

ν+λ
2

(
ε + 4π

[
Π
fR

+ e−ν f ′′R −
e−ν f ′Rν′

2
−

f ′Re−ν

r

])
. (28)

Integration of Equation (28) gives

mT − (mT)Σe

(
r3

r3
Σe

)
=

(
cosh π − 1

2

)
r3
∫ rΣe

r

e
ν+λ

2

r̃

(
ε + 4π

[
Π
fR

+ e−ν f ′′R

−
e−ν f ′Rν′

2
−

f ′Re−ν

r

])
dr̃. (29)
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Computing Equation (20) in Equation (28) to achieve

mT − (mT)Σe

(
r3

r3
Σe

)
=

(
cosh π − 1

2

)
r3
∫ rΣe

r

e
ν+λ

2

r̃

[
4π

r̃3

∫ r

0

∂|µ(e f f )|
∂r

r̃3dr̃

+ 8π

(
Π
fR

+ e−ν f ′′R −
e−ν f ′Rν′

2
−

f ′Re−ν

r

)]
dr̃. (30)

With the inclusion of effective matter terms, the conclusion of Equation (30) is the same as
that determined in Equation (54) in the [35].

5. Orthogonal Splitting of Curvature Tensors

On the basis of the orthogonal splitting approach of the Riemann tensor studied by
Bel [47] and followed by [48–53], we shall calculate structure scalars in metric f (R) gravity.
We shall use terminologies with minor changes as that utilized in [48]. Through orthogonal
splitting, we end up with the following three tensors

Yπβ = Rπξβδuξuδ,

Zπβ =∗ Rπξβδuξ uδ =
1
2

ηπξερRερ
βδuξuδ,

Xπβ =∗ R∗πξβδuξ uδ =
1
2

η
ερ
πξ R∗ερβδuξ uδ,

where ∗ depicts the dual tensor and hence R∗πξβδ is expressed as

R∗πβξδ =
1
2

ηεωξδRεω
πβ.

Through modified field equations, Equation (16) gives

Rµξ
βγ = Cµξ

βγ + 16π T [µ
[β

δ
ξ]
γ]
+ 8π T

(
1
3

δ
µ

[β
δ

ξ
γ]
− δ

[µ
[β

δ
ξ]
γ]

)
. (31)

When we substitute Equation (4) back into Equation (31), we get

Rµξ
βγ = Rµξ

(I)βγ
+ Rµξ

(I I)βγ
+ Rµξ

(I I I)βγ
,

where

Rµξ

(I)βγ
=

16π

fR

(
µV[µV[βδ

ξ]
γ]
+ Ph[µ

[γ
δ

ξ]
β]

)
+

8π

fR

[
(µ− 3P) + 2( f − R fR)− 3∇ξ∇ξ fR

]
(32)

×
(

1
3

δ
µ

[β
δ

ξ
γ]
− δ

[µ
[β

δ
ξ]
γ]

)
,

Rµξ

(I I)βγ
=

16π

fR
Π[µ

[β
δ

ξ]
γ]
+

2
fR

[
( f − R fR)(δ

µ
β δ

ξ
γ − δ

µ
γδ

ξ
β) + (∇µ∇βδ

ξ
γ (33)

−∇µ∇γδ
ξ
β −∇

ξ∇βδ
µ
γ +∇ξ∇γδ

µ
β) fR + 2(δµ

γδ
ξ
β − δ

µ
β δ

ξ
γ)∇ρ∇ρ fR

]
,

Rµξ

(I I I)βγ
= 4V[µV[βEξ]

γ]
− ε

µξ
δ επβγEδπ . (34)
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In order to calculate three tensors (Yπβ, Zπβ, Xπβ) in terms of the structural parameters,
Equations (32)–(34) give

Yπβ = Eπβ +
4π

fR
Ππβ +

4πhπβ

3 fR
(µ + 3P) +

1
6
(R fR − f ) +

1
2 fR

[
∇π∇β fR

−VπVγ∇β∇γ fR −VβVξ∇π∇ξ fR + gπβVξVγ∇ξ∇γ fR

]
, (35)

Xπβ =
8π

3 fR
P− 2π

fR
(|µ|+ 3P) +

1
4 fR
∇ρ∇ρ fRhπβ +

4π

fR
Ππβ +

1
2 fR
∇µ∇σε

σγ
π εµγβ

− Eπβ, (36)

Zπβ = − 1
2 fR

εµπβVγ∇µ∇γ. (37)

The aforementioned tensors can be decomposed into their trace and trace-free portions in
the following way

Xπβ =
hπβ

3
XT +

(
KπKβ +

hπβ

3

)
XTF,

Yπβ =
hπβ

3
YT +

(
KπKβ +

hπβ

3

)
YTF.

Using the trace and trace-free sections of both tensors, the following results are produced

XT = −6π

fR
(|µ| − 5P

3
) +

3
4
∇ρ∇ρ fR −

1
fR
(∇µ∇σhσ

µ), (38)

XTF =
4πΠ

fR
− ε + ξDR, (39)

YT =
4π

fR
(−|µ|+ 3P) +

1
2 fR

(R fR − f ) +
1

2 fR

[
� fR − gπβVπVγ∇β∇γ fR

− gπβVξVβ∇ξ∇π fR + 4VξVγ∇ξ∇γ fR

]
, (40)

YTF = ε +
4πΠ

fR
− 1

6 fR(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

)
, (41)

where ξDR is given in Appendix A. We now use Equation (20) in the expressions of XTF
and YTF to generate

XTF =
4πΠ

fR
− 4π

r3

∫ r

0
r̃3 ∂|µ(e f f )|

∂r
dr̃− 4πΠ(e f f ) + ξDR, (42)

