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Abstract: The development of artificial intelligence and the Internet of things has motivated extensive
research on self-powered flexible sensors. The conventional sensor must be powered by a battery
device, while innovative self-powered sensors can provide power for the sensing device. Self-
powered flexible sensors can have higher mobility, wider distribution, and even wireless operation,
while solving the problem of the limited life of the battery so that it can be continuously operated
and widely utilized. In recent years, the studies on piezoelectric nanogenerators (PENGs) and
triboelectric nanogenerators (TENGs) have mainly concentrated on self-powered flexible sensors.
Self-powered flexible sensors based on PENGs and TENGs have been reported as sensing devices
in many application fields, such as human health monitoring, environmental monitoring, wearable
devices, electronic skin, human–machine interfaces, robots, and intelligent transportation and cities.
This review summarizes the development process of the sensor in terms of material design and
structural optimization, as well as introduces its frontier applications in related fields. We also look
forward to the development prospects and future of self-powered flexible sensors.

Keywords: self-power; piezoelectric; triboelectric; sensor; AI; flexible electronics

1. Introduction

Multifunctional flexible sensors have been widely used in human health detection,
intelligent robots, and other fields in recent years because of their characteristics of high
sensitivity, high resolution, and low cost [1]. Scientists have achieved stretchable [2], self-
healing [3], degradable [4], and multifunctional flexible sensors [5] through different kinds
of material design. However, conventional flexible sensors used to require external energy
devices to provide energy to obtain the signal of sensing. Energy harvesters [6,7] are an
integral unit of the self-powered multifunctional sensor. In response to this challenge,
scientists continue to study the use of energy in the natural world to convert energy into
the sensor to fabricate the realization of self-powered sensors.

In the context of global sustainable development, energy-storage devices with high
performance [8–15] have attracted widespread attention. With the development of mul-
tifunctional sensors, higher requirements have been put forward for their related perfor-
mance [16–21] such as obtaining real-time and effective energy without any interruption.
The proposal of PENGs [22] and TENGs [23] can effectively convert pressure and friction
into energy output. Furthermore, no matter how small the deformation of the mechanical
force is, it can be converted into adequate energy [24–26]. This dramatically promotes
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the scope of application. The emergence of TENGs and PENGs provides a stable and
effective way to convert weak mechanical energy into electrical energy. PENG realizes the
energy conversion based on the piezoelectric effect. The piezoelectric effect refers to the
deformation of piezoelectric materials under the action of mechanical force, whereby the
phenomenon of internal polarization occurs, and a charge with the opposite sign appears
on the surface of the material. The charge density generated by the force is proportional to
the magnitude of the force. In fact, the piezoelectric effect is a process in which the mechan-
ical energy is converted into electrical energy. The unique feature of the piezoelectric effect
is that it is reversible [21]. The basic principle of the TENG is based on the triboelectric
effect. When the electrodes are in contact, the two films with very different electronega-
tivity are rubbed; then, when they are separated, they carry opposite charges and form
a potential difference. The potential difference causes electrons to flow between the two
electrodes to balance the electrostatic potential difference between the films. Once the
two contact surfaces overlap again, the potential difference generated by the triboelectric
charge disappears, such that the electrons flow in the opposite direction. Through such
constant contact and separation, the output end of the friction generator outputs alternating
current pulse signals, thereby outputting electric energy to the outside [23]. These two
kinds of nanogenerators have been widely studied because of their advantages [27], such
as light weight, small size, wide range of materials, high output power, and stability. The
output performance of TENGs and PENGs has been dramatically improved due to the
progress in theory and practice [28]. Moreover, some new materials have been used to
manufacture high-performance self-powered multifunctional sensors [29–32]. Therefore,
the application of TENGs and PENGs as self-powered multifunctional sensors has been
greatly developed [29–34]. They can not only be used as energy storage devices but also
realize the function of sensing. These electrical signals can be connected to the computer to
realize human–machine interfaces.

This paper summarizes self-powered flexible sensors based on TENGs and PENGs
from two aspects: material and structure design. While summarizing their applications
in electronic skin, human–machine interfaces, and robots, we also look forward to the
direction of future development.

2. Material Design
2.1. Stretchability

Stretchability is one of the important advantages of flexible sensors [35]. Conventional
self-powered sensors based on a hard and brittle substrate cannot be used in large mechan-
ical deformations. However, a stretchable flexible sensor can solve this problem, being of
more practical value, including wearable technology and E-skin of soft robots [36–39]. Fur-
thermore, a flexible sensor with stretchability can maintain a better sensing function even
when stretched to several times its natural length [40]. Current self-powered stretchable
flexible sensors are mainly divided into two structures: single-fiber-shaped and flat-shaped
sensors.

(1) Fiber-shaped structure. The structure of a single fiber can achieve excellent stretcha-
bility. Highly sensitive and stretchable fibers can be woven into smart fabrics and wearable
electronic products. Mokhtari et al. [41] fabricated nanostructured hybrid polyvinylidene
fluoride (PVDF)/reduced graphene oxide (rGO)/barium–titanium oxide (BT) piezoelectric
coiled fibers by melt spinning and knit and coil fabrication. The twisted fiber endured axial
extension up to 100% strain. The peak voltage output reached 1.3 V under the strain of
100%. The coil structural sensors monitor the bending angle of the finger (Figure 1a). Dong
et al. [42] used polytetrafluoroethylene (PTFE) and a liquid metal alloy to prepare a stretch-
able microstructure fiber through the thermal drawing process. Regardless of repeated
large deformations, the strains of the fiber could be stretched up to 560%. The fibers woven
into the clothes act as a sensor to monitor breathing and the bending of the hand (Figure 1b).
Furthermore, they weaved the fibers into deformable textiles, the electrical output signal
of which could reach 490 V and 175 nC. Zheng et al. [43] prepared liquid metal (LM)
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sheath–core microfibers through the coaxial wet-spinning process. The maximum strain of
the microfibers could reach 1170%. The glove woven by the LM sheath–core microfibers
can monitor the activities of the finger and the wrist. Chen et al. [44] reported super-elastic
fibers created using a two-step soluble-core fabrication method to form a polyvinyl alcohol
(PVA) core/styrene–ethylene–butylene–styrene (SEBS) shell platform. Even in the case
of 1900% strain, the ultra-stretchable fiber could maintain good conductivity. Combined
with triboelectric nanogenerator technology, these self-powered multifunctional sensors
can monitor sports performance. They constructed a fiber-based sensing net attached to a
baseball glove’s inner surface, where it could locate hit points with different capture speeds
(Figure 1c).

(2) Flat-shaped structure. Although the axial stretchability of flat-shaped flexible
sensors is not as good as that of single-fiber-shaped structures, flat-shaped sensors have
multidirectional stretchability. Wang’s research group [45] fabricated a TENG with double-
layer rubber that can produce triboelectric charge because of the inhomogeneous strain of
the rubber. The upper layer was a network of Ag nanowires, and the lower layer was a
Ni macro-porous foam-like structure. When the strain was 100%, it could maintain good
stability within 1300 cycles. This is the first time that a double-layer silicone rubber structure
(DS-TENG) was used to characterize the three-dimensional deformation of muscles. It
reflects the deformation process of different muscle areas by monitoring the output voltage
change (Figure 1d). Lu et al. [46] used several single small-sized TENG units on a rubber
substrate to form a stretchable, flexible triboelectric nanogenerator with a laddered shape.
It exhibited excellent performance under the strain of 120% and curvature of 90◦. The
sensor can monitor hand gestures and the motion state of the human (Figure 1e). Guo
et al. [47] used low-temperature vulcanized silicon rubber and used hydrogen bonding
crosslinking among polyethylene oxide (PEO), waterborne polyurethane (WPU), and
phytic acid (PA) to fabricate the current collector (Figure 1f). The sensor could stretch up to
318%. It had high electrical output with an open-circuit voltage of 197 V. The patch could
maintain good stability and be used as E-skin to effectively monitor different forms of force.
Cheng et al. [48] used an inorganic modified composite film (polydimethylsiloxane (PDMS)
and organo-montmorillonite-cetyltrimethylammonium bromide (OMMT-CTAB)) and ZnO
nanowire prepared via the vapor–liquid–solid growth process to fabricate a stretchable
triboelectric nanogenerator. The maximum strain was up to 580%. Its open-circuit voltage
and short-circuit current could reach 160 V and 12.4 µA. It showed high sensitivity in
dynamic force, temperature, and position detection. These sensitive functions allow a
wide range of applications in smart robotics and touch screens. Zhang et al. [49] used
conductive carbon black (CB, stretchable layer) and dielectric thermoplastic polyurethane
(TPU, triboelectric layer) to fabricate a CT-TENG. The maximum strain was up to 646%.
Through corona charging, the open-circuit voltage could reach up to 41 V. This sensor can
monitor the physical signal of human motions, such as wrist bending and finger tapping.

