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Using the conditioned fear stress (CFS) animal model
to understand the neurobiological mechanisms
and pharmacological treatment of anxiety
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Summary: The mechanisms underlying the etiology and pathophysiology of anxiety disorders — the most prevalent class 
of mental disorders — remain unclear. Over the last 30 years investigators have used the animal model of conditioned fear 
stress (CFS) to investigate the brain structures and neurotransmitter systems involved in aversive emotional learning and 
memory. Recent studies have focused on the neuronal circuitry and cellular mechanisms of fearful emotional experiences. 
This review describes the CFS paradigm, discusses the neural circuit and neurotransmission underlying CFS, and explains 
the mechanism of action of pharmacological treatments of CFS. The focus of the review is on the molecular mechanisms of 
fear extinction, a phenomenon directly implicated in the clinical treatment of anxiety. Based on our assessment of previous 
work we will conclude by considering potential molecular targets for treating symptoms of anxiety and fear.
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1.  Introduction

Anxiety disorders are the most common type of 
mental disorder; the reported lifetime prevalence is up 
to 14%.[1] Benzodiazepines are effective in the treatment 
of anxiety disorders, but adverse effects — particularly 
the dependence that may occur with prolonged use at 
high doses — limit their clinical application. Starting 
in the 1980s, selective serotonin reuptake inhibitors 
(SSRI), which were primarily used for depression, began 
to play an increasingly important role in the treatment 
of anxiety disorders. SSRIs increase concentrations of 
5-HT in the synapse cleft and thus have anxiolytic effects 
for almost all subtypes of anxiety disorders, including 
general anxiety disorder, panic disorder, social anxiety, 
and obsessive-compulsive disorder. In recent years, 
5-HT1A agonists such as tandospirone and buspirone 
have also been proven to be effective for alleviating 
anxiety, suggesting that the regulation of anxiety and 
fear states involves both serotonergic systems as well 
GABAergic systems. But there remain many gaps in our 
understanding of the underlying mechanisms.

Using the learning theory framework, anxiety or 
fear can be considered an emotional learning process 
that includes the acquisition, consolidation, expression 
(retrieval) and extinction of aversive emotional mem-
ories. Support for this approach comes from several 

studies which find that glutamatergic systems are 
associated with emotional learning and memory. This 
review describes the conditioned fear stress (CFS) 
paradigm, an animal model used to study anxiety and fear, 
and reviews the neural circuits and neurotransmission 
processes underlying the CFS, highlighting the 
mechanisms of action of pharmacological treatments. 
Finally, we discuss future directions in the study of 
the neurobiological mechanisms of anxiety and fear, 
and suggest some new approaches to identifying 
pharmacological treatment targets for anxiety disorders.

2.  Conditioned fear stress

2.1  Behavioral procedure

Pavlovian fear conditioning is one of the most ex-
tensively studied and reliable behavioral paradigms for 
understanding the mechanisms involved in fear and 
anxiety. In this paradigm, neutral conditioned stimuli 
(such as a tone, a light or environmental context) are 
paired with aversive unconditioned stimuli (such as an 
electric shock) that reflexively evoke an unconditioned 
fear response. According to Shumyatsky and col-
leagues,[2] there are two types of conditioned stimuli, 
one unimodal, the other multimodal. A unimodal 
conditioned stimulus refers to a discrete cue affecting 
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a single sensory modality such as a tone, a light, or an 
odor. In contrast, a multimodal conditioned stimulus 
influences multiple sensory modalities, such as a specific 
physical setting or context.

After acquiring the association of conditioned and 
unconditioned stimuli, the conditioned stimulus is 
gradually capable of inducing a conditioned response, 
such as fear-related behaviors (freezing, being 
startled), and the associated physiological, biological 
and neuroendocrine changes.[3] Subsequent repeated 
exposure to the conditioned stimulus in the absence of 
the aversive event results in the decline and eventual 
extinction of the conditioned response, a process that 
appears to be the result of new learning rather than 
simple forgetting of the conditioned fear. In conditioned 
fear stress (CFS), experimental manipulations involving 
drugs, brain lesions and so forth are made at different 
time points during and after the learning process to 
determine their effect on the acquisition, consolidation 
and extinction of conditioned fear. Recent studies 
using the CFS paradigm have focused on the process of 
extinction because of its presumed link to the effective 
treatment of anxiety disorders.[4,5]