YTF = 4πΠ(e f f ) +
4π

r3

∫ r

0
r̃3 ∂|µ(e f f )|

∂r
dr̃ +

4πΠ
fR
− 4π

fR(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

)
, (43)

which gives the anisotropic tensor from the sum of XTF and YTF as

8πΠ = fR(XTF + YTF − ξDR) +
1

6(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

)
.
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Returning to Equations (23) and (30), we can use Equations (40) and (43) to establish the
physical relevance of YT and YTF as

mT = (mT)Σe

(
r

rΣe

)3

+

(
coshπ − 1

2

)
r3
∫ rΣe

r

e
ν+λ

2

r̃

(
YTF − 4πΠ(e f f )

− 4πΠ
fR

+
1

6 fR(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

)
dr̃, (44)

mT =
coshπ − 1

2

∫ r

0
r̃2e(ν+λ)/2

[
YT fR +

1
fR

(
− R fR + f −� fR

+ gπβVπVγ∇β∇γ fR + gπβVξVβ∇ξ∇π fR − 4VξVγ∇ξ∇γ fR

)]
dr̃. (45)

The influence of density inhomogeneity and pressure anisotropy on the Tolman mass has
been taken into consideration by YTF. Alternatively, YTF illustrates how these two variables
change the value of the Tolman mass, comparable to its value for the homogeneous isotropic
fluid. This sparked the idea of complexity, which was discussed in [54–60].

6. Hyperbolically Symmetric Static Solutions

With the help of two generating functions, a general framework for expressing any static hy-
perbolically symmetric solutions will be presented in this section. Equations (8) and (9) produce

8π(P(e f f )
r − P(e f f )

⊥ ) =
1 + e−ν

r2 − e−ν

2

(
λ′′ +

λ′2

2
− λ′ν′

2
− λ′

r
− ν′

r

)
. (46)

The involvement of the auxiliary functions, i.e., λ′
2 = z∗ − 1

r and ỹ = e−ν in Equation(46)
modify it into

ỹ′ + ỹ
[

4
r2z∗

+ 2z∗ +
2z∗

′

z∗
− 6

r

]
=

2
z∗

[
1
r2 − 8πΠ(e f f )

]
. (47)

Integration of Equation (47) gives

eν(r) =
z∗2e

∫ (
2z∗+ 4

z∗r2

)
dr

r6
[

2
∫ {

z∗
(

1−8πΠ(e f f )r2

r8

)
e
∫ (

2z∗+ 4
z∗r2

)
dr
}

dr + B̄∗1

] . (48)

Any hyperbolically static symmetric solution can be outlined in detail with the support of
two generating functions (Π(e f f ) and z∗), as shown by Equation (48). The corresponding
structural variables of the locally anisotropic matter distributions become

4πµ =
m′ fR

r2 +
1
2

(
f
2
− R fR

2
+ e−ν f ′′R −

e−ν f ′Rν′

2
+

2e−ν f ′R
r

)
, (49)

4πPr = fR

(
z∗r(2m− r)−m + r

r3

)
− 1

2

(
− f

2
+

R fR
2
−

e−ν f ′Rλ′

2
+

2e−ν f ′R
r

)
, (50)

8πP⊥ = fR

{(
2mr− r2

r2

)[
z∗
′
+

1
r2 + z∗2 − z∗

r

]
+ z∗

[
m′

r
− m

r2

]}
−
(

R fR
2

− f
2
−

e−ν f ′Rλ′

2
− e−ν f ′′R +

e−ν f ′Rν′

2
−

e−ν f ′R
r

)
. (51)

Thus we have expressed the associated physical parameters of hyperbolically symmetric
spacetime in terms of the auxiliary variables.
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6.1. Conformally Flat Solutions

Due to the fact that the Weyl tensor plays a prominent role in the structure of fluid
distribution, the exceptional case of ε = 0 (conformal flatness) from Equations (20) and (29),
could therefore be worth studying. Utilizing Equation (18) for ε = 0 yields

e−ν−λ ∂

∂r

[
λ′eλ

2r

]
+

∂

∂r

[
λ′e−ν

2r

]
− ∂

∂r

[
1 + e−ν

r2

]
= 0. (52)

Through the new variables, i.e., ỹ = e−ν and λ′
2 = s′

s , Equation (52) becomes

ỹ′ + 2

(
s′′ − s′

r + s
r2

s′ − w
r

)
ỹ +

2s(
s′ − s

r
)
r2 = 0, (53)

The aforementioned equation upon integration generates the formal solution, which is
given as follows

ỹ = e−
∫

h∗1(r)dr
(∫

e−
∫

h∗1(r)drh∗2(r)dr + B̄∗2

)
, (54)

here B̄∗2 indicates the integration constant and is defined as

h∗1(r) = 2
d
dr

[
ln
(

s′ − s
r

)]
,

h∗2(r) =
−2s(

s′ − s
r
)
r2 .

Feeding back the variables into their original values, Equation (54) becomes

λ′

2
=

eν/2

r

√
r2e−λβ∗ − 1 +

1
r

. (55)

The junction conditions (both Darmois and Senovilla conditions) in f (R) gravity [61,62] provide

eλΣe =
2M
rΣ
− 1, eνΣe =

(
2M
rΣ
− 1
)−1

, P(e f f )
r (rΣe) = 0. (56)

The value of β∗ is calculated as

β∗ =
9M2 − 4MrΣe

r4
Σe

.

Integration of Equation (55) produces

eλ = β∗r2 sin2

(∫ eν/2

r
dr + α∗

)
,

where α is an integration constant and can be found by applying the matching conditions
discussed in Equation (56) as

α∗ = sin−1
[

rΣe

( 2M
rΣe − 1

9M2 − 4rΣe M

)1/2]
−
[ ∫ eν/2

r
dr
]

Σe
.