It can be seen from Table 1 that, whether it is a single-fiber-shaped structure or a
flat-shaped structure, the self-powered flexible sensor exhibits excellent scalability and
output performance, which significantly improves its scope of application.
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Figure 1. (a) Photos of PVDF melt-spun fiber. Reprinted from Ref. [41]. (b) Schematic of thermal drawing process. Reprinted
from Ref. [42]. (c) Schematic of the fiber drawing process. Reprinted from Ref. [44]. (d) Schematic of DS-TENG. Reprinted
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Table 1. Material system and performance of self-powered stretchable flexible sensors with different shapes and struc-
tures [41–54].

Structure Material Max Strain Stable
Working State

Open-Circuit
Voltage

Short-Circuit
Current Max out Power Self-Powered

Mechanism

Fiber-shaped

PVDF/rGO/BT ≥100% 100% 1.3 V / / PENG
PTFE/LM ≥560% / 490 V / / TENG

PVDF–HFP–TFE/LM 1170% / 5.11 V 93 nA / TENG
PVA/SEBS ≥1900% / / 10 nA 10.2 µW/m2 TENG

Zn/SA/PAA >10,000% / 9.7 V / 32 µW/m2 TENG

Flat-shaped

AL/PPy/Au ≥20% 20% 2.4 V / 2450 µW/cm2 P-TENG
AgNW/PEDOT/H-PDMS ≥50% 50% 100 V / 327 mW/m2 TENG

AgNWs/BaTO3/PDMS ≥60% 60% 105 V / 102 mW/cm2 TENG
AgNWS/Silicone rubber/Ni foam ≥100% 100% 12–15 V 60–80 nA / TENG

PTFE/Elastuc rubber/Al ≥100% 120% / / / TENG
PEO/WPU/PA/LTV silicon rubber 318% / 197 V 17.3 µA 2.3 W/m2 TENG

PDMS/OMMT-
CTAB/AgNWS/ZnONWs 580% / 160 V 14.2 µA 0.087 mW/cm2 TENG

CB/TPU 646% / 41 V 0.262 µA / TENG
Gel–TA 1600% / 1.12 V / / PENG
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2.2. Self-Healing

Human skin, as the largest organ in the human body, perceives the external environ-
ment (pressure, temperature, etc.) and serves as a barrier to protect the body. However,
more importantly, the human skin possesses intrinsic self-healing ability to fully recover
from physical or mechanical damage by triggering inherent repair mechanisms to alleviate
or avert injure and ultimately maintain the integrity of structure and function [55,56].
Generally, wearable devices, especially self-powered sensors, are readily scratched and/or
mechanically cut due to inevitable internal and/or external damage (e.g., cracks formed by
bending, stretching, and friction). Accordingly, various natural and biomimetic materials
with self-healing function have been integrated into self-powered sensors to improve their
robustness, stability, service life, safety, and reliability.

Conventionally, most existing self-healing materials are polymers (including natural
and synthetic), and various physical, chemical, and even physicochemical approaches
have been used to establish self-healing systems. By effectively constructing dynamic
reversible intermolecular interactions, chemical approaches have been widely adopted
to promote self-repair, including introducing reactive chain ends and supramolecular
chemistry (Figure 2a). Therein, hydrogen bonds are the most widely adopted due to the
advantages of directionality, moderate strength, and short healing time.

Recently, Parida et al. [57] demonstrated a spontaneous healing slime-based ionic-skin
TENG featuring dynamic hydrogen bonds of the ionic conductor (as the current collector),
which could restore its initial energy-harvesting performance even after 300 cycles of
repeated mechanical damage. Despite the silicone rubber layer suffering mechanical
damage, the surface charges remained the same as those of the nondamaged silicone
rubber. Thus, the silicone rubber did not significantly influence the capability of the
whole device due to the presence of the self-healing current collector (Figure 2b). Wang
et al. [58] proposed a self-healing TENG utilizing an ionic hydrogel (PVA/poly(ethylene
imine) (PEI)/LiCl) electrode based on the entanglement between polymer chains and
dynamic hydrogen bonds to overcome the vulnerability of traditional metallic electrodes,
whereby the whole structure and performance of the hydrogel could be quickly restored.
After 10 min of self-healing, the wound coalesced wholly and vanished within 30 min
at ambient temperature. Moreover, the maximum output of the assembled TENG could
reach 78.44 V, while the output remained steady even after 10 cycles of damaging and
self-healing processes (Figure 2c).

Most self-powered sensors usually employ two idiosyncratic materials to constitute
the elastic layer (piezoelectric and triboelectric materials) and electrode layer (metal and
conductive hydrogel). Thus, it is still urgent to realize complete self-healing of fundamental
components after fracture. Accordingly, Xu et al. [59] fabricated a fully self-healing TENG
by integrating a healable polydimethylsiloxane–polyurethane (PDMS–PU) elastic layer
and an innovative healable magnetic electrode layer. The self-healing ability of PU–PDMS
was ascribed to the introduction of disulfide links and multiple dynamic hydrogen bonds.
Accordingly, based on the synergetic mechanism, both the open-circuit voltage and the
short-circuit current of the constructed device could recover >95% of the initial values even
after the fifth damage-healing cycle (Figure 2d). Thereafter, Xun et al. [60] developed a
highly vigorous and self-powered E-skin with a low modulus misfit by constructing two
self-healing polyurethanes (PUs) with similar structures. The outstanding self-healing
power of the E-skin was realized by introducing disulfide bonds and multiple dynamic
hydrogen bonds. When cutting a groove on the insulated PU layer or the conductive PU
layer, even at the interface between the insulated and conductive PU layer, the groove
gradually vanished after 5 min and fully recovered its initial state after 1 day at room
temperature. After fully self-healing, the E-skin not only recovered its structure but also
efficiently restored its stretchability (92%) and sensing performance (71%).

To enhance the self-healing capability of self-powered sensors, self-healing pro-
cesses feature hydrogen bonds and other interactions (such as disulfide bonds and metal-
coordination bonds). For example, Han et al. [61] prepared a flexible and self-healing
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single-electrode TENG based on polyacrylic acid–gelatin–sodium chloride hydrogel (PAA–
Gel–NaCl), which could rapidly self-heal within 2.5 min at room temperature. The excellent
self-healing properties of the hydrogel were deemed to be the combined effect of the triple
helix crosslinking of gelatin and the dynamic reversible crosslinking network formed by
the dynamic hydrogen bond between PAA and Gel molecules. Jing et al. [62] reported an
ultra-stretchable and self-healing composite hydrogel based on polyacrylic acid/nanochitin
(PAA/NCT) by introducing dual crosslinked networks. Due to the presence of dynamically
reversible metal coordination bonds and multiple dynamic hydrogen bonds, it gave the
hydrogel outstanding self-healing efficiency (97%). When it was assembled into a TENG
based on a single-electrode model, the device could be used not only as an efficient energy
harvester, but also as a self-powered pressure sensor. Jiang et al. [63] reported a highly
stretchable TENG based on self-healing PDMS–PUx–PA1-x–Zn (PU: polyurethane, PA:
polyamide) elastomers, which could simultaneously and quickly self-heal after fracture
and wear at room temperature. By incorporating dynamic metal–ligand coordination and
hydrogen bonds into PDMS networks, the self-healing polymer possessed outstanding
self-healing ability within 10 min at room temperature (100% efficiency). When the assem-
bled TENG was working in contact-separation mode, the electrical outputs could reach
140 V, 40 nC, and 1.5 µA. Even when stretched to breaking point or scratched to introduce
wear, it could recover its electrical outputs within 20 min and 2 h at room temperature,
respectively.
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Benefiting from the outstanding self-healing ability of advanced materials by intro-
ducing dynamic reversible interactions, self-powered sensors exhibit superb performance
in applications, whether they serve as the power source or the whole system.