2.2   Neural circuits in CFS

Several brain regions, particularly the amygdala and 
hippocampus, have been implicated in fear conditioning. 
The amygdala is the most important conduit for neural 
circuits involved in Pavlovian conditioning. It is the 
central brain region where conditioned stimuli and un-
conditioned stimuli converge and thus has a key role as 
the sensor-motor interface for fear.[5-9] Anatomically, the 
amygdala consists of several distinct nuclei with different 
functions, including the lateral, basolateral, basomedial 
and central amygdaloid nuclei.[9,10] The lateral, basolat-
eral and basomedial nuclei are collectively referred to 
as the basolateral complex; this complex is the primary 
sensory interface of the amygdala and thus the prob- 
able site within the amygdala for establishing the associ-
ation between the conditioned and unconditioned stimu-
li. Confirming this coordinating role of the basolateral 
complex, many studies find that selective lesions of 
the complex induces profound deficits in both the 
acquisition and expression of fear conditioning.[11-13] The 
central amygdaloid nucleus receives afferents projection 
from the basolateral complex and has projections to 
the hypothalamus and brainstem; these connections 
suggest that it is the final common pathway for the fear 
responses. Lesions of the central amygdaloid nucleus 
also produce severe deficits in both the acquisition and 
expression of conditional fear.[14-16]  

The hippocampus is another important site involved 
in fear conditioning. It participates in the acquisition 
of fear by providing contextual (or spatial) memory of 
the conditioned stimulus to the amygdala.[17,18] That 
is, the hippocampus is responsible for assembling 

contextual representations of the conditioned stimulus 
and conveying these representations to the amygdala 
for association with the unconditioned stimulus. 
Studies showing that electrolytic lesions of the dorsal 
hippocampus can prevent both the acquisition and 
expression of contextual fear conditioning confirm this 
role of the hippocampus.[17,19] The hippocampus also 
plays an important role in the consolidation, storage 
and retrieval of fear-related memory.[20] Lesions of 
the hippocampus made shortly after conditioning is 
completed generate a profound retrograde amnesia 
for contextual fear[17,21] — human amnesia also occurs if 
there is injury to the hippocampus soon after learning.[22] 

Several other brain regions have been implicated 
in fear conditioning. a) Attention has been focused 
on the role of the prefrontal cortex because some 
studies report that lesions in this region impair the 
extinction of fear.[23,24] However, other studies have not 
confirmed these results[25] so no clear conclusions are 
yet possible. b) Lesions in the ventrolateral column 
of the periaqueductal gray region either before or 
after conditioning abolished stress-induced freezing 
behaviors.[26] And c) lesions of the mediodorsal thalamic 
nucleus before or after training are also associated with 
attenuated stress-induced freezing behaviors.[27]

2.3   Neurotransmission in CFS

2.3.1  Serotonergic systems

An increasing body of evidence confirms the role of 
serotonergic systems in the regulation of anxiety and 
fear states. Dysregulation of serotonergic systems has 
been linked to anxiety, depression and other stress-
related mental disorders. An early report by Klein[28] in 
1964 demonstrated that the tricyclic antidepressant 
imipramine was effective in the treatment of panic 
disorder. And since the 1990s, SSRIs (which facilitate 
serotonin neurotransmission by increasing extracellular 
serotonin concentration)[29] have been widely used to treat 
most anxiety disorders and are now the first-line treat-
ment for these disorders in many locations.[30] But despite 
the well-established clinical evidence demonstrating 
that drugs acting on serotonergic systems have anxiolytic 
action, the exact mechanisms of action, the specific 
subtype of 5-HT receptor that is responsible, and the 
location in the brain that is involved remain unclear. 