We have to impose an additional constraint in order to construct a particular model,
as only one generating function can be determined using the conformal flatness condition.
Therefore, we will consider the most extreme case, i.e., Pr = 0 as an example. This solution
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is the hyperbolically symmetric counterpart of the model I for the spherically symmetric
case, as studied by [63]. Equation (8) after putting Pr = 0 produces

λ′ =
− 1+eν

r + reνχ1(r)
fR

χ2(r)
. (57)

where the values of χ1(r) and χ2(r) are defined in the Appendix A. Their values contain
extra degrees of freedom due to metric f (R) gravity. Afterwards, substituting Equation (57)
in (18) with the additional constraint of conformal flatness (ε = 0) give

(1 + eν)2

χ2(r)
+ 4(1 + eν)

[
1 +

1
χ2(r)

]
+ 2ν′r

[
1 +

1
χ2(r)

]
+

ν′reν

χ2(r)

[
r2χ1(r)

fR
− 1
]

+ δ1(r) = 0, (58)

where the value of δ1(r) is given in Appendix A. We will again achieve the aforementioned
equation in GR if we substitute f (R) = R. Alternatively, Equation (58) on substitution of
e−ν = 2g(r)− 1 gives

− rg′[g f 2
Rχ2(1 + 2χ2)− f 2

Rχ2(1 + χ2) + 2r2 fRχ1χ2] + g[g f 2
R(4 + χ2

2 + 4χ2 + 2rχ′2)

− r2 fRχ1 − 2 f 2
Rχ2 − 4r3χ1χ2 f ′R − 2 f 2

Rχ2
2 + r3 fRχ′1χ2 − r f 2

Rχ′2 − r3χ1χ′2 fR] +
δ2

4
= 0. (59)

where the value of δ2 is defined in Appendix A. Equation (59) upon integration produces

B∗ = g− 1
r[g f 2

Rχ2(1 + 2χ2)− f 2
Rχ2(1 + χ2) + 2r2 fRχ1χ2]

(
g[g f 2

R(4 + χ2
2 + 4χ2 + 2rχ′2)

− r2 fRχ1 − 2 f 2
Rχ2 − 4r3χ1χ2 f ′R − 2 f 2

Rχ2
2 + r3 fRχ′1χ2 − r f 2

Rχ′2 − r3χ1χ′2 fR] +
δ2

4

)
where B∗ is an integration constant. The combination of Equations (55) and (57) generate

eλ =
β∗r2

r2(2g− 1)
[ 2g

r(2g−1)−
r2gχ1

fR(2g−1)
2χ2

+ 1
r

]2

+ 1

.

We get the following results for the physical variables

|µ(e f f )| = g(δ3 + δ4) + δ5

r2χ1 + 2 fR(−1 + g− χ2 + 2gχ2)
, (60)

P(e f f )
⊥ =

g3δ6 + g2δ7 + gδ8

(2g− 1)[r2χ1 + 2 fR(−1 + g− χ2 + 2gχ2)]
. (61)

The values of δ′i s where i = 3, 4, 5, 6, 7, 8 are given in the Appendix A. These values
include the effects of f (R) terms. The two generating functions corresponding to this
model are defined as

z =
−g + r2χ1

2 fR
+ (2g− 1)χ2

r(2g− 1)χ2

Π(e f f ) =
2χ1χ2 +

2g f ′R
r −

rχ1 f ′R
fR

16πχ2
− g3δ6 + g2δ7 + gδ8

(2g− 1)[r2χ1 + 2 fR(−1 + g− χ2 + 2gχ2)]

The value of Π(e f f ) is calculated using the equation Π(e f f ) = P(e f f )
r − P(e f f )

⊥ , which is
subject to the constraint Pr = 0.
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6.2. A Model with Zero Complexity Factor

As previously stated, the scalar YTF has been proven to be an appropriate measure
of the complexity of the fluid distribution, as one can witness in the discussion from [54].
Therefore, finding a model (other than the homogeneous and isotropic solution) that meets
the criterion of vanishing complexity (YTF = 0) would be intriguing. We must apply an
extra limitation to achieve a specific model because there is an unlimited number of such
solutions. Here, we will suppose the condition Pr = 0 in addition to YTF = 0. Substitution
of Pr = 0 in Equation (8) produces

λ′ =

−2g
r + rχ1

fR

(2g− 1)χ2
(62)

where g = 1+e−ν

2 . Applying the condition (YTF = 0) in Equation(44), it obtains that

mT = (mT)Σe

(
r

rΣe

)3

+

(
coshπ − 1

2

)
r3
∫ rΣe

r

e
ν+λ

2

r̃2

(
− 4πΠ(e f f )

− 4πΠ
fR

+
1

6 fR(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

))
dr̃. (63)

with the help of Equations (24), (62) and (63), and g = 1+e−ν

2 , we obtain

eλ =
4χ2

2r4(2g− 1)
r6

Σ(coshπ − 1)2

[
2(mT)Σe + (Coshπ − 1)r3

Σe χ̃3

−2g + r2χ1
fR

]2

,

where

χ̃3 =
∫ rΣe

r

e
ν+λ

2

r̃2

(
− 4πΠ(e f f ) − 4πΠ

fR
+

1

6 fR(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

))
dr̃.