2.3. Degradability

Degradable materials used in self-powered sensors are widely investigated because
of their green and recyclable properties. Since the birth of the world’s first cellulose
paper-based piezoelectric nanogenerator (PENG) in 2011 [64], green and recyclable nano-
generators have entered people’s sight. Wang’s team was the first to use paper-based
materials to prepare TENGs [65]. However, in this experiment, the paper-based material
was only used as the inner layer spacer and was not used for the triboelectric layer.

The use of degradable materials to prepare self-powered sensors is based on paper-
based recyclable self-powered sensors. Zheng et al. [66] reported for the first time the use
of artificial degradable materials to prepare the triboelectric layer in self-powered sensors,
and they proposed for the first time the concept of “degradable and implantable TENGs”,
which extended the application of TENGs into the field of medical health monitoring and
realized degradation.

At present, degradable materials used in self-powered sensors can be divided into
three categories: animal-based degradable materials, plant-based degradable materials,
and artificial degradable materials.

(1) Animal-based degradable materials. Currently, the most popular degradable ma-
terials used in self-powered sensors are animal-based materials. Among them, proteins
and their derivatives, such as silk and egg white [67,68], can be used as the triboelectric
layer of TENGs. These proteins can achieve rapid degradation in the environment of
proteases and microorganisms while having good biocompatibility. In addition, the chitin
fibers in the hard shells (crabs) of crustaceans are also degradable materials that can be
used to prepare triboelectric layers [69,70]. At present, the preparation of biodegradable
TENGs from animal-based materials is attracting more and more research attention [71–74].
Gong et al. [71] used a solution casting method to fabricate a conductive silk fibroin film
(SFF), deposited a silver layer onto the PVA network by magnetron sputtering, and then
transferred the Ag/PVA network to the SFF (Figure 3a). They developed a triboelectric
nanogenerator (Bio-TENG) with high light transmittance, biocompatibility, biodegrad-
ability, softness, and flexibility. However, the chemical stability and fragility of the silk
fibroin membrane limited its application. Xu et al. [72] studied the mesoscopic doping
of regenerated silk fibroin to address the inherent brittleness and poor chemical stability
of pure silk fibroin films. Their design can be used in self-powered mechanical sensor
communication systems in smart cars. For a long time, the development of degradable
PENGs was restricted by toxicity and high cost. Research on biodegradable PENGs has
benefited from the preparation of TENG and PENG composite nanogenerators in recent
years. Kim et al. [75] developed a biodegradable composite nanogenerator based on silk
fibroin, which has a controllable lifespan and can power implantable devices. By using
silk fibroin solution and lead-free ferroelectric nanoparticles, the composite material was
made into two-dimensional thin films and one-dimensional wires. At present, there are
few studies on degradable PENGs, and the degradable materials used in PENGs are
mainly animal-based materials. Hoque et al. [76] reported two high-performance PENGs
based on chitin nanofibers (CNFs) extracted from crab shells. They were pure CNF-based
PENG and CNF/PVDF nanocomposite membrane-based devices. The biocompatible and
biodegradable PENGs can be used in portable gadgets.
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(2) Plant-based degradable materials. At present, self-powered sensors made from
plant-based materials are regarded among the main representatives of future green elec-
tronic products and are considered to have great development prospects. In particular,
PENGs and TENGs based on paper/cellulose materials are a new source of renewable
energy with low cost and a rich source of raw materials, attracting the attention of many
researchers [26,77,78,80,81]. Luca et al. [77] took the lead in using plant-based alginate and
a GO composite film in a TENG, and a composite film was prepared (Figure 3b). However,
the final result was far from the output power density obtained when using nanostructured
TENGs. Paper is the most widely used material in plant-based degradable designs, and
there have been many reports on paper-based PENGs and TENGs. Shi et al. [26] developed
a flexible high-performance PENG using regenerated cellulose/BaTiO3 (C/BT) aerogel
paper based on polydimethylsiloxane (PDMS) nanocomposites. Nie et al. [78] developed a
new type of cellulose paper-based D-TENG, which had strong, self-cleaning, and super-
hydrophobic properties and could harvest energy from raindrops. The honeycomb water
droplet energy-harvesting device can power computers and calculators and can also be
used on the roof.

(3) Artificial degradable materials. Artificial degradable materials synthesized by vari-
ous methods have played an important role in self-powered sensors [82,83]. Recently, there
have been some reports on the application of artificially degradable materials to TENGs.
As mentioned above, Zheng et al. [66] first proposed the use of artificially degradable
materials to prepare the triboelectric layer in self-powered sensors.. The triboelectric layer
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was made from different degradable materials and encapsulated with poly(L-lactide-co-
glycolide) (PLGA) or PVA (Figure 3c). The study observed the degradation of BD-TENG
in vitro and found that it could be completely degraded within 90 days. Subsequently, Li
et al. [79] used artificially degradable materials together with gold nanorods to prepare
a triboelectric layer, and proposed for the first time the use of NIR light to adjust the
degradation rate of the TENG implanted in the body. The triboelectric layer was made
of different degradable materials. Biodegradable polymer (BDP) doped with AuNRs was
used as the bottom substrate, and the other layer of magnesium was deposited as the top
electrode. The top and bottom parts were sealed with BDP solution. The study evaluated
the in vitro degradation of various BD-iTENGs (size, 1.2 cm × 1.2 cm; thickness, 0.65 mm)
under different conditions.

It can be shown from Table 2 that, when artificially degradable materials are used to
prepare the triboelectric layer, the value of the open-circuit voltage is larger, which can
exceed 20 V. On the other hand, when animal-based degradable materials are used to
prepare the triboelectric layer, the open-circuit voltage and short-circuit current are also
relatively large.

Table 2. Comparisons of piezoelectric and triboelectric self-powered sensors made from different degradable
materials [27,67,72,73,77–80].