CFS is a useful animal model of anxiety that can help 
to resolve some of these questions. Several studies 
using the CFS paradigm have demonstrated that fear 
conditioning increased serotonin neurotransmission 
in the medial prefrontal cortex and amygdala.[31-33] 
CFS also induced c-Fos expression in the basolateral 
complex, locus coeruleus, and dorsal raphe nucleus,[31,34] 
and treatment with citalopram attenuated contextual 
CFS-induced c-Fos expression in the basolateral com-       
plex.[35] Fear conditioning decreased the firing fre-
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quency of pyramidal neurons in the CA1 region of 
the hippocampal, but the administration of a 5-HT1A 
antagonist blocked this decrease in firing frequency.[36] 

Using mice with central deficiencies in serotonin, Dai and 
colleagues[37] found that the 5-HT deficiency enhanced 
contextual fear learning and memory, an effect that was 
reversed with intracerebroventricular administration 
of 5-HT; administration of 5-HT to the 5-HT-deficient 
mice also restored alterations of hippocampal synaptic 
plasticity induced by electric shocks. Monoamine 
oxidase (MAO) inhibitors reduced conditioned fear, but 
the effect was only seen when both isoforms (MAO-A 
and MAO-B) were used.[38] Citalopram, administrated 
either by systemic injection or as a microinjection to the 
amygdala, reduced stress-related freezing behavior.[39,40] 
Fluoxetine also reduced freezing behaviors and restored 
the startle response, but the effect was only evident 
when given intense (not moderate) fear conditioning.
[41] Fluvoxamine and milnacipran (a serotonin noradren-
aline reuptake inhibitor) also suppress CFS-induced 
freezing.[42] Interestingly, the α1 adrenoreceptor antagon- 
ist prazosin attenuated the citalorpram or mirtazapine-
induced decrease in conditioned freezing, suggesting 
that the noradrenergic system has an effect on the 
serotonin levels in fear conditioning.[43,44] Mirtazapine, a 
noradrenergic and specific serotonergic antidepressant 
(NaSSA), has also been shown to have anxiolytic effects 
in CFS.[44]

Apart from the 5-HT transporter, the 5-HT1A 
receptor is another potential target in the treatment of 
anxiety disorders.[45]   5-HT1A receptor agonists such as 
buspirone and tandospirone have anxiolytic action in 
CFS models.[38,46,47] Anatomic studies show that both the 
amygdala and the hippocampus receive serotonergic 
innervation from the dorsal raphe nucleus[48,49] and have 
several subtypes of serotonin receptors, including the 
5-HT1A receptor. Studies using the CFS paradigm have 
shown that 5-HT1A receptor agonists such as ipsapirone, 
flesinoxan, 8-OH-DPAT, and others can attenuate con-
ditioned freezing.[50-52] It has also been shown that the 
5-HT1A agonist flesinoxan inhibits fear conditioning 
through stimulation of postsynaptic 5-HT1A receptors 
in the amygdala and hippocampus.[53] Stiedl and 
colleagues[54] microinjected another 5-HT1A receptor 
agonist, 8-OH-DPAT, into the hippocampus of mice 
exposed to CFS and found reduced acquisition of fear 
conditioning; similarly, infusions of 8-OH-DPAT into the 
median raphe nucleus and dorsal hippocampus reduced 
contextual conditioned freezing.[55]  Coadministration 
of the 5-HT1A agonist tandospirone with paroxetine, 
fluvoxamine or citalopram inhibited conditioned 
freezing, suggesting a synergistic effect of 5-HT1A 
agonists and SSRIs. This result is similar to previous work 
by Li[56] which found augmented anxiolytic effects by 
combining the 5-HT1A agonist flesinoxan with the SSRI 
fluvoxamine. Taken together, the results suggest that 
adjunctive treatment with 5-HT1A receptor agonists in 
persons with anxiety disorders being treated with SSRIs 

could result in improved clinical outcomes.

McDevitt and colleagues[57] found that 5-HT1B over-
expression in the caudal dorsal raphe nucleus reduced 
expression of conditioned fear and depression-like 
behavior; they also found that systemic administration 
of the 5-HT1B agonist CP-94,253 reduced freezing. 
Muraki[58] assessed the effects of administration of a 
selective 5-HT1A receptor antagonist (WAY 100,635) 
and a selective 5-HT1B/1D receptor antagonist (GR 127, 
935) on the anxiolytic effect of citalorpram in CFS: co-
administration of the 5-HT1A antagonist enhanced the 
anxiolytic effect of citalopram by facilitating central 
5-HT neurotransmission but coadministration of the 
5-HT1B/1D receptor antagonist did not change the 
magnitude of the anxiolytic effect of citalopram.  