Putting the zero complexity factor condition in Equation (41), it follows that

rg′
[

f 2
Rχ2(g− 1) + δ9

]
+ g
[

g(− f 2
R − 4 f 2

Rχ2 + δ10) + δ11

]
+

δ12

24
= 0, (64)

where the values of the terms δ9, δ10, δ11 and δ12 are defined in Appendix A. These terms
illustrate the effects of metric f (R) terms. With this background, the state determinants for
this particular model are evaluated as

|µ(e f f )| =
g
(

g
4 fRπr2 +

3g fR
4πr2χ2

+ 2g fR
4πr2 −

2 fR
4πr2 + δ13

)
+ δ14

−2 fR + 2g fR + r2χ1 + rχ2 f ′R − 2rgχ2 f ′R
, (65)

P(e f f )
⊥ =

g2
(
− 3 fR

4πr2 +
3g fR
4πr2 +

3g fR
8πr2χ2

+ δ15

)
+ gδ16

2(2g− 1)(g fR − fR + r2χ1 + rχ2 f ′R − 2grχ2 f ′R)
, (66)
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where the values of the terms δ13, δ14, δ15 and δ16 represent the effects of the dark source terms,
which are defined in Appendix A. The generating functions of this model are calculated as

Π(e f f ) =
2χ1χ2 +

2g f ′R
r −

rχ1 f ′R
fR

16πχ2
−

g2
(
− 3 fR

4πr2 +
3g fR
4πr2 +

3g fR
8πr2χ2

+ δ15

)
+ gδ16

2(2g− 1)(g fR − fR + r2χ1 + rχ2 f ′R − 2grχ2 f ′R)
,

z =
−g + r2χ1

2 fR
+ (2g− 1)χ2

r(2g− 1)χ2
.

All the results obtained for this model reduce to GR on substituting f (R) = R.

6.3. Stiff Equation of State

Finally, in this subsection we will look at a few solutions that fulfill the so-called stiff
equation of state, which was initially presented by Zeldovich [64] and is expected to be
convenient for illustrating ultradense matter. It presupposes that energy density equals
pressure in its initial form. Here, we make an assumption

|µ| = Pr +
1

8π

(
e−ν f ′′R −

e−ν f ′R(λ
′ + ν′)

2

)
. (67)

Equation (67), after inserting in Equation (15), produces

∂Pr

∂r
+

2Π
r

+ Pr
∂

∂r

(
1
fR

)
+

1
8π

∂

∂r

(
R fR

2
− f

2
−

λ′ f ′Re−ν

2
−

2 f ′Re−ν

r

)
+ e−ν f ′′R −

e−ν f ′Rν′

2
−

f ′Re−ν

r
= 0. (68)

Now it can be observed that few additional information or constraints are needed to achieve
particular solutions. Hence, we look at two specific cases as examples.

• When P⊥ = 0
Let us initially suppose that the tangential pressure does not exist. Then the integration
of Equation (68) results in

Pr =
A
r2 +

1
r2

∫
r2
[

Pr
∂

∂r

(
1
fR

)
+

1
8π

∂

∂r

(
R fR

2
− f

2
−

λ′ f ′Re−ν

2
−

2 f ′Re−ν

r

)
+ e−ν f ′′R −

e−ν f ′Rν′

2
−

f ′Re−ν

r

]
dr,

⇒ |µ| = A
r2 +

1
r2

∫
r2
[

Pr
∂

∂r

(
1
fR

)
+

1
8π

∂

∂r

(
R fR

2
− f

2
−

λ′ f ′Re−ν

2
−

2 f ′Re−ν

r

)
+ e−ν f ′′R −

e−ν f ′Rν′

2
−

f ′Re−ν

r

]
dr, (69)

where A is the positive integration constant. When we combine Equations (11), (12)
and (14) with Equation (69), the outcome is found as

m = 4πAr, e−ν = 8πA− 1, λ = constant.

Both the a.g.m. and the p.g.m.d. disappear in this model. There are no vanishing
pressure surfaces for this solution, and the generating functions are

Π = fR

[
A
r2 − e−ν f ′′R +

e−ν f ′Rν′

2
+

f ′Re−ν

r

]
, z∗ =

1
r

. (70)
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• When YTF = 0
This case satisfies stiff state equation along with YTF = 0. In other words, we are
considering less complex relativistic hyperbolical symmetric manifolds, whose energy
density is specifically proportional to the pressure component. Therefore, we are
clear to consider the simplest stiff fluid model (the one that meets the vanishing
complexity factor criterion in addition to Equation (67)). Firstly, by implementing the
former condition in Equation (43) and then feeding it back the resultant expression
into Equation (68), we achieve

∂2P(e f f )
r

∂r2 +
2
r

[
∂P(e f f )

r
∂r

]
=

∂χ4

∂r
+

4χ4

r
, (71)

where

χ4 =
2Π
r fR
− χ3

12πr fR
,

χ3 =
1

(KπKβ +
hπβ

3 )

(
hπβVξVγ∇ξ∇γ fR

)
.

The solution of Equation (71) is obtained as

P(e f f )
r =

b
r2 − a +

∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
dr, (72)

here a and b are two constants of integration, which are taken to be positive. With the
support of Equations (11), (12) and (72) one can achieve

m = 4π

{
r
(

b− ar2

3

)
+
∫ r

0

∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
drdr

}
. (73)

One may calculate the fluid distribution by taking into consideration the surface Σe,
which is restricted from the outside and specified as r = rΣe = constant.

P(e f f )
r =

∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
dr−

∫ rΣ

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]∣∣∣∣
r=rΣ

dr

+ b
[

1
r2 −

1
r2

Σe

]
(74)

and

m = 4π
∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
r2dr +

4πbr
3r2

Σe
(3r2

Σe − r2)

− 4πr2
∫ rΣ

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]∣∣∣∣
r=rΣ

dr. (75)

The following expression is produced from Equations (74) and (75) as

4πP(e f f )
r r3 −m = −4π

∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
r2dr− 8πbr3

3r2
Σe

+ 4πr2(1− r)
∫ rΣ

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
dr
∣∣∣∣
r=rΣ

+ 4πr3
∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
r2dr.
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Finally, the Pe f f
⊥ is determined as follows

P(e f f )
⊥ = − b

r2
Σe

+
rχ4

2
+
∫ r

0
rχ4dr−

∫ rΣ

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
dr
∣∣∣∣
r=rΣ

+
∫ r

0

[
χ4 +

2
r2

∫ r

0
rχ4dr

]
dr.