Degradable
Material Type Voltage and Current Power Density or

Power Application Scenario Self-Powered
Mechanism

Animal-Based

13 V, 0.4 µA 0.8 W/m2
LEDs, digital watch, touch

perception, switch for Internet of
things

Bio-TENG

50 V, 3 µA / Control switches, electrochromic
automotive rearview mirror SF-TENG

22 V, 0.12 µA 97 µW/cm3 Capacitor, LEDs CPENG
49 V, 1.9 µA 6600 µW/cm3 Capacitor, LEDs PCPENG

Plant-Based
1.3 V, 10−4 mA/cm2 1.33 mW/m2 Pressure sensor systems TENG

15.5 V, 3.3 µA 11.8 µW / C/BT-5 PENG
21.6 V, 10 nC, 16 µW 16 µW Capacitor, Smart roof tile D-TENG

Artificial material

40 V, 1 µA / Tissue repair BD-TENG-PLGA
26 V, 0.4 µA / Tissue repair BD-TENG-PVA
40 V, 1 µA / Tissue repair BD-TENG-PCL

28 V, 0.6 µA / Tissue repair BD-TENG-PHB/V

28 V, 220 nA / Tissue repair (wound healing
treatment) BD-iTENG

2.4. Multifunction

Multifunctional flexible sensors, which can effectively solve the problem of the lim-
ited application range of single-performance sensors, have been widely studied in recent
years [84]. Rao et al. [85] proposed a sensor which can simultaneously detect pressure and
temperature, composed of a thermosensitive electrode combining rGO and BiTO; the sensor
is suitable for tactile e-skin (Figure 4a). The tactile e-skin offers new routes for wearable
sensing and provides new insights for areas such as medical care and robotics (Figure 4b).
Guo et al. [86] designed a novel humidity sensor that could be used in monitoring hu-
midity via an airflow-induced triboelectric nanogenerator (Figure 4c). The novel device
is usually used in air humidity and flow rate monitoring. The PTFE film vibrates when
the air flows through the airflow-induced triboelectric nanogenerator (ATNG), and the
PTFE film constantly vibrates up and down with the air and rubs with two electrodes
becoming charged, determining the airflow rate according to different output currents. The
experimental results showed that, when the external environment RH (relative humidity)
was less than 80%, the air flow was correlated with the output current. The study suggested
that these ATNG devices can be used as self-powered sensors in air quality inspection.
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Choi et al. [87] fabricated a unique wearable self-powered pressure sensor combining
a piezo-transmittance microporous elastomer (PTME) and a thin-film organic solar cell
(OSC). The PTME micropores gradually closed with the change in applied pressure and
light transmittance after compression. This special optical property of PTME enabled the
OSC to respond to the current changes under pressure. This design was applied to robot
prosthetic finger sensing. The motion of the human finger is detected, and the signal is fed
back to manipulate the prosthetic robot finger to perform the same motion. %endparacol
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Traditional sensors have defects such as unstable performance and poor sensing
capabilities. Moreover, most TENGs have a planar structure, occupy an ample space, and
are very unsightly and inconvenient in wearable applications. Dong et al. [88] reported a
TENG-based e-textile designed with a three-dimensional five direction braid (3dB) structure
(Figure 4d). Under 3 Hz loading frequency and 20 N force, the device’s open-circuit voltage
could reach 90 V and the peak power density could reach 26 W/m3. The excellent structure
enabled 3dB-TENG to have shape adaptability and corresponding slight weight changes.
It was applied to an intelligent running shoe insole for human motion monitoring and
a carpet that automatically identifies identity. It can see from Table 3, lots of factors can
influence the properties of self-powered multifunctional flexible sensor.

A TENG’s performance is greatly affected by the environment’s humidity. Liu
et al. [89] proposed a strategy to enhance the output performance of TENGs in a high-
humidity environment through coupling dielectric material selection and surface-charge
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engineering. The output performance of the PTFE-based TENG was more stable in a
high-humidity environment, whereby the device charge density could retain ~97% of the
initial value. When it underwent 4500 cycles, the same was true at high temperatures. In a
high-humidity environment, the electrical output performance of the TENG based on ion
implantation on the surface of polytetrafluoroethylene (PTFE) was much higher than that
of other TENG devices.

Table 3. Comparisons of self-powered multifunctional flexible sensor.

Composition of Sensor Function Output
Performance Sensitivity Influence Factor

of Sensitivity
Mechanism of

Sensor

rGO, BiTO, PVDF,
PDMS

Temperature,
pressure / 1024 K, 5.07

mV/Pa
pyramidal

microstructures TENG

FTO glass, PTFE Humidity, airflow
rate 38 V, 4.2 µA / / TENG

PTME, OSC Pressure, wind
speed and direction / 0.101/kPa Optically active

structures
Piezo-

transmittance

Multiaxial winding yarn,
energy yarn

Human motion
monitoring,

safeguarding
entrance and

identity information

90 V, 26 W/m3 / / TENG

3. Structural Design
3.1. Principle and Structure of Nanogenerators
3.1.1. Principle and Structure of PENGs

Conventionally, PENGs consist of an insulation as piezoelectric layer sandwiched
between two conductors [90]. Inorganic piezoelectric materials cannot be directly applied
in the field of flexible electronic skin due to their brittleness [91]. PVDF and its copolymers
have better piezoelectric properties. At present, there are many kinds of inorganic materials
such as barium titanate (BaTiO3), zinc oxide (ZnO), and flexible polymer materials that
are usually used to prepare high-performance piezoelectric materials. PVDF and its
copolymers can be compounded to improve its polarization and obtain high-performance
piezoelectric materials by using inorganic nanomaterials as nucleating agents.

We detailed a complete electrical generation process for a PENG during one pressing
and releasing process (Figure 5a). In the beginning, the centers of positive and negative
charges in the piezoelectric layer coincide with one another. Thus, current generation
cannot be observed in the external circuit. The piezoelectric layer will deform when a
pressure load is applied, resulting in a decrease in thickness, and the internal charge center
is separated to form electric dipoles and a change in electric dipole moments. An electric
potential is formed between the two electrodes, and electron transfer occurs in the external
circuit to achieve a new equilibrium. In this process, mechanical energy is converted into
electrical energy. The balance of charges between the piezoelectric layer and the electrodes
leads to current in the external circuit disappearing when the maximum pressure is reached.
When the external force is released, the centers of cations and anions in the piezoelectric
layer gradually become overlapped again. The charges between the electrodes flow back
through the external circuit and rebalance. The piezoelectric layer returns to its original
thickness, and the current in the external circuit disappears with the external force fully
released (Figure 5a). A pulsed current can be formed in the external circuit by continuously
applying and releasing pressure.

At present, many attempts have been made to simultaneously improve the flexibility
and power output performance of nanogenerators [92–95]. They can be divided into three
types according to weaving methods and structural forms: 1D single-fiber-based PENG,
2D fabric-based PENG with textile forming structures, and 3D fabric-based PENG with
multilayer stacking structures.
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(1) 1D single-fiber-based PENG. The 1D single-fiber-based PENG is the simplest
structure of textile nanogenerators, which can be directly fabricated into 2D and 3D PENGs.
In recent years, many scholars conducted research and achieved good results. Mokhtari
et al. [96] fabricated a PENG (Figure 5b) in a structure with melt-spun PVDF filaments
braided around silver-coated nylon yarns. The measurement results showed that the peak
value of output voltage was 380 mV and the power density of 29.62 µW/cm3 could be
produced by compressing or bending the single-fiber nanogenerator, which was about
1559% higher than previously reported piezoelectric textiles. Razavi et al. [97] fabricated
another single-fiber nanogenerator (Figure 5c). This structure featured a number of PVDF
yarns braided around copper and coated by copper wires; it achieved excellent mechanical
performance and piezoelectric properties. They found that the mechanical performance
and power output were strongly determined by the structure of the nanogenerator as a
function of changing the number of PVDF yarns and outer copper wires.

(2) 2D fabric-based PENG with textile forming structures. Although the simple
structure of 1D single-fiber-based PENGs brings great convenience for manufacturing,
its electromechanical conversion efficiency and electric energy output do not meet ex-
pectations due to the limitations of size and structure. In order to obtain the desired
electrical power output, an efficient method is to weave 1D fibers into 2D or 3D fabrics.
Zhou et al. [98] reported a highly sensitive, self-powered, and wearable electronic skin
through weaving PVDF electrostatic spinning yarns of nanofibers coated with poly(3,4-
ethylenedioxythiophene) (PEDOT) (Figure 5d). Its sensitivity, test pressure range, response
time, and durability all showed excellent performance. Devices made from this form of fab-
ric are successfully used in monitoring muscle movement on the human face, monitoring
voices during singing, and monitoring current changes according to the wrist pulse before
and after exercise. Xue et al. [99] fabricated a 2D fabric-based PENG through braiding 1D
structure nanogenerators with PVDF electrospun yarns around a conductive nylon core
and coated by outer conductive nylon yarns (Figure 5e). The fabric was complex in that
the warp was made from polymers, and the weft was composed of a single-fiber PENG
and cotton yarns. The purpose of cotton yarns was to avoid short-circuits in generators.