Taken together these studies show that drugs or 
agents that increase extracellular 5-HT concentration 
(MAO inhibitors, SSRIs, SNRIs and NaSSAs) and those 
that agonize the 5-HT1A or 5-HT1B receptors (5-HT1A 
or 5-HT1B agonists) in the amygdala or hippocampus 
can reduce conditioned fear. These findings give strong 
support for the suggestion that serotonergic systems are 
closely associated with fear conditioning.

2.3.2  N-methyl-D-aspartate (NMDA) and long-term 
potentiation

A growing body of evidence suggests that the cellular 
mechanism underlying fear conditioning is long-term 
potentiation by N-methyl-D-aspartate (NMDA) receptors 
in both the hippocampus and  amygdala.[59-62] Fear 
conditioning has been shown to stimulate long-term 
potentiation in the amygdala[63,64] and contextual fear 
conditioning is correlated with long-term potentiation 
in the hippocampus.[65-67] The notion that involvement 
of both the hippocampal and amygdaloid NMDA 
receptors in fear conditioning is supported by several 
studies which report that intra-amygdala or hippo-
campal infusions of the NMDA receptor antagonists 
APV or MK-801 effectively block both the acquisition 
and expression of fear conditioning.[68-74] Moreover, 
Patricia and colleagues[75] found that injection of the 
competitive NMDA receptor antagonist D-AP5 into the 
dorsal hippocampus impaired the acquisition of context 
memory without affecting retrieval of fear-related 
memory. Similarly, antagonizing NMDA receptors with 
D-AP5 in the basolateral complex prevented acquisition 
of the context-related memory but had no effect on 
the expression of fear. Furthermore, infusion of the 
α-animo-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptor antagonists CNQX or NBQX into 
the basolateral complex significantly diminished the 
expression of fear conditioning.[76,77] 

NMDA receptors are composed of two NR1 and 
two NR2 subunits. The unique electrophysiological and 
pharmacological properties of the NR2 subunit have 
made it a focus of interest, including in the study of fear 
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conditioning. The NR2B subunit blocker Ro25-6981 has 
been shown to decrease the expression of conditioned 
fear.[78] Recent work by Corcoran and colleagues[79] found 
that infusing the NMDA receptor antagonist APV into 
the retrosplenial cortex impaired retrieval of context 
fear memory but had no effect on the consolidation 
or storage of fear memory. Moreover, the retrieval 
of context fear memory was mediated by the NMDA 
receptor’s NR2A subunit but not by the NR2B subunit. 
Another study using NR2C knockout mice found that 
the NMDA NR2C subunit is required for the acquisition 
of conditioned fear.[80]

Stimulating NMDA receptors can induce activation    
of an intracellular cascade that ultimately leads to syn-
aptic plasticity. One step of this cascade is activation 
of protein kinases by NMDA receptors. Studies have 
shown that protein kinase A, protein kinase C and 
MAPK inhibitors impair contextual fear memory.[56,81,82] 

Maren[9] reported that the inhibition of amygdaloid 
kinase activities by infusions of H7 (a protein kinase 
inhibitor) selectively inhibits the formation of long-term 
potentiation and  the consolidation of fear memory in 
the amygdala.[83,84]  

2.3.3  GABAergic system

Before SSRIs emerged benzodiazepines were the 
most widely used anxiolytic drugs. Over the past 30 
years many studies have assessed the relationship 
between GABAergic systems and the neurobiological 
mechanisms of fear and anxiety. Increased GABAergic 
transmission has anxiolytic effects[85-87] and disrupts the 
acquisition or expression of conditioned fear,[88-93] while 
decreased GABAergic transmission produces anxiogenic-
like behavior in animals.[94,95] Fear conditioning acutely 
decreases extracellular GABA levels in the basolat-
eral complex.[96] Also, genetic studies with presynaptic 
GABA(B) heteroreceptor knockout mice[97] and GAD65 (a 
GABA-synthesizing enzyme) knockout mice[98] found that 
these knockouts resulted in a generalized fear response. 
Further, transgenic mice with the B3 subunit of the 
GABA receptor deleted showed impaired acquisition of 
conditioned freezing.[99] 