7. Conclusions

The rudimentary solutions of GR, such as the Schwarzschild and Kottler spherically
symmetric exteriors are also solutions of the f (R) theories. The f (R) theory is an intriguing
and reasonably straightforward alternative to GR. Here, we consider a static spacetime.
Over and above, it would be ideal to have a static solution spanning the entire spacetime,
based on the physically plausible viewpoint that any equilibrium ultimate state of a physical
process should be static. The static, spherically symmetric, asymptotically flat, and empty
exterior region is described by the Schwarzschild solution of the Einstein gravitational field
equations. Therefore, outside the horizon, one has the standard Schwarzschild line element
(e.g., where radius r of the self gravitating object is greater than two times the mass m of
that object r > 2m). However, it is widely known that no static observers can be defined
inside the horizon. As a consequence, in order to obtain globally static solution the change
in symmetry (and signature) is required. Otherwise, inside the horizon, static solution will
not be possible to achieve (e.g., where radius r of the self gravitating object is lesser than
two times the mass m of that object r < 2m) as in [65,66].

The present work is aimed to analyze some characteristics of irrotational static hy-
perbolically symmetric objects. We performed this analysis under the correction of f (R)
gravity, which permits some extra degrees of freedom that were not possible in GR. We
assumed that the fluid has a different impact of pressure effects at different directions.
For this, we looked at the entire spacetime continuum (0 < r < ∞). We preserve the
temporal independence but adjust the spatial symmetry, rather than compromising the
staticity in the region inside the horizon, i.e., r < 2m [67]. The evaluation of the effective
energy density reveals that it is inevitably negative, which is highly important in under-
standing various quantum field events because negative energies are strongly related to
quantum field theory. The presence of dark source terms influences the tidal forces as well
as the mass of a hyperbolically symmetric astronomical object. The repulsive aspect of the
gravitational interaction as a result of the negative a.g.m. (if 4πP(e f f )

r r3 < m) in the case of
a fluid distribution was already highlighted in Equation (25).

Afterwards, various hyperbolically symmetric solutions accompanying two generating
functions have been examined, specified with different models and constraints. In addition,
the fluid cannot fill the area surrounding the center, implying that there is a cavity around
the center that is empty. We have derived models whose equation looks quite similar in
shape as that of GR, with the exception that their equations exhibit physical behavior that is
influenced by the effective matter. The obtained results can be applicable to some physical
systems as under:

• Our model is comprised of fluid having negative energy density. The presence of
this property in the relativistic fluid suggests that our study could be applicable to
various cosmological and astrophysical objects, such as wormholes, warp drive, etc. It
is worthy to note that negative energies or energy density is compatible with quantum
field theory;

• We found that a test particle moving over the hyperbolically symmetric objects cannot
reach the central point of the symmetry. This is due to the formation of empty central
vacuole. The existence of central vacuum cavity are often invoked in cosmological
voids and haloes. Voids are underdense areas that spread within the cosmos to make
large filaments. They are neither cylindrical nor spherical in shape;
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• In addition to this, we have performed our study in f (R) theory. Depending upon
the choice of the model, we could have above mentioned results at different cosmic
eras, such as, phantom, dark energy, inflation, etc. Thus, due to our study, one
can analyze the properties of hyperbolical anisotropic manifolds at different cosmic
evolutionary stages;

• All of the results are compatible with GR findings when f (R) = R.
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Appendix A

The values of µ(e f f ), P(e f f )
r and P(e f f )

⊥ that occurred in Equations (7)–(9) are given as

µ(e f f ) =
1
fR

[
µ +

1
8π

(
f
2
− R fR

2
+ e−ν f ′′R −

e−ν f ′Rν′

2
+

2e−ν f ′R
r

)]
,

P(e f f )
r =

1
fR

[
Pr +

1
8π

(
− f

2
+

R fR
2
−

e−ν f ′Rν′

2
−

2e−ν f ′R
r

)]
,

P(e f f )
⊥ =

1
fR

[
P⊥ +

1
8π

(
− f

2
+

R fR
2
−

e−ν f ′Rλ′

2
− e−ν f ′′R

+
e−ν f ′Rν′

2
−

e−ν f ′R
r

)]
.

The term ξDR appeared in Equation (39) and in Equation (42) is defined as

ξDR =
1

2 fR(KπKβ +
hπβ

3 )

[
hξ

πhδ
β∇µ∇σε

σγ
ξ εµγδ +

2
3
∇µ∇σhσ

µhπβ

]
.

The values of the terms χ1(r) and χ2(r) appeared in Equation (57) are

χ1(r) =
− f (r)

2
+

R(r) fR(r)
2

−
2 f ′Re−ν

r

χ2(r) = 1 +
f ′R

r fR

The term occurred in Equation (58) is calculated as

δ1(r) =
2eνr3

fRχ2(r)

[
−

χ1(r) f ′R
fR

+ χ′1(r)−
χ1(r)χ′2(r)

χ2(r)

]
+

2rχ′2(r)
χ2

2(r)
(1 + eν)

The term δ2 appeared in Equation (59) is defined as

δ2 = r4χ2
1 + 2r3χ1χ2 f ′R − 2r3χ′1χ2 fR + 2r3χ1χ′2 fR
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The terms δ3, δ4 and δ5 occurred in Equation (60) is evaluated as