(3) 3D fabric-based PENG with multilayer stacking structures. Fabric-based PENGs
can be prepared in the form of traditional textiles by stacking two-dimensional textile struc-
tures. A stacked nanofiber mat was alternatively composed of nanocomposite nanofibers
of BaTiO3 nanoparticles embedded in PU and polyvinylidene fluoride–trifluoroethylene
copolymer (PVDF–TrFE) nanofibers (Figure 5f). The surfaces of the piezoelectric layer
were coated with a stretchable graphite electrode. Then, the device was based on PDMS
as substrate [100]. This multilayer nanogenerator exhibited a high stretchability of 40%,
and it could be recycled 9000 times under 30% strain. These properties were attributed to
its nanostructure and variability of the electrodes. Liu et al. [101] fabricated a multilayer
PENG, constituting a composite of dopamine (DA)-coated TiO2 and PVDF as the piezoelec-
tric layer and Au as the electrode (Figure 5g). Furthermore, DA2.0 @TiO2/PVDF with a
84.33% β-phase was successfully fabricated via the solvothermal method. The piezoelectric
coefficients and remnant polarization of the DA2.0 @TiO2/PVDF were 163% and 278%
higher than those of the pure PVDF film.

PENGs can only convert pressure into electrical energy; however, in everyday life,
substantial power is lost because it cannot be collected, such as friction energy. In recent
years, scholars have focused more and more on the research of devices that can convert
friction energy into electrical energy [102–104]. Accordingly, TENGs can be used not only
for self-powered sensors but also as wearable devices.
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3.1.2. Principle and Structure of TENGs

A triboelectric effect exists between any two objects, even if they are of the same
material. There are cations and anions that appear when two different materials or irregular
surfaces of the same material come into contact. In addition, contact between materials at
two different temperatures also produces the triboelectric effect, whereby the hotter one
tends to be positively charged, while the cooler one tends to be negatively charged [105].
Therefore, the selection of TENG materials is very extensive; we usually refer to the charged
sequence when choosing the dielectric material.

TENGs can be divided into four models: the single-electrode model, lateral-sliding
model, vertical contact-separation model, and freestanding triboelectric-layer model (Figure 6).
Although they come in different forms, they all work on the basis of charged effects and
electrostatic induction. The single-electrode model (SE) only has one electrode and takes
the ground as the reference electrode (Figure 6a). The lateral-sliding model (LS) relies on
the relative motion of the contact surfaces to generate an electric current (Figure 6b). The
vertical contact-separation model (CS) generates current in the external circuit through
contact and separation motion vertical to the contact surface (Figure 6c). The freestanding
triboelectric-layer model (FT) has a dielectric layer that can move freely (Figure 6d).

Since the four models have the same working mechanism, the CS model is used below
as the representative to introduce TENG design. Firstly, the dielectric materials of the
upper and lower layers touch each other. They generate opposite electrical charges at the
contact surface and balance each other such that there is no current in the external circuit
(Figure 6b). When the upper and lower layers of the dielectric material are separated, the
positive and negative charges that are balanced on the contact surface are separated on both
sides, and electrons need to be transferred between the electrodes via an external circuit to
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achieve a new balance, thus generating a current. When the upper and lower dielectric
layers are completely separated, the entire nanogenerator is rebalanced and the current
disappears. On the contrary, when the upper and lower two-layer dielectric materials are
close to each other, the electrons on the electrode flow back through the external circuit
to form the current. The positive and negative charges reach a new balance in the contact
layer, and the current in the external circuit disappears when the two dielectric layers are
in full contact.

Like PENG, TENG can be divided into three types according to shape and structure:
1D single-fiber-based TENG, 2D fabric-based TENG with textile forming structures, and
3D fabric-based TENG structures.

Whether the structure is complex or not, its most basic principle involves a charged
effect and electrostatic induction. A single fiber/yarn is the smallest design unit for
textile-based TENGs. One-dimensional single-fiber-based TENGs are widely designed
and applied due to their excellent performance and simple structure. Zhang et al. [106]
reported an electronic yarn twisted into a Fermat spiral with outstanding performance and
dynamic structure stability. The single-fiber-based TENG consisted of spandex yarn as a
flexible core, braided conductive fibers as the electrode, and a PVDF–TrFE braided outer
as the dielectric. This typical single-electrode model relies on axial friction between the
dielectric layer and conductive fiber to generate electricity. It was proven to have ultrahigh
stability and excellent electrical output performance. It can be used for a variety of complex
energy acquisition and motion perception applications, such as gesture recognition and
droplet power generation. Han et al. [107] developed a multifunctional coaxial energy fiber,
which integrated energy collection (TENG), energy storage (a supercapacitor), and sensing
(pressure sensor). The inner core was an energy collector formed by PVA/H2SO4 wrapped
around carbon fiber, and the outer sheath was fibrous. The design constituted a self-
powered pressure sensor. In order to improve the power output, as well as promote their
wide application, textile-based TENGs usually exist in the form of fabric. Conductive or
dielectric fibers can be processed into fabrics via various textile forming techniques. Cong
et al. [108] built an FT-model TENG using nickel fibers as electrodes, PDMS coated with
Ni fibers, and other fabrics as dielectric materials. Although flexible nanogenerators have
good deformation properties, their resistivity is far from ideal compared with metal, which
undermines their potential for practical applications. Jing et al. [109] applied the basic
physical concepts of a small resistance in parallel circuits to triboelectric nanogenerator
fibers/textiles to reduce the negative effects of large resistance in extendable electrode
fibers. The results showed that the parallel structure significantly reduced the resistance and
increased the output power 11.8-fold. Two-dimensional textiles are popular in intelligent
textile design because of their relatively simple structure, convenient preparation, and
compatibility with existing textile processing technology. However, due to the limitation
of structure size in the thickness direction, the power output of traditional 2D textiles is
still low. In order to further improve the output performance of electric textiles, 3D textile
structures have been gradually adopted. Zheng et al. [110] developed a single-electrode
TENG with 3D structure, constituting PTFE and Pb(Zr, Ti)O3 (PZT)/glass fiber fabric
as the dielectric layers and Altium as an electrode. The generator had excellent output
performance and could simultaneously light up to 1350 LEDS. Wang et al. [111] created a
three-dimensional TENG whose electrodes were silver-coated nylon fibers, which were
braided with PE and PTFE and then woven into a two-dimensional fabric as dielectric
layers. The dielectric layers were separated by other fibers to ensure a greater range of
movement and, thus, greater power output. The device, which can monitor a person’s
sitting and walking state, provides a new 3D intelligent textile structure that may facilitate
the application of TENGs in wearable micro/nano power supplies, self-powered sensors,
and human–machine interfaces.
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3.2. Bionic Structure

Many organisms in nature feature an optimal shape following thousands of years of
evolutionary history; hence, mimicking the structure of organisms to design nanogenerators
might achieve better performance. In recent years, more and more scholars have begun
studying bionic nanogenerator structures [112–114]. Bian et al. [115] designed a bionic
nanogenerator that harvests wind energy, modeled on leaves and stems. In the bionic
leaf structure, aluminum and PTFE were used as dielectric layers. The aluminum of the
dielectric layer was also used together with copper as the electrode layer, and the upper and
lower surfaces were covered with polyvinyl chloride (PVC) and polymethyl methacrylate
(PMMA), respectively (Figure 7a). Four supercells were connected in parallel to form a
TENG tree; the output voltage and current could reach 330 V and 59.6 µA at the wind
speed of 11 m/s. Using this compound TENG, they designed a device to collect wind
energy generated by a moving subway passing through a tunnel to illuminate the lights
and billboards inside the tunnel. Chen et al. [116] modeled a TENG after a jellyfish that can
deform freely on the basis of the contact-separation mode. It was a symmetrical structure
that worked under the pressure of the sea. The dielectric layer was made up of PTFE film
and copper, and the electrode was made up of aluminum on both sides and copper in
the middle; the overall structure was packaged with PDMS (Figure 7b). This TENG can
be used as a power source for self-powered LED lighting systems in applications such as
lighting and coastal navigation warnings. Li et al. [117] developed a PENG by constructing
bionic ion channels. The piezoelectric layer consisted of a PVDF membrane with bionic ion
channels filled with ionic liquid, as well as a carbon composite covered with copper foil
as electrodes on both sides, overall encapsulated with polyethylene terephthalate (PET).
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The composite nanogenerator could achieve an output surface charge density of up to
24.5 mC/m2 and a short-circuit current of 13.3 µA. At a low frequency pressure of 1 Hz,
the device could obtain an open-circuit voltage of 150 mV within 80 s. Connecting multiple
such devices in series can be used to power small wearable electronic devices. Li et al. [118]
proposed a self-cleaning and water-resistant leaf-like bionic structure TENG modeled on
the lotus leaf shape. The lotus texture was formed on the surface of the device using the
template method, granting the device excellent waterproof and self-cleaning ability. This
friction nanogenerator can be used to capture the energy of wind and raindrops in the
natural environment. Zhou et al. [119], inspired by frogs’ croaking behavior, a developed a
bionic TENG. The TENG consisted of a bottom electrode based on Ag NWs, a composite
triboelectric layer based on Ag NWs/BaTiO3NPs/PDMS, and a top electrode based on
carbon. The bottom electrode and triboelectric layer were integrated as a spacer (Figure 7c).
This working principle of the bionic structure reflects the morphology of the frog when
it croaks. The sensor had good sensitivity and intensity with respect to its signal sensing
range. Its intensity was 206 times that of traditional biopotential electromyography.
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Complete imitation of biological movement is not required in most cases; rather, a com-
bination of biological and TENG techniques should be used to construct the components.
Therefore, TENGs have ample room for new structural designs inspired by nature.

