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Individualswith internet gaming disorder (IGD) often have impaired risky decision-making abilities, and IGD-re-
lated functional changes have been observed during neuroimaging studies of decision-making tasks. However, it
is still unclear how feedback (outcomes of decision-making) affects the subsequent risky decision-making in in-
dividualswith IGD. In this study, twenty-four adolescentswith IGD and 24 healthy controls (HCs)were recruited
and underwent functional magnetic resonance imaging while performing the balloon analog risk task (BART) to
evaluate the effects of prior outcomes on brain activity during subsequent risky decision-making in adolescents
with IGD. The covariance between risk level and activation of the bilateral ventral medial prefrontal cortex, left
inferior frontal cortex, right ventral striatum (VS), left hippocampus/parahippocampus, right inferior occipital
gyrus/fusiform gyrus and right inferior temporal gyrus demonstrated interaction effects of group by outcome
(P b 0.05, AlphaSim correction). The regions with interactive effects were defined as ROI, and ROI-based inter-
group comparisons showed that the covariance between risk level and brain activation was significantly greater
in adolescents with IGD compared with HCs after a negative outcome occurred (P b 0.05). Our results indicated
that negative outcomes affected the covariance between risk level and activation of the brain regions related to
value estimation (prefrontal cortex), anticipation of rewards (VS), and emotional-related learning (hippocam-
pus/parahippocampus), which may be one of the underlying neural mechanisms of disadvantageous risky deci-
sion-making in adolescents with IGD.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Internet gaming disorder (IGD) is defined as persistent and recur-
rent use of the internet to engage in games, which may lead to signifi-
cant psychological distress and interfere with daily social life (Young,
1999). IGD is the most prevalent form of internet addiction disorder in
Asia (Dong et al., 2012b; Tang et al., 2014; Wu et al., 2013). Reduced
risky decision-making ability is one of the most significant behavioral
impairments in IGD individuals (Pawlikowski and Brand, 2011; Yao et
al., 2015). Risky decision-making is essential for human survival be-
cause risk is ubiquitous in the natural world and human life (Hastie,
2001). However, IGD individuals tend to exhibit disadvantageous risky
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decision-making behavior, partly because of failure to utilize feedback
(Pawlikowski and Brand, 2011; Yao et al., 2014). IGD adolescents con-
tinue to use internet games despite negative long-term consequences
in the social or work domains of life (Pawlikowski and Brand, 2011);
which may lead to physical dependence (Brand, 2008; Ersche et al.,
2005), and eventually cause psychological, social, and/or work prob-
lems similar to other addictions (Young, 1999). Therefore, it is impor-
tant to investigate the neural mechanisms underlying feedback
processing impairments during decision-making in individuals with
IGD.

Optimal decision-making often requires the ability to learn from the
outcomes of previous choices, rewards or punishments and adjust fu-
ture choices accordingly (O'Doherty et al., 2003). The neural circuits re-
lated to the ability to interpret this feedback in health adults include the
dorsal and ventral prefrontal cortex (PFC), striatum, anterior cingulate
cortex (ACC), nucleus accumbens and insula (Balasubramani et al.,
2015; Ernst and Steinhauser, 2015; Hauser et al., 2015; Kohno et al.,
2015; Liu et al., 2011; Rao et al., 2014; Tanabe et al., 2013). An impaired
ability to learn from outcomes has been demonstrated in individuals
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Demographic and clinical characteristics of subjects (Mean ± SD).

IGD (N = 24) HCs (N = 24) t P

Age (year) 17.17 ± 3.51 17.42 ± 3.05 −2.263 0.793
Education (year) 10.08 ± 2.98 11.25 ± 2.88 −1.380 0.174
IQ (SPM) 48.92 ± 6.79 48.58 ± 6.26 0.177 0.860
IAT score 70.71 ± 10.76 33.42 ± 7.75 13.852 b0.001
BIS 68.79 ± 11.83 54.13 ± 8.05 5.022 b0.001
SAS 43.13 ± 8.90 35.42 ± 5.02 3.680 0.001
SDS 49.57 ± 5.02 39.38 ± 9.16 3.442 0.001