3.  Fear Extinction

Pharmacological and behavior interventions for 
inhibiting fear and anxiety are important in the man-
agement of different types of anxiety disorders. In 
the fear conditioning paradigm, the inhibition of con-
ditioned fear is called extinction, that is, a reduction in 
the measured level of fear to a cue previously paired with 
an aversive event when the cue is repeatedly presented 
in the absence of the aversive event.[100] Extinction is 
considered a form of new learning that counteracts the 
expression of the conditioned fear response, it is not 
simply forgetting of fear memory.[101] Several reports 
suggest that similar to the acquisition of fear responses 

the extinction of fear responses is NMDA receptor-
dependent and involves L-type voltage-gated calcium 
channels (L-VGCCs).[102,103] Fear extinction also produces 
changes in the intracellular cascade involving kinase and 
phosphatase activity[104] and protein synthesis.[105,106] For 
example, Falls and colleagues[103] reported that intra-
amygdala infusion of the NMDA receptor antagonist 
AP5 prevented extinction in a dose-dependent manner. 
These results are consistent with other experiments      
in which AP5 and other NMDA antagonists blocked            
the extinction of contextual fear conditioning, inhibi-
tory avoidance, and eye blink conditioning (a form 
of fear conditioning performed in humans).[104,107,108] 

Zimmerman and Maren[109] found that infusion of the 
NMDA receptor antagonist APV into the basolateral 
complex or the central amygdaloid nuclei impaired the 
acquisition of extinction memory. In contrast, the AMPA 
receptor antagonist NBQX impaired the expression of 
fear conditioned to an auditory stimulus, suggesting the 
NMDA and AMPA receptors have different contributions 
to the expression and extinction of conditioned fear. 
Taken together, these results suggest that NMDA 
receptor-mediated transmission plays an important role 
in the formation and consolidation of extinction. 

Numerous reports have indicated that administration 
of D-cycloserine, a partial agonist of NMDA, either 
systemically or directly into the amygdala enhances 
extinction in a dose-dependent manner.[110-113] Further-
more, D-cycloserine reverses fear extinction deficits 
caused by stress and other factors,[114,115] blocks the 
extinction-impairing effect of the corticosteroid synthesis 
inhibitor metyrapone, and enhances the extinction-
facilitating effects of the synthetic glucocorticoid dexa-
methasone.[116] Using electrophysiological approaches 
Koseki and colleagues[117] found that the spike ampli- 
tude in the hippocampal-medial prefrontal cortex 
pathway is associated with the extinction process for 
contextual fear conditioning; they also found that the 
5-HT1A receptor agonist tandospirone blocked the 
deficit in fear extinction which occurs in adult rats that 
had experienced postnatal stress. Importantly, several 
clinical trials[100,113] find that D-cycloserine facilitates 
cognitive behavioral therapy in patients with phobia, 
obsessive-compulsive and panic disorders. These find-
ings suggest that D-cycloserine may be a new phar-
macological approach to the treatment of anxiety and 
fear. 

Given the role of the GABAergic system in the 
acquisition and expression of fear conditioning, it is 
not surprising that GABAergic interneurons within the 
amygdala have an important role in the extinction of 
conditioned fear. Administration of the GABA antagon-
ist picrotoxin after extinction training enhanced pro-
longed extinction.[118] Administration of diazepam prior 
to extinction training impaired extinction retention 
24h later.[119] Furthermore, an inverse agonist of GABA 
receptors (which produces the opposite effect of a GABA 
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findings, 5-HT1 receptor may be an important target for 
the development of anxiolytic drugs. 

Finally, fear extinction, which requires new learning 
of fear inhibition, is an important process that is one 
of the primary determinants of the effectiveness of 
pharmacological treatments for anxiety and fear. A large 
body of evidence has revealed that both gluatamatergic 
and GABAergic systems contribute to fear extinction. 
Recently, D-cycloserine has been found to facilitate 
extinction and promote the effects of exposure-based 
psychotherapy, making it another potential candidate 
for the treatment of anxiety disorders.
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