3.3. Origami and Kirigami Structure

The critical issue for traditional TENGs when applied in energy-harvesting devices
and flexible wearable devices is to develop adaptive, simple-structured, high-performance
but low-cost TENGs for the complex excitation conditions. In order to solve this problem,
many researchers have sought breakthroughs using origami and kirigami structures in
recent years.
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Origami-type TENGs, which are usually designed as layered structures, improve the
output performance of the device by increasing the number of friction layers and improving
the acceptance rate of mechanical behavior. In recent years, researchers have developed
various types of origami structures according to different application requirements. For
instance, a stretchable TENG pressure sensor with a spiral paper-based origami structure
was reported in [120]. This paper-based origami TENG was composed of three layers of
materials. During the compression process, the spirally folded structure enables the upper
surface electrodes of each layer to contact the lower surface electrodes, generating electric
charges. Moreover, application experiments showed that the manufactured TENG can
harvest ambient mechanical energy from various kinds of human body movements, such
as stretching, compression, and twisting. Therefore, it can be applied to human health and
exercise monitoring (Figure 8a).
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In another design, a double-helix origami structure was proposed to further in-
crease the structural flexibility and energy conversion rate [121]. The double-helix spring-
like origami architecture endowed the proposed TENG with excellent elastic and self-
rebounding properties without any auxiliary resilient support, making the whole device
compact, lightweight, and extremely sensitive. On the other hand, with its unique origami
multifold structure and double-sided corona discharging process, the electric charge den-
sity and electrostatic induction were significantly enhanced. Due to its lighter weight and
excellent flexibility, this double-helix origami TENG shows great potential in smart wear
and ocean wave signal acquisition applications (Figure 8b).

In addition to being affected by the overall device structure, the electrical output char-
acteristics of current origami nanogenerators are also limited by the simple origami patterns
used as the basis of TENGs. In response to this problem, an origami tessellation (OT) base
was reported [122]. This OT base can be installed with multilayer friction pairs and can be
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driven by very little stimulation. Moreover, the increase in paper-based tribo-pairs could
significantly enhance the electric output performance of the device. The application demon-
stration showed that OT-TENG has potential in the future energy demands of intelligent
transportation (Figure 8c).

Furthermore, researchers recently made a flexible and lightweight origami TENG
using conductive Ni/Cu nonwoven polyester and Mylar film [123]. The support and
rebound effect of the Mylar film could eliminate the additional auxiliary support system,
leading to better stability of the TENG, along with electrostatic induction and triboelectric
contact. Subsequently, a self-powered control power management circuit was designed to
maximize the power delivered to the electrical load (Figure 8d).

In addition to origami structures, kirigami is used to design and develop new types
of nanogenerators. The introduction of kirigami TENG (KTENG) structures can improve
the energy collection efficiency and stretchability of the device. A highly stretchable,
environmentally friendly paper-based TENG with rationally designed interlocking kirigami
structures was reported in [124]. The interlocking structure allows the TENG made of
inherently nonelastic materials to withstand ultrahigh tensile strains of up to 100%. The
kirigami structure design eliminates the separation interval of traditional TENGs. Owing
to this shape-adaptive thin-film design, the KTENG can harvest environment energy from
various types of motion (stretching, pressing, and twisting) (Figure 9b).
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Furthermore, the kirigami structure is also used for TENGs in electronic skin. Dukhyun
et al. [126] reported an ultrathin and stretchable acrylic acid ([PEO/PAA]n) ethylene oxide
and double-layer positive triboelectric film, which was manufactured using a low-cost and
environmentally friendly layer-by-layer method. The composite film was used to design a
shape-adaptive kirigami nanogenerator. The excellent elasticity of the composite film and
the design of the kirigami structure enabled the TENG to exhibit 900% super stretchability
and extraordinary foldability (Figure 9b).

In addition, a polymer matrix with a kirigami structure can enhance the stretch-
ability of a TENG. A self-powered stretchable wearable photodetector was developed
using a kirigami-based honeycomb structure of zinc oxide nanowires and coupled with a
TENG [125]. Embedding this device into a PDMS substrate with a kirigami pattern of hon-
eycomb geometry showed outstanding stretchability with strains up to 125% (Figure 9c).
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In addition, the merits of the Miura folding structure, such as light weight, large
unfolding area, and small folding volume, have attracted interest for TENG applications.
Recently, a novel charge-excitation TENG based on a Miura folding structure was devel-
oped by integrating flexible PET (as a folding substrate with a double working side design:
one side working as the main TENG (M-TENG) and the other side working as the excita-
tion TENG (E-TENG)); the output performance was largely increased due to this unique
structure design, which could increase the TENG working area and reduce its volume [127].
The kirigami structure can impart deformability to non-stretchable hard materials and
realize the conversion between a 2D planar shape and 3D three-dimensional configuration.
Combining flexible paper-cutting technology and self-healing conductive materials, as well
as using the configuration transformation characteristics of kirigami technology, through
the healing process of self-healing conductive materials, it is possible to realize the planar
manufacturing of curved circuits and the conformal assembly of curved surfaces.

4. Frontier Applications
4.1. Electronic Skin and Wearable Device

Electronic skin (e-skin) is a flexible electronic device covering the surface of a machine
or human body, where the system can give the carrier the ability to sense touch, pressure,
temperature, and chemical or biological information. After granting robots the ability to
perceive through electronic skin, the application scenarios of robots can be broadened,
which includes many actions that require a high degree of interaction, such as caring
for the elderly [127]. With the development of science and technology, more and more
versatile and powerful electronic skins have been invented [128–134]. In the application
field, self-powered sensors based on TENGs and PENGs generally use wireless contact
through a signal amplification receiver to obtain the signal curve, which can be used to
analyze their sensing performance through the electrical signal [134]. At present, electronic
skin can be integrated into tactile sensors in a prosthesis such that the amputee can have a
better experience.

The emergence of self-powered devices such as PENGs and TENGs has signifi-
cantly increased the application scenarios of electronic skin. Recently, many novel de-
signs of electronic skins based on self-powered devices appeared. Wang et al. [129] used
PVDF nanofibers to prepare a new type of single-electrode piezoelectric nanogenerator
(SPENG), which can realize steady-state pressure sensing and integration on a single unit
for cold/heat sensing. The sensor has excellent light transmittance and is very suitable to
be worn on the human body (Figure 10a). Yao et al. [130] developed a bionic self-powered
TENG electronic skin inspired by the surface morphology of natural plants. The team
created interlocking microstructures on the friction layer to enhance the triboelectric effect.
The ultrasensitive electronic skin can be connected to a manipulator to help the robot in
terms of tactile perception and texture object recognition. In the same year, Liang et al. [131]
produced a unique nanogenerator that can generate electricity by collecting the energy
generated by small fluctuations and flow in the water, along with a waterproof function.
By connecting the device to a human finger as a wearable device, the perception of finger
movement in water can be realized. Its stretchable and ultrathin characteristics make it the
best candidate for creating robot electronic skins.