Two-sample two-tailed t-tests. Significant level is set as P b 0.05.
BIS, Barratt impulsivity scale; HCs, healthy controls; IAT, internet addiction test; IGD, inter-
net game disorder; IQ, intelligence quotient; SAS, Self-Rating Anxiety Scale; SDS, Self-rat-
ing depression scale; SPM, standard Raven's progressive matrices.
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with substance dependence disorders (Balconi et al., 2014; Tanabe et al.,
2013; Worbe et al., 2014). Studies using the Iowa gambling task (IGT)
have identified decreased task performance in substance-dependent in-
dividuals, which may indicate deficits in learning from feedback
(Balconi et al., 2014; Tanabe et al., 2013). While performing the IGT, ac-
tivation of the ventral striatum (VS) and medial orbitofrontal cortex
(OFC) was found to be deceased in substance-dependent individuals
compared to healthy subjects, which may be the underlying neuronal
mechanism of these deficits in learning from feedback (Tanabe et al.,
2013). A study byWorbe et al. (2014) using an anticipatory risk-taking
task found that binge drinkers showed a higher number of risky choices
in high-risk losses, and the high-risk attitude in the loss condition was
associated with greater activity in the dorsal lateral prefrontal cortex
(DLPFC), the lateral OFC, and the superior parietal cortices. Failure to
utilize feedback has also been identified in individuals with IGD by
both behavioral and neuroimaging studies (Dong et al., 2013;
Pawlikowski and Brand, 2011; Yao et al., 2014). For instance, a behavior-
al study by Yao et al. (2014) found that IGD individuals made more dis-
advantageous choices during the Game of Dice Task compared with
healthy controls (HCs) and that individuals with IGD could not utilize
feedback to optimize their decision-making and improve their perfor-
mance. A fMRI study using a continuous wins-and-losses task found
that subjects with IGD exhibited enhanced sensitivity to win and de-
creased sensitivity to loss (Dong et al., 2013). Although preliminary
studies have demonstrated that outcomes may affect brain activation
during decision-making in individuals with IGD, no previous studies
have focused on the effect of different outcomes on the covariance be-
tween risk level and brain activation during the risky decision-making
processing in individuals with IGD.

In this study, twenty-four IGD adolescents and 24HCswere enrolled,
and fMRI data were obtained from the participants while performing
the Balloon Analog Risk Task (BART) (Lejuez et al., 2002) to investigate
the manner in which different outcomes affected the covariance be-
tween risk level and brain activation during decision-making processes
in adolescents with IGD. The risk level in the BART was represented by
the probability of balloon explosion, and task performance depended
on to what extent participants learned from different previous out-
comes (Kohno et al., 2015; Rao et al., 2014). Thus, the BART may then
be adapted to evaluate the effect of previous outcomes on the covari-
ance between brain activation and risk level during subsequent risky
decision-making processes. Based on the previous studies that the sub-
jects with IGD failed to utilize feedback(Yao et al., 2014) and exhibited
different sensitivity to different outcomes (Dong et al., 2013), we hy-
pothesized that different outcomes would cause different effects on
the covariance between risk level and brain activation in feedback-relat-
ed brain regions, mainly including the PFC and striatum in adolescents
with IGD. This study may bring new insights into the understanding of
the underlying neuronal mechanisms of impaired risky decision-mak-
ing ability in adolescents with IGD.