δ3 =
5g fR

2πr2 +
g fR

2πr2χ2
+

3g fRχ2

πr2 +
g fRχ′2
πrχ2

δ4 = − 3 fR

2πr2 +
χ1

4π
− χ1

2πχ2
− 3 fRχ2

2πr2 −
rχ1 f ′R
2π fR

+
rχ′1
2π
− fRχ′2

2πrχ2
− rχ1χ′2

2πχ2

δ5 =
r2χ2

1
8π fRχ2

+
rχ1 f ′R
4π fR

−
rχ′1
4π

+
rχ1χ′2
2πχ2

The terms δ6, δ7 and δ8

δ6 =
5 fR

4πr2 +
fR

4πr2χ2
+

3 fRχ2

2πr2 +
fRχ′2

2πrχ2

δ7 =− 3 fR

4πr2 +
χ1

8π
− χ1

4πχ2
− 3 fRχ2

4πr2 +
rχ1 f ′R
4π fR

+
rχ′1
4π
− fRχ′2

2πrχ2
− rχ1χ′2

4πχ2

δ8 =
r2χ2

1
16π fRχ2

+
rχ1 f ′R
4π fR

−
rχ′1
8π

+
rχ1χ′2
4πχ2

The terms δ9, δ10, δ11 and δ12 appeared in Equation (64) are evaluated as

δ9 =
r2 fRχ1χ2 + r fRχ2

2 f ′R
2

− rg fR f ′Rχ2
2

δ10 =2r fRχ2
2 f ′R − 2r f 2

Rχ′2 − 2r2 fRχ2
2 f ′′R

δ11 =4 f 2
Rχ2 +

3r2 fRχ1

2
−

r2 fRχ2
2χ3

3
+ r2χ1χ2 f ′R − 4r fRχ2

2 f ′R

− r3 fRχ2χ′1 + r f 2
Rχ′2 + r3 fRχ1χ′2 + 4r2 fR f ′′R χ2

2

δ12 =− 9r4χ2
1 + 4r2 fRχ2

2χ3 − 12r3χ1χ2 f ′R + 12r fRχ2
2 f ′R

+ 12r3 fRχ2χ′1 − 12r3 fRχ′2χ1 − 12r2 fRχ2
2 f ′′R

The terms δ13, δ14 and δ15, δ16 occurred in Equations (65) and (66) are calculated as

δ13 = −
gχ2 f ′R

πr
+

g fRχ′2
πrχ2

+
gχ2 f ′′R

π
− fR

πr2 −
3χ1

4πχ2
−

rχ1 f ′R
2π fR

+
χ2 f ′R
πr

+
rχ′1
2π

− fRχ′2
2πrχ2

− rχ1χ′2
2πχ2

−
χ2 f ′′R

π
+

r2χ1

4πr2 +
rχ2 f ′R
4πr2 −

2rgχ2 f ′R
4πr2

δ14 =
3r2χ2

1
16π fRχ2

− χ2χ3

12π
+

rχ1 f ′R
4π fR

−
χ2 f ′R
4πr

− rχ1χ′2
4πχ2

+
χ2 f ′′R
4π

δ15 =
χ1

8π
− 3χ1

8πχ2
+

χ2χ3

12π
−

rχ1 f ′R
4π fR

+
5χ2 f ′R
8πr

−
3gχ2 f ′R

4πr
+

rχ′1
4π
− fRχ′2

4πrχ2

+
g fRχ′2
2πrχ2

− rχ1χ′2
4πχ2

−
χ2 f ′′R
2π

+
gχ2 f ′′R

2π

δ16 =
3r2χ2

1
32π fRχ2

− χ2χ3

24π
+

rχ1 f ′R
8π fR

−
χ2 f ′R
8πr

−
rχ′1
8π

+
rχ1χ′2
8πχ2

+
χ2 f ′′R
8π

References
1. Einstein, A. Zur elektrodynamik bewegter körper. Ann. Phys. 1905, 4, 891–921. [CrossRef]
2. Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. 1970, 150, 1. [CrossRef]
3. Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [CrossRef]
4. Faraoni, V.; Capozziello, S. Beyond Einstein Gravity; Springer: Berlin/Heidelberg, Germany, 2011.
5. Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F (R) theory to Lorentz non-invariant models. Phys.

Rep. 2011, 505, 59. [CrossRef]

http://doi.org/10.1002/andp.19053221004
http://dx.doi.org/10.1093/mnras/150.1.1
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1016/j.physrep.2011.04.001


Entropy 2022, 24, 150 18 of 19

6. Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic
acceleration. Phys. Rev. D 2003, 68, 123512. [CrossRef]

7. Nojiri, S.; Odintsov, S.D. Modified f (R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark
energy universe. Phys. Rev. D 2006, 74, 086005. [CrossRef]

8. Momeni, D.; Gholizade, H. A note on constant curvature solutions in cylindrically symmetric metric f (R) Gravity. Int. J. Mod.
Phys. D 2009, 18, 1719. [CrossRef]

9. Momeni, D.; Raza, M.; Myrzakulov, R. Construction of a holographic superconductor in F (R) gravity. Eur. Phys. J. Plus 2014,
129, 30. [CrossRef]

10. Momeni, D.; Myrzakulov, R.; Güdekli, E. Cosmological viable mimetic f (R) and f (R, T) theories via Noether symmetry. Int. J.
Geom. Methods Mod. Phys. 2015, 12, 1550101. [CrossRef]

11. Odintsov, S.; Oikonomou, V. Autonomous dynamical system approach for f (R) gravity. Phys. Rev. D 2017, 96, 104049. [CrossRef]
12. Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Maximal neutron star mass and the resolution of the hyperon puzzle in modified

gravity. Phys. Rev. D 2014, 89, 103509. [CrossRef]
13. Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod.

Phys. 2007, 4, 115. [CrossRef]
14. Astashenok, A.V.; Capozziello, S.; Odintsov, S.D. Further stable neutron star models from f(R) gravity. J. Cosmol. Astropart. Phys.

2013, 2013, 040. [CrossRef]
15. Olmo, G.J. Post-Newtonian constraints on f (R) cosmologies in metric and Palatini formalism. Phys. Rev. D 2005, 72, 083505.

[CrossRef]
16. Olmo, G.J.; Rubiera-Garcia, D. Palatini approach to modified gravity: F (R) theories and beyond. Phys. Rev. D 2011, 84, 124059.