In addition to their important role in the field of electronic skin, PENGs and TENGs
also have many applications in wearable devices. PENGs and TENGs have brought about
a revolution in wearable devices, replacing traditional rechargeable sensors and bringing
great convenience to users. For example, in motion detection, the weight of the battery
in the traditional wearable sensor is relatively large, which leads to inconvenience for the
user. The use of self-powered sensors can effectively solve this problem and greatly reduce
the overall equipment weight.

In the medical field, there are currently many reports on the use of self-powered
sensors to detect pulse and respiration [135–138]. Lou et al. [139] prepared a flexible self-
powered sensor based on a TENG and applied it to the human body, where it could stably
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measure the human pulse and blood pressure. It can be worn on people’s fingers, wrists,
and ears for real-time pulse wave measurement (Figure 10c). Zhao et al. [140] prepared
a completely transparent and highly stretched contact-separation TENG based on PDMS
and used it for self-powered tactile sensing. In the case of different stretch ratios (0%, 10%,
50%, and 80% strain), the triboelectric signal maintained a good linear correlation, allowing
the sensor to detect various human activities. It can sensitively respond to finger touches
and bends and can detect breathing and pulse.

In terms of motion detection, wearable devices are mainly used to record the number
of steps and monitor gait (Figure 10d) [141–143]. Zhu et al. [144] prepared piezoelectric
and triboelectric composite smart cotton socks. The rubbing of fabric generated electrical
signals during the movement of the human body. Due to its piezoelectric properties, the
PZT was placed on the heel. When the device is worn, the pressure of the human body
causes the PZT-based piezoelectric module to generate electrical signals.
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4.2. Intelligent Prostheses and Human–Machine Interfaces

With the development of flexible sensors, they are becoming more and more important
in intelligent prostheses, self-charging power cells for healthcare monitoring, and biological
sensors [146]. Ma et al. [147] proposed self-powered soft tactile sensors using flexible
magnetoelectric materials. The shape design of the flexible sensor was inspired by Merkel’s
discs, allowing for good tactile perceptual functionality. This self-powered sensor is applied
to the end of the manipulator, enabling the intelligent prosthesis to learn and distinguish
between different objects after contact due to the flexible magnetoelectric materials used
in the device. The equipment consists of two parts: the magnetic component mimicking
Merkel’s disc at the top and the electrical control part at the bottom. In the process of
grasping an object many times, its characteristic signals can be learned (Figure 11a). A
self-powered actuator with an integrated sensing function plays an important role in the
construction of an intelligent robot. Lin et al. [148] reported a self-powered actuator driven
by light. A thermoelectric (TE) generator for collecting and converting environmental heat
energy was designed using the thermoelectric effect. Due to the photoelectric effect, there
is a temperature difference in the actuator, and a voltage signal is generated. The sensor



Sensors 2021, 21, 8422 21 of 32

consists of two parts. The first layer is the PTE generator, which is composed of graphene
(G) and graphene oxide (GO). The second layer is a biaxially oriented polypropylene
(BOPP) film with a large coefficient of thermal expansion (CTE). Infrared light is used to
irradiate part of the actuator, resulting in a temperature rise in the irradiated part and a
temperature difference across the whole actuator. The PTE effect spontaneously generates
a self-supply voltage signal in the device. Due to the different expansion coefficients of the
graphene composite layer and BOPP layer, the system changes, and the radiation part of
the brake shows bending deformation (Figure 11b).

In the era of artificial intelligence, human–machine interfaces play a particularly irre-
placeable role in the diverse interactions between man and machine [149]. Shi et al. [150]
presented a simple self-powered interactive patch combining triboelectric and piezoelec-
tric sensing mechanisms. It can not only detect a single-point contact of the finger but
also detect continuous finger sliding through multiple point contacts separated along the
contact trajectory. These results showed that the self-powered interactive patch based
on triboelectric and piezoelectric sensing mechanism has high applicability and real-time
practicability in various human–machine interfaces, such as energy acquisition, writing
boards, automatic control, robots, virtual reality, augmented reality, and wearable electronic
devices (Figure 11c). Dong et al. [151] proposed a self-powered wearable keyboard (SPWK)
fabricated by integrating a large-area F-Teng sensor array. It can not only follow electrical
signals but also recognize individual typing characteristics through a Haar wavelet. Con-
sidering its wearability, self-security, and power supply, the SPWK has practical application
value in human–computer interaction equipment and personal user identification systems,
where it can dynamically identify operating users.
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4.3. Robotics

Sensors play a crucial role in robot control. In recent years, TENGs have been applied
to robots. In the process of robot motion, it can provide feedback in terms of external force,
speed, displacement, and other information to better control robot motion. This section
mainly summarizes the application of self-powered flexible sensors in bionic robots, soft
robots, and industrial robots.

Jin et al. [152] first applied a TENG to a soft caterpillar robot (SCR), which is similar to
a bionic robot. There were four triboelectric tactile sensors (TTSs) and two resistive strain
sensors (RSSs) attached to sense the surroundings and deformation, respectively. Due to
its powerful sensing capabilities, it can be used in unknown tunnel environments or other
unknown and complex environments, where its flexibility allows it to avoid unexpected
attacks (Figure 12a).

Due to the flexibility of the TENG sensor, it has been applied to many soft actuators
or grippers. Chen et al. [153] designed a soft pneumatic actuator (PSA), where the inner
wall of the actuator and the electrode formed a TENG sensor, and the corresponding
sensory information was outputted using the TENG’s self-powered sensing principle. For
example, when grabbing cups, the size and shape of different cups can be determined
by analyzing the feedback voltage value; the PSA can also be used to identify different
gestures. The bending angle of PSA can be known, and the gestures can be recognized
by analyzing the feedback voltage value (Figure 12b). Chen et al. [154] also designed a
smart soft actuator that combines a cable with a TENG, which can grasp various objects.
Unlike the PSA, it is driven by a tiny direct current (DC) motor. There are two types of
TENGs used in the soft actuator: the TENG located inside the actuators that measure the
bending angle and another TENG, located outside the actuator, used to detect contact
pressure. Thus, the actuator functions similarly to the PSA, except that it can monitor the
rough contours of the object being touched because the TENG of the actuator measures the
contact force distributed over the entire surface of the actuator, whereas the PSA only has
sensing capability at the tip (Figure 12c).
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In terms of industrial robots, Liu et al. [155] demonstrated a large-scale, flexible,
and self-powered tactile sensing array (TSA) for industrial robot skin. In a complex and
unpredictable working environment, if unknown obstacles are encountered, the TSA can
detect a sharp rise in voltage signal, and the pulse signal can convert the work program of
the industrial manipulator into an interrupt program, which can be used for emergency
avoidance and stopping (Figure 12d). Yin et al. [156] reported a triboelectric vector sensor
(TVS) based on a DC triboelectric nanogenerator. It can measure motion parameters such
as displacement, velocity, acceleration, and angular velocity. Therefore, it can be used in
robot joints to detect changes in joint angles (Figure 12e).

4.4. Implantable Devices

Implantable devices can obtain energy through organisms, such as converting the
mechanical energy of the heartbeat and intestinal peristalsis or the chemical energy of the
glucose redox reaction into electrical energy, which can be applied to physiological sensors
or to power cardiac pacemakers.