2. Material and method

2.1. Participant selection

In this study, twenty-four male adolescents with IGD and 24 age-
and education-matched HCs were recruited. Only male adolescents
were enrolled because the prevalence of IGD is substantially higher in
men than in women. All participants were recruited based on the find-
ings of diagnostic interviews by a senior psychiatrist. Adolescents with
IGD were defined according to the following criteria: five or more
“yes” responses to the eight questions on the Young Diagnostic Ques-
tionnaire for Internet Addiction (YDQ) (Young, 1998), a score ≥ 50 on
Young's Online Internet Addiction Test (IAT), spending an average of
four or more hours per day playing internet games, right-handed, no al-
cohol or drug abuse, no neurologic or psychiatric diseases, and medica-
tion-free. The MINI-International Neuropsychiatric Interview (MINI)
was used to exclude adolescents with diagnosis of a DSM-IV Axis I dis-
order. HCs were defined as adolescents not fitting the criteria for an
YDQ diagnosis, spending b 2 h/day on the internet, and having an IAT
score was b50. Other selection criteria for the HCs were the same as
those for the adolescents with IDG. The standard Raven's Progressive
Matrices (SPM)was used to test the intelligence quotient (IQ) of all par-
ticipants. The Barratt Impulsivity Scale (BIS)was used to test the impul-
sivity of all participants. The Self-Rating Anxiety Scale (SAS) and Self-
Rating Depression Scale (SDS) were used to test the levels of anxiety
and depression among participants, respectively. Detailed clinical infor-
mation for the two groups is listed in Table 1.

The protocol of this studywas approved by the Ethical Committee of
Tianjin Medical University General Hospital, and written informed con-
sent was obtained from each subject according to institutional
guidelines.

2.2. Task and procedure

The fMRI-adapted version of the BART used in this study was guided
by prior imagingwork (Rao et al., 2008). The details of the experimental
task have previously been described (Qi et al., 2015). Briefly, the partic-
ipants were presented a virtual balloon and asked to press one of two
buttons to either inflate (pump) the balloon or cash out. Before the ex-
periment, participants were informed that they would receive the
equivalent amount of money earned during the experiment. As the bal-
loon was inflated, both the monetary reward and the probability of ex-
plosion (risk level) increased. The value of the wagers corresponded to
the various balloon sizes, and the cumulative earnings for the taskswere
displayed underneath the balloon stimuli. In a trial, participants could
stop inflating the balloon at any point towin thewager or keep inflating
until the balloon exploded (loss). Themaximumnumber of pumps that
participants could use for each balloonwas 12. The time of inflationwas
controlled by a cue (the color of a small circle changing from red to
green). After the participants successfully pressed a button, the small
circle immediately turned red at a random interval of between 1.5 and
2.5 s and then turned green again to indicate the next inflation. There
was a varying 2–4 s interval between trials. Text indicating whether
the trial was a “win” or “loss” was presented for 1.5 s. The picture of
the exploded balloon was presented for 20 ms. The number of balloons
depended on response speed rather than being pre-determined in the
experiment. After the experiment, the participants received the equiva-
lent amount of money earned during the experiment.

2.3. Data acquisition

The functional MRI was conducting using a Siemens 3.0 T scanner
(Magnetom Verio, Siemens, Erlangen, Germany). A gradient-recalled
echo-planar imaging sequence was used with the following parame-
ters: repetition time (TR) = 2000 ms; echo time (TE) = 30 ms; field
of view = 220 × 220 mm; matrix = 64 × 64; slice thickness = 4 mm;
and slice gap = 1 mm. Through a mirror mounted on the head-coil,
the participants viewed the stimuli that was projected onto a screen



Table 2
The behavioral results of the BART during fMRI experiment (Mean ± SD).

IGD (N = 24) HCs (N = 24) t P

Mean pumps 7.77 ± 1.01 7.32 ± 0.93 1.621 0.112
Adjusted pumps 6.28 ± 1.12 5.71 ± 1.10 1.783 0.081
Mean pumps after win 6.91 ± 1.05 6.53 ± 1.03 1.266 0.212
Mean pumps after loss 6.42 ± 1.21 5.82 ± 1.15 1.777 0.082
Total pumps 210.67 ± 9.77 199.21 ± 15.16 3.112 0.003
Trial number 31.21 ± 5.00 31.58 ± 5.03 −0.259 0.797
Win trials 23.21 ± 5.97 25.00 ± 7.02 −0.952 0.346
Pop trials 8.00 ± 3.17 6.58 ± 2.81 1.636 0.109
Reward collection rate 0.74 ± 0.11 0.78 ± 0.12 −1.233 0.224
Response time (ms) 494.29 ± 71.84 553.21 ± 110.23 −2.194 0.033

Two-sample two-tailed t-tests. Significant level is set as P b 0.05.
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in front of the magnet bore. The participants were asked to respond to
the task by pressing a button on the fMRI-compatible response box. A
10-minute BART fMRI was performed on all participants after they
learned and practiced the tasks.