[CrossRef]
17. Olmo, G.J.; Rubiera-Garcia, D. Nonsingular Black Holes in ƒ (R) Theories. Universe 2015, 1, 173–185. [CrossRef]
18. Wald, R.M. General Relativity; University of Chicago Press : Chicago, IL, USA, 1984.
19. Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ.

Gravit. 2008, 40, 357. [CrossRef]
20. Sotiriou, T.P. Modified actions for gravity: Theory and phenomenology. arXiv 2007, arXiv:0710.4438.
21. Occhionero, F.; Veccia-Scavalli, L.; Vittorio, N. The formation of cavities around cosmological condensations. Astron. Astrophys.

1981, 97, 169.
22. Hausman, M.A.; Olson, D.W.; Roth, B.D. The evolution of voids in the expanding universe. Astrophys. J. 1983, 270, 351. [CrossRef]
23. Occhionero, F.; Santangelo, P.; Vittorio, N. Condensations and Cavities. In Symposium-International Astronomical Union; Cambridge

University Press: Cambridge, UK, 1983; Volume 104, p. 217.
24. Goryachev, M.; McAllister, B.; Tobar, M.E. Probing dark universe with exceptional points. Phys. Dark Universe 2019, 23, 100244.

[CrossRef]
25. Harrison, B.K. Exact three-variable solutions of the field equations of general relativity. Phys. Rev. 1959, 116, 1285. [CrossRef]
26. Ellis, G.R. Dynamics of pressure-free matter in general relativity. J. Math. Phys. 1967, 8, 1171. [CrossRef]
27. Herrera, L.; Pavón, D. Hyperbolic theories of dissipation: Why and when do we need them. Phys. A Stat. Mech. Appl. 2002,

307, 121. [CrossRef]
28. Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting

Schwarzschild-like geometry. Int. J. Mod. Phys. 2006, 15, 1387. [CrossRef]
29. Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010,

82, 027301. [CrossRef]
30. Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Vernov, S.Y. Duality between

static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018,
98, 124028. [CrossRef]

31. Mädler, T. Affine-null metric formulation of general relativity at two intersecting null hypersurfaces. Physi. Rev. D 2019,
99, 104048. [CrossRef]

32. Ren, J. Phase transitions of hyperbolic black holes in anti-de Sitter space. arXiv 2019, arXiv:1910.06344.
33. Maciel, A.; Le Delliou, M.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum

Gravity 2020, 37, 125005. [CrossRef]
34. Herrera, L.; Di Prisco, A.; Ospino, J.; Witten, L. Geodesics of the hyperbolically symmetric black hole. Phys. Rev. D 2020,

101, 064071. [CrossRef]
35. Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037.

[CrossRef]
36. Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Influence of electromagnetic field on hyperbolically symmetric source. Eur. Phys. J. 2021, 136, 1.

[CrossRef]
37. Yousaf, Z.; Khlopov, M.Y.; Bhatti, M.Z.; Asad, H. Hyperbolically Symmetric Static Charged Cosmological Fluid Models. Mon.

Not. R. Astron. Soc. 2022, 510, 4100–4109. [CrossRef]
38. Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of hyperbolically symmetric fluids. Symmetry 2021, 13, 1568. [CrossRef]
39. Lobo, F.S.; Mimoso, J.P. Possibility of hyperbolic tunneling. Phys. Rev. D 2010, 82, 044034. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevD.74.086005
http://dx.doi.org/10.1142/S0218271809015266
http://dx.doi.org/10.1140/epjp/i2014-14030-6
http://dx.doi.org/10.1142/S0219887815501017
http://dx.doi.org/10.1103/PhysRevD.96.104049
http://dx.doi.org/10.1103/PhysRevD.89.103509
http://dx.doi.org/10.1142/S0219887807001928
http://dx.doi.org/10.1088/1475-7516/2013/12/040
http://dx.doi.org/10.1103/PhysRevD.72.083505
http://dx.doi.org/10.1103/PhysRevD.84.124059
http://dx.doi.org/10.3390/universe1020173
http://dx.doi.org/10.1007/s10714-007-0551-y
http://dx.doi.org/10.1086/161128
http://dx.doi.org/10.1016/j.dark.2018.11.005
http://dx.doi.org/10.1103/PhysRev.116.1285
http://dx.doi.org/10.1063/1.1705331
http://dx.doi.org/10.1016/S0378-4371(01)00614-8
http://dx.doi.org/10.1142/S0218271806009121
http://dx.doi.org/10.1103/PhysRevD.82.027301
http://dx.doi.org/10.1103/PhysRevD.98.124028
http://dx.doi.org/10.1103/PhysRevD.99.104048
http://dx.doi.org/10.1088/1361-6382/ab8759
http://dx.doi.org/10.1103/PhysRevD.101.064071
http://dx.doi.org/10.1103/PhysRevD.103.024037
http://dx.doi.org/10.1140/epjp/s13360-021-01866-2
http://dx.doi.org/10.1093/mnras/stab3546
http://dx.doi.org/10.3390/sym13091568
http://dx.doi.org/10.1103/PhysRevD.82.044034


Entropy 2022, 24, 150 19 of 19

40. Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically Symmetric Versions of Lemaitre–Tolman–Bondi Spacetimes. Entropy 2021,
23, 1219. [CrossRef]

41. Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. arXiv 2003, arXiv:astro-ph/0303041.
42. Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004,

70, 043528. [CrossRef]
43. Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Structure scalars and their evolution for massive objects in f (R) gravity. Eur. Phys. J. C 2021,

81, 1. [CrossRef]
44. Loveridge, L.C. Physical and geometric interpretations of the Riemann tensor, Ricci tensor, and scalar curvature. arXiv 2004,

arXiv:gr-qc/0401099.
45. Coley, A. Classification of the Weyl tensor in higher dimensions and applications. Class. Quantum Gravity 2008, 25, 033001.