Most self-powered biomedical implants use piezoelectric energy collectors to collect
electric energy from heart movement. Azimi et al. [157] demonstrated a piezoelectric
polymer-based nanogenerator (PNG, a hybrid nanofiller composed of PVDF, ZnO, and
rGO) that is biocompatible and flexible. The PNG converts the energy of the heart’s
movement into electricity, and it is placed in the left ventricle to capture the amplitude of
movement of the heart muscle. The PNG can extract 0.487 µJ of power from each heartbeat,
which is higher than the pacing threshold of commercial pacemakers; hence, it can be
used to power pacemakers (Figure 13a). In addition, Ryu et al. [158] reported a high-
performance inertially driven triboelectric nanogenerator (I-TENG), approximately as large
as a commercial coin battery. It converts the mechanical energy of body movement and
gravity into electrical energy. I-TENG can generate 4.9 µW/cm3 of power. Therefore, a self-
powered pacemaker can be formed by combining a pacemaker with I-TENG (Figure 13b).
Chen et al. [159] studied a soft piezoelectric film nanogenerator for electrical stimulation
of muscle nerves, which can be driven by a programmable ultrasonic pulse. In this paper,
the sciatic nerve of rats was used as a model to achieve direct electrical stimulation via
subcutaneous implantation of a piezoelectric membrane nanogenerator with a thickness of
about 30 µm, driven by a remote ultrasonic pulse (Figure 13c).

In terms of implantable physiological sensors, Zhang et al. [160] reported a self-
powered strain sensor based on electricity induced by the photoelectric thermoelectric
(PTE) effect, which was composed of a stretchable graphene–ecoflex material. The strain
sensitivity of the device increased with the increase in light intensity, exhibiting a sen-
sor resolution of up to 0.5%, as well as a response time and recovery time of less than
0.6 s. Therefore, the device can monitor human joint movement and telescopic tension,
with potential in implantable medical monitoring. Cheng et al. [161] reported a novel
mechanical asymmetrical triboelectric nanogenerator for monitoring the intestinal state
after glucose absorption. The lowest frequency that could be monitored in real time was
0.3 Hz. In this paper, ATNG was implanted into the abdominal cavity of rabbits to monitor
duodenal peristalsis. After glucose absorption, duodenal peristalsis quickened and showed
differences in terms of time and physiological state. The ATNG has great potential for
the precise monitoring of weak motion in a variety of complex systems. Yang et al. [162]
proposed a flexible self-powered implanted electronic skin (e-skin), which can be used
to diagnose kidney diseases and analyze in situ body fluids (urea/uric acid content) in
real time. The e-skin is made of piezoelectric ZnO nanowires, which exhibit flexibility,
nontoxicity, and high energy conversion efficiency. In addition, its surface is modified by
different enzymes (urease and uricase). Therefore, under the action of external forces, the
output piezoelectric signal can represent the concentration information of urea/uric acid
in body fluids as a function of the coupling process of the piezoelectric sensor and enzyme
reaction.
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4.5. AR/VR and Digital Twins

It is important in the future that robots can perceive and handle deformable objects.
Thus, on machines such as grippers or gloves with TENG sensing, artificial intelligence can
be realized through machine learning. It has excellent application prospects in unmanned
supermarkets and man–machine communication.

Digital twins represent an emerging concept. Sun et al. [163] developed an intelligent
soft robot manipulator. Combined with the Internet of things and artificial intelligence
(AI), the manipulator can realize a virtual store based on digital twins and provide users
with real-time feedback of product details. The manipulator is composed of a tactile
TENG sensor (T-TENG), a length TENG sensor (L-TENG), and a polyvinylidene fluoride
pyroelectric temperature sensor (PVDF). Twenty-eight objects of different shapes were
captured several times, and data processing was carried out through machine learning
(ML) with a precision of 97.143%. The temperature distribution of the target (resolution
as low as 1 ◦C) could be obtained using the PVDF temperature sensor, so as to obtain
more comprehensive information and realize automatic recognition of the captured target
(Figure 14a).

Self-powered flexible sensors have also been developed for augmented reality/virtual
reality (AR/VR) applications. Zhu et al. [164] proposed an intelligent glove that can be used
for VR demonstration of surgical training programs and AR-based humanoid interaction.
The smart glove uses a triboelectric-based finger bending sensor, a palm-sliding sensor, and
a tactile sensor based on a piezoelectric mechanical stimulator. Similarly, machine learning
was used to achieve target recognition with 96% accuracy. This device could benefit the
medical, industrial, and educational sectors (Figure 14b).

In terms of AI, Zhou et al. [165] proposed a code language translation system con-
sisting of self-powered TENG gloves and wireless transmission modules. With the help
of machine learning, 660 gestures of American Sign Language (ASL) could be accurately
translated into speech, with a recognition rate of 98.63% and recognition time of less than
1 s (Figure 14c).
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However, an effective and practical approach for real-time sentence recognition of
sign language is still lacking, which is more significant for the practical communication of
signers and non-signers. Feng et al. [166] improved the performance of the sign language
translation system through a non-segmentation and segmentation-assisted deep learning
model, allowing the recognition of 50 words and 20 sentences. Through the segmentation
model, new sentences generated by the reorganization of newly ordered words could be
identified with an average accuracy of 86.67%. They translated sign language into text and
audio presented in virtual space, allowing unrestricted communication between healthy
and hearing/speech-impaired individuals (Figure 14d). Wang et al. [167] developed a
silent speech strategy that does not require much sign language skills, allowing for all-
day, natural interaction. It is attached to the facial skin; through the detection of face
deformation, using the method of machine learning, it can recognize up to 110 words,
basically covering daily vocabulary, with an average accuracy of 92.64%.
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5. Summary and Outlook

We presented a brief overview of self-powered flexible sensors in terms of three
aspects: material design, structural optimization, and frontier application. The emergence
of PENGs and TENGs has been a major discovery in the field of self-powered flexible sensor.
Recently, significant progress has been made with respect to self-powered flexible sensor in
the fields of healthcare, robotics, industrial application, etc. These application fields also
put forward higher requirements for self-powered flexible sensors, which are to be highly
sensitive, accurate, stable, and mechanically flexible. Compared with conventional flexible
sensors with an external battery, self-powered flexible sensors can effectively address the
shortcomings of a battery with a limited lifetime. Moreover, TENGs and PENGs can solve
the unpredictability of energy conversion in some special environments. Self-powered
flexible sensors can significantly improve the performance of sensing to a certain extent.
Therefore, as an effective conversion technology from mechanical energy to electrical
energy and signals, PENGs and TENGs can be simultaneously used as sensing devices and
energy sources. Self-powered flexible multifunctional sensors based on TENG and PENG
have properties such as stretchability, self-healing, and degradability, and they have been
applied in many fields, including wearable devices, electronic skin, intelligent prostheses,
and human–machine interfaces. Furthermore, implantable devices have great potential
in the medical and healthcare fields. Some researchers have achieved expected results in
communication with a computer for construction of the mobile Internet of things, which
has great value.

It is undeniable that huge progress has been made in self-powered flexible sensors,
but there is a long way to go to translate existing research into practical value. Self-
powered flexible sensors based on PENGs and TENGs with high output performance have
a lot of room for improvement. Their higher output performance is conductive to the
realization of wireless energy transmission. However, several reports about alternating
current (AC)-based TENGs have only described AC–DC conversion by rectification. In
the future, it is also urgent to improve TENG technology in terms of output performance
and output modes. For example, an inverting TENG (I-TENG) can realize the AC mode
through the coupling of triboelectrification and air breakdown (DC mode). Unlike AC-
TENG, I-TENG delivers unique characteristics and performance parameters (width ratio
and amplitude ratio of AC signals) that can be controlled. Benefiting from its novel
output mode and outstanding output performance, the inverting TENG can be useful in
self-powered controllers, intelligent systems, etc. Furthermore, several issues need to be
studied and improved, such as sensitivity, stability, durability, and industrial production.
In the context of artificial intelligence, how to effectively combine self-powered flexible
sensors with human–machine interaction, intelligent robots, AR/VR, and other intelligent
fields requires more research. TENGs and PENGs mainly convert mechanical energy into
electrical energy. At present, there are also nanogenerators that convert wind energy, kinetic
energy from seawater, and heat energy into electrical energy. However, the energy formed
by these nanogenerators is not stable; therefore, it is of importance to investigate the stable
conversion of other energy sources into electrical energy.
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