2.4. Behavioral analysis

In the fMRI experiment, the behavioral variables collected during the
BART included the trial number, total and mean number of pumps,
number of wins and losses, adjusted number of pumps (defined as the
average number of pumps excluding the balloons that exploded), ad-
justed number of pumps after wins or losses, the reward collection
rate (the number of win trials divided by the number of total trials),
and average response time (RT). A two-sample t-test was used to com-
pare behavioral data between the two groups. Statistical analyses were
conducted with SPSS 21.0, and the significance level was set at P b 0.05.

2.5. Functional MRI data preprocessing

Statistical Parametric Mapping software (SPM8; http://www.fil.ion.
ucl.ac.uk/spm/software/spm8) was used to preprocess functional MRI
data. First, the functional images of each subject were corrected for
the acquisition time delay between different slices. Second, geometric
displacements due to estimated head movement were corrected by
realigning all images to the first volume. Participants who had a maxi-
mum displacement in any direction (x, y, or z) N2mmor N2° of angular
rotation (x, y, or z) were excluded from the study. Third, all realigned
imageswere spatially normalized to theMontreal Neurological Institute
(MNI) EPI template and resampled to 3 × 3 × 3 mm3. Finally, normal-
ized images were smoothed with a Gaussian kernel of 6 mm full-
width at half-maximum (FWHM).

2.6. Statistical analysis

In the general linear model (GLM), preprocessed fMRI data were
modeled using a standard hemodynamic response function (HRF)
with a time derivative. The head movement parameters of each partic-
ipant were introduced as covariates of no-interest.

In our BART experiment, three events resulting from a button press
could be modeled: an inflation of the balloon, a win outcome, or a loss
outcome. Because we aimed to investigate the effect of prior outcomes
on the brain activity during subsequent decision-making, four regres-
sors were included in the GLM: win outcome, inflation after win, loss
outcome, and inflation after loss. The risk level associated with each in-
flation (i.e., the probability of explosion, orthogonalized by a mean cen-
tral correction) was also entered into the model as a linear parametric
modulation of the balloon inflation regressor. For each subject, the β es-
timates for the parametric modulation of the risk of balloon inflation
after wins and after losses represented the covariance between the
risk and brain activation.

Second level random effect analyses were conducted using a 2
(group: IGD and HCs) × 2 (post-outcome: “after win” and “after loss”)
ANOVA on the covariance between risk and brain activation with full
factorial analysis, embedded in SPM8. The covariance between risk
and brain activation “after win” and “after loss”within the same partic-
ipant were processed as repeatedmeasures. In this study, themain aim
was to evaluate the intergroup difference in the different effects of out-
come on the covariance between risk and brain activation during deci-
sion-making following outcomes. Therefore, the interaction effect of
group by post-outcome, HCs (“after loss” - “after win”) - IGD (“after
loss” - “afterwin”),was analyzed in this study. Additionally, themain ef-
fects of group and post-outcomewere also tested. A correction for mul-
tiple comparisons was performed using the Monte Carlo simulation
method, resulting in a corrected threshold of P b 0.05 (AlphaSim pro-
gram, parameters including: single voxel P = 0.005; 1000 simulations;
full width at half maximum = 6 mm; cluster connection radius r =
5 mm; and the mask of global gray matter). The brain regions with in-
teraction effects were defined as regions of interest (ROI). The average
β estimates within ROIs were extracted and a ROI-based intergroup
comparison was conducted using t-tests. Pearson's correlation analysis
was performed to test the correlations between the average β estimates
within ROIs and behavioral performance and IAT scores in adolescents
with IGD. The significance level was set at P b 0.05.

3. Results

3.1. Behavioral results

Table 2 shows the behavioral results obtained during the fMRI ex-
periment. The two-sample t-test revealed that the average RT was sig-
nificantly shorter (P = 0.033) and the number of the total pumps was
significantly greater in adolescents with IGD than in HCs (P = 0.003).
There was no significant intergroup difference in the adjusted number
of pumps; mean numbers of pumps after wins, losses, or overall; trial
number; number of wins/losses, or reward collection rate (P N 0.05).