[CrossRef]
46. Tolman, R.C. On the use of the energy-momentum principle in general relativity. Phys. Rev. 1930, 35, 875. [CrossRef]
47. Bel, L. Inductions électromagnétique et gravitationnelle. In Annales de l’institut Henri Poincaré; NUMDAM: Paris, France, 1961;

Volume 17, p. 37.
48. Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Structure and evolution of self-gravitating objects and the

orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [CrossRef]
49. Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J. Lemaitre-Tolman-Bondi dust spacetimes: Symmetry properties and some extensions

to the dissipative case. Phys. Rev. D 2010, 82, 024021. [CrossRef]
50. Herrera, L. On the meaning of general covariance and the relevance of observers in general relativity. Int. J. Mod. Phys. D 2011,

20, 2773. [CrossRef]
51. Yousaf, Z.; Bamba, K.; Bhatti, M.Z. Influence of modification of gravity on the dynamics of radiating spherical fluids. Phys. Rev.

D 2016, 93, 064059. [CrossRef]
52. Yousaf, Z.; Bamba, K.; Bhatti, M.Z. Causes of irregular energy density in f (R, T) gravity. Phys. Rev. D 2016, 93, 124048. [CrossRef]
53. Yousaf, Z.; Bhatti, M.Z.; Ali, A. Electromagnetic field and quasi-homologous constraint for spherical fluids in f (R, T) gravity. Eur.

Phys. J. Plus 2021, 136, 1013. [CrossRef]
54. Herrera, L. New definition of complexity for self-gravitating fluid distributions: The spherically symmetric, static case. Phys. Rev.

D 2018, 97, 044010. [CrossRef]
55. Andrade, J.; Contreras, E. Stellar models with like-Tolman IV complexity factor. Eur. Phys. J. C 2021, 81, 889. [CrossRef]
56. Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self-gravitating

fluid distributions. Phys. Rev. D 2018, 98, 104059. [CrossRef]
57. Herrera, L.; Di Prisco, A.; Carot, J. Complexity of the Bondi metric. Phys. Rev. D 2019, 99, 124028. [CrossRef]
58. Yousaf, Z.; Bhatti, M.Z.; Naseer, T. New definition of complexity factor in f (R, T, RµνTµν) gravity. Phys. Dark Universe 2020,

28, 100535. [CrossRef]
59. Yousaf, Z.; Bhatti, M.Z.; Hassan, K. Complexity for self-gravitating fluid distributions in f (G, T) gravity. Eur. Phys. J. Plus 2020,

135, 397. [CrossRef]
60. Yousaf, Z.; Bhatti, M.Z.; Asad, H. Hyperbolically symmetric sources in f (R, T) gravity. Ann. Phys. 2022, 437, 168753. [CrossRef]
61. Darmois, G. Memorial of Mathematical Sciences Booklet; Gauthier-Villars: Paris, France, 1927; Volume 25.
62. Senovilla, J.M. Junction conditions for F (R) gravity and their consequences. Phys. Rev. D 2013, 88, 064015. [CrossRef]
63. Herrera, L.; Prisco, A.D.; Ospino, J.; Fuenmayor, E. Conformally flat anisotropic spheres in general relativity. J. Math. Phys. 2001,

42, 2129. [CrossRef]
64. Zeldovich, Y.B. The equation of state at ultrahigh densities and its relativistic limitations. Sov. Phys. JETP 1962, 14, 1143.
65. Kruskal, M.D. Maximal extension of Schwarzschild metric. Phys. Rev. 1960, 119, 1743. [CrossRef]
66. Israel, W. New interpretation of the extended Schwarzschild manifold. Phys. Rev. 1966, 143, 1016. [CrossRef]
67. Herrera, L.; Witten, L. An Alternative Approach to the Static Spherically Symmetric, Vacuum Global Solution to the Einstein

Equations. Adv. High Energy Phys. 2018, 2018, 3839103. [CrossRef]

http://dx.doi.org/10.3390/e23091219
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1140/epjc/s10052-020-08588-2
http://dx.doi.org/10.1088/0264-9381/25/3/033001
http://dx.doi.org/10.1103/PhysRev.35.875
http://dx.doi.org/10.1103/PhysRevD.79.064025
http://dx.doi.org/10.1103/PhysRevD.82.024021
http://dx.doi.org/10.1142/S0218271811020676
http://dx.doi.org/10.1103/PhysRevD.93.064059
http://dx.doi.org/10.1103/PhysRevD.93.124048
http://dx.doi.org/10.1140/epjp/s13360-021-01962-3
http://dx.doi.org/10.1103/PhysRevD.97.044010
http://dx.doi.org/10.1140/epjc/s10052-021-09695-4
http://dx.doi.org/10.1103/PhysRevD.98.104059
http://dx.doi.org/10.1103/PhysRevD.99.124028
http://dx.doi.org/10.1016/j.dark.2020.100535
http://dx.doi.org/10.1140/epjp/s13360-020-00408-6
http://dx.doi.org/10.1016/j.aop.2021.168753
http://dx.doi.org/10.1103/PhysRevD.88.064015
http://dx.doi.org/10.1063/1.1364503
http://dx.doi.org/10.1103/PhysRev.119.1743
http://dx.doi.org/10.1103/PhysRev.143.1016
http://dx.doi.org/10.1155/2018/3839103

	Introduction
	Basic Formalism of the f(R) Theory
	Modified Field Equations
	Intrinsic Curvature and Conformal Tensor
	Orthogonal Splitting of Curvature Tensors
	Hyperbolically Symmetric Static Solutions
	Conformally Flat Solutions
	A Model with Zero Complexity Factor
	Stiff Equation of State

	Conclusions
	Appendix A
	References