3.2. Imaging results

A repeated ANOVA revealed a significant interaction effect of group
(IGD and HCs) by post-outcome (“after win” and “after loss”) on the co-
variance between risk level and activation of the bilateral ventralmedial
prefrontal cortex (VMPFC), left IFC, right VS, left hippocampus/
parahippocampus, right inferior occipital gyrus/fusiform and right infe-
rior temporal gyrus (P b 0.05, AlphaSim correction) (Table 3) (Fig. 1).
ROI-based intergroup comparisons revealed that the reason for the in-
teraction effects was that the covariance between risk level and brain
activation in these regions had no significant intergroup differences
after wins, whereas higher covariance was found in the adolescents
with IGD after losses (Fig. 2). The main effects of group and outcome
were insignificant after correction for multiple comparisons (P N 0.05,
AlphaSim correction).

There was no significant correlation between mean β estimates
within ROIs and behavioral performance or IAT scores in adolescents
with IGD (P N 0.05).

Brain activations that co-varied with the risk levels in HCs are illus-
trated in Fig. 3. A threshold of whole brain false discovery rate (FDR)
corrected P b 0.005 and cluster size larger than 50 voxels was used to
identify activation areas.

4. Discussion

In the present study, the effects of outcome on the covariance be-
tween the brain activation and risk level during subsequent risky deci-
sion-making in adolescents with IGD were evaluated using BART-
fMRI. Our findings in the HCs demonstrated that the BARTwas a reliable
method for evaluating changes in brain activation during risky decision-
making. There was a significant interaction effect of group by post-out-
come (“after win” and “after loss”) on the subsequent covariance
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Table 3
Brain regions exhibited a significant interaction effect of group by outcome on the risk-related activation.

Brain regions Cluster size (voxels) Peak T value MNI coordinates of cluster centroid (mm)

x y z

VMPFC 99 3.983 3 57 15
IFC (L) 25 3.489 −48 33 12
VS (R) 22 3.165 15 12 −3
Hippocampus/parahippocampus (L) 70 3.562 −15 −21 −15
Inferior occipital gyrus/fusiform (R) 50 3.378 30 −87 −12
Inferior temporal gyrus (R) 28 4.078 54 −33 −15

MNI: Montreal Neurological Institute; R: right side; L: left side. IFC, inferior frontal cortex; VMPFC, ventral medial prefrontal cortex; VS, ventral striatum.
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between risk level and activation of the bilateral VMPFC, left IFC, right
VS, left hippocampus/parahippocampus, right inferior occipital gyrus/
fusiform and right inferior temporal gyrus. The cause of this interaction
mayhave been that therewas no significant intergroup difference in the
covariance between brain activation and risk level after wins, while ad-
olescents with IGD showed significantly higher covariance between
brain activation and risk level after losses compared with HCs.

It has been demonstrated that various behaviors that repeatedly re-
inforce the reward circuitry are part of the disease of addiction (Grant et
al., 2010; Karim and Chaudhri, 2012; Love et al., 2015).When a negative
outcome occurs, the resulting negative emotional state leads to activa-
tion and dysregulation of brain reward systems, which leads to further
negative reinforcement as the individual continues to engage in the ad-
dictive behavior to avoid the negative affect (Koob and Volkow, 2010;
Volkow et al., 2011). Therefore, a negative emotional state is an impor-
tant component in the process of behavioral addiction. This may be the
reasonwhy the covariance between risk level and brain activation in ad-
olescents was affected more dramatically after losses in our study.

Previous studies have demonstrated that the IFC and VMPFC are in-
volved in risk-evaluation and value calculation (Cardinal, 2006;
Christopoulos et al., 2009; Rushworth et al., 2011; Schonberg et al.,
2012; Tobler et al., 2007). The VMPFC is responsible for processing neg-
ative performance outcomes and receiving punishment feedback
(Elliott et al., 2000; O'Doherty et al., 2003; O'Doherty et al., 2001;
Rushworth et al., 2011; van Leijenhorst et al., 2006), and activation of
Fig. 1. Brain regions with a significant interaction effect of group by post-outcome on the covar
striatum; D, right inferior occipital cortex/fusiform; E, right inferior temporal gyrus; F, left hipp
the VMPFC decreased in proportion to the value of an anticipated loss
(Tom et al., 2007). A previous BART study found robust activation of
the VMPFC when participants chose to continue inflating the balloon
(risky option) (Fukunaga et al., 2012). The IFC is responsible for the
modulation between reward and risky level (Christopoulos et al.,
2009; Lin et al., 2015). A previous study by Christopoulos et al. (2009)
found a positive correlation between the activation of the IFC and the
risk aversion. A study by Dong et al. (2013) found that subjects with
IGD showed increased activation of the inferior frontal gyrus after con-
tinuous wins or losses. In present study, the covariance between risk
level and activation of the left IFC and bilateral VMPFC increased after
negative feedback during decision-making, which may suggest that
the higher the risk level was, the higher brain activation in adolescent
with IGD. In our study, the average RT was shorter in adolescents with
IGD, and the number of total pumps was significantly higher in adoles-
cents with IGD. The number of mean pumps after a loss in adolescents
with IGD was higher than in HCs. Additionally, the maximum number
of possible balloon pumps in our BART experimentwas 12; only approx-
imately 30 balloon trials were performed during the BOLD scanning,
whichmay have decreased the sensitivity of detecting intergroup differ-
ences in behavioral performance (Rao et al., 2010). It is cannot be ex-
cluded that the intergroup difference in behavioral performance
would become more significant with an increase in the number of pos-
sible balloon pumps. Combined, these suggest that the adolescents with
IGD were more impulsive than HCs, which was consistent with the
iance between the risk level and the brain activation. A, left IFC; B, VMPFC; C, right ventral
ocampus/parahippocampus. T value ranges from 0 to 5 presented by color bar.



Fig. 2.ROI-basedpost hoc analysis of the brain regionswith a significant interaction effect of group bypost-outcomeon the covariance between the risk level and the brain activation. A, left
IFC; B, VMPFC; C, right ventral striatum; D, right inferior occipital gyrus/fusiform; E, right inferior temporal gyrus; F, left hippocampus/parahippocampus. The covariance between the risk
level and the brain activation of these regions after loss significantly increased in IGD group compared with the HCs group.
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observed higher scores on the BIS in adolescents with IGD. Our results
indicated that adolescents with IGD and high impulsivity might need
to recruit more PFC resources to evaluate the risk values of the subse-
quent options after receiving negative feedback.

The VS is a key structure of the brain's reward system, and has been
implicated in anticipating and processing different types of rewards, as
well as producing learning signals known as prediction errors (Dong et
al., 2013; Haber and Knutson, 2010;McClure et al., 2003; Seymour et al.,
2007; van Duijvenvoorde et al., 2014). Neuroimaging studies have re-
vealed increased reward-related activation of the VS in individuals
with substance dependence and behavioral addiction. For instance,
fMRI studies have found hyperactivity in the VS when processing re-
ward stimuli (Garcia-Garcia et al., 2014) and risky decision-making
(Yamamoto et al., 2015) in substance-dependent individuals. In addi-
tion, activity of the VS increased in pathological gambling patients dur-
ing loss anticipation in a monetary incentive delay task (Romanczuk-
Seiferth et al., 2015). In our study, the covariance between risk level
Fig. 3. Brain activations covaried with the level of risk in H
and activation of the VS increased after receiving negative feedback,
which indicated that adolescents with IGDmight experience higher an-
ticipation of rewards during subsequent risky decision-making after a
loss. Moreover, previous studies revealed strong interconnections be-
tween the VS and several parts of the medial PFC, namely the fronto-
striatal circuits, which are associated to the addictive behavior, and
the PFC exerts top-down control of the VS that has been found to be in-
volved in reward-processing (Ashby et al., 2010; Haber and Knutson,
2010). Therefore, it is also plausible that the increased covariance be-
tween risk level and activation of the PFC after receiving negative feed-
back might be due to the need to control VS activation.

The hippocampus is a key structure in the memory system and has
been implicated in encoding recent experiences (Ferbinteanu and
Shapiro, 2003). The parahippocampus provides a contextual represen-
tation function and is an important afferent pathway to the hippocam-
pus (Rudy, 2009). Human decisions cannot be explained solely by
rational imperatives but are strongly influenced by emotion (Coricelli
Cs. T value ranges from 0 to 8 presented by color bar.



850 X. Qi et al. / NeuroImage: Clinical 12 (2016) 845–851
et al., 2007). Previous studies have found that hippocampal activation
was affected by emotionality and regret (Addis et al., 2004; Coricelli et
al., 2007). The hippocampus/parahippocampus involvement in the pro-
cess of learning from experiences (Eichenbaum, 2004; Steidl et al.,
2006) might play a role in the recollection of a previous decision-mak-
ing experiences, especially the emotional experiences (Ferbinteanu
and Shapiro, 2003; Kohno et al., 2015). Thus, after a negative feedback,
the lesson to be learnt is: ‘in the future, paymore attention to the poten-
tial consequences of your choices’ (Coricelli et al., 2007). In our study,
the increased covariance between risk level and activation of the hippo-
campus/parahippocampus in the adolescents with IGD after negative
feedbackmight be associatedwith learning following emotional experi-
ences during risky decision-making.

In this study, adolescents with IGD also showed increased covari-
ance between risk level and activation of the right inferior occipital
gyrus/fusiform and the right inferior temporal gyrus after receiving neg-
ative feedback during risky decision-making. The occipitotemporal area
is related to visual perceptual learning, spatial attention and perceptual
judgments (LaBar et al., 1999; Li et al., 2012), and the inferior temporal
gyrus/fusiform are a component of the fronto-temporal circuits, which
are associated with working memory and attention processing. The in-
creased covariance between risk level and activation of the
occipitotemporal areas in adolescents with IGD after receiving negative
feedback might indicate that these adolescents made more attempts to
remember previous feedback and focus on subsequent risky decision-
making simultaneously; however, which should be confirmed in future
studies.

There was no significant correlation between the average β esti-
mates within ROIs and behavioral performance or IAT scores in adoles-
cents with IGD. One possible explanation is that altered covariance
between risk level and brain activation is a trait index rather than
state index,whichmeans that the changed index has no quantitative re-
lationship with the extent of disease. It's also worth noting that the ad-
olescent brain is still developing compared to the adult brain, so risk
decision-making strategies and the responses to feedbackmay differ be-
tween the two (Bjork et al., 2004; Smith et al., 2015; van Leijenhorst et
al., 2006). Thus, the developmental heterogeneity of adolescents might
be a factor that affects decision-making-related brain activity, and a lon-
gitudinal study would be warranted.

Several limitations need be noted in the present study. First, a rela-
tive small sample size may have reduced the statistical power. Second,
our results are limited to male adolescents because of the substantially
higher IGD prevalence in youngmales; conditions in female adolescents
and other age groups need to be evaluated in future studies. Third, the
length and amount of experience across video game genres were not
controlled. Finally, although the widely used YDQ and YIAT were
adopted as diagnostic criteria, other standards have been adopted by
other researchers (Dong et al., 2012a; Ko et al., 2014; Yao et al., 2014),
which may limit the comparability among the studies to some extent.
With the IGDnow listed in theDSM-V as a disorder requiring further re-
search (Association AP, 2013), this problem may be corrected in the
near future.
5. Conclusions

To the best of our knowledge, this is the first study to investigate
the effect of previous outcomes on the covariance between brain ac-
tivation and risk level during risky decision-making processing ado-
lescents with IGD using the BART-fMRI. Our results indicated that
negative outcomes affected the covariance between risk level and
activation of the brain regions related to value estimation (PFC), an-
ticipation of rewards (VS), and emotion-related learning (hippocam-
pus/parahippocampus), which may be one of the underlying neural
mechanisms of disadvantageous risky decision-making in adoles-
cents with IGD.
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