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Abstract: Composite hydrogels of hyaluronic acid and gelatin attract great attention in biomedical
fields. In particular, the composite hydrogels obtained through processes that are mild for cells are
useful in tissue engineering. In this study, hyaluronic acid/gelatin composite hydrogels obtained
through a blue light-induced gelation that is mild for mammalian cells were studied for the effect of
the content of each polymer in the precursor solution on gelation, properties of resultant hydrogels,
and behaviors of human adipose stem cells laden in the hydrogels. Control of the content enabled
gelation in less than 20 s, and also enabled hydrogels to be obtained with 0.5–1.2 kPa Young’s modulus.
Human adipose stem cells were more elongated in hydrogels with a higher rather than lower content
of hyaluronic acid. Stem cell marker genes, Nanog, Oct4, and Sox2, were expressed more in the
cells in the composite hydrogels with a higher content of hyaluronic acid compared with those in
the hydrogel composed of gelatin alone and on tissue culture dishes. These results are useful for
designing conditions for using gelatin/hyaluronic acid composite hydrogels obtained through blue
light-induced gelation suitable for tissue engineering applications.

Keywords: gelatin; hyaluronic acid; tissue engineering; hydrogels; bioprinting; stem cells; biomedical;
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1. Introduction

Biopolymers are polymers obtained from natural resources such as microorganisms and plants,
and they are used in a wide range of applications. Biocompatible biopolymers are excellent candidates
to be used in pharmaceutical and medical applications including tissue engineering and regenerative
medicine [1–4]. Gelatin and hyaluronic acid (HA) are biopolymers that have been historically prized
for their usefulness in clinical fields [5–7]. In the tissue engineering field, their effectiveness for
supporting growth and elevating biological functions of mammalian cells are well known [8–10].
Therefore, a wide variety of scaffolds have been prepared from not only gelatin or hyaluronic acid alone
but also from multiple polymers, including both gelatin and hyaluronic acid [11–13]. The ability to
mimic the architecture of the extracellular matrix has been reported for gelatin/hyaluronic acid hybrid
hydrogels [13,14]. Scaffolds consisting of multiple polymers are attractive because these scaffolds can
have multiple functions, which cannot be obtained from single polymer scaffolds [15–17]. The degree
of expression of the functions attributed to each polymer is controllable by altering the ratio of the
polymers. In addition, altering the ratio of polymers can cause a change in the mechanical properties of
three-dimensional (3D) microenvironment surrounding the cells. Recently, it has been well recognized
that cell behaviors, including the differentiation of stem cells, can be influenced by the mechanical
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properties of the 3D microenvironment [18,19]. Scaffolds consisting of both gelatin and hyaluronic
acid also have been prepared for culturing varieties of cells such as vascular endothelial cells [20],
myoblasts [21], osteoblasts [22], and stem cells [8,23–25].

Various methods have been applied for obtaining insoluble forms of these polymers from polymer
solutions. One method is that of cross-linking the polymers in aqueous solution through visible light
irradiation in the presence of photoredox catalysts [26–28]. Photo-induced cross-linking is attractive
because the progress of the reaction is easily controllable by on/off switching of photoirradiation. In
addition, using visible light is more suitable than using ultraviolet light for obtaining hydrogels
that contain cells. The exposure of cells to ultraviolet light risks inducing chromosomal and
genetic instability [29]. Various visible light-mediated hydrogelation systems have been reported
for obtaining cell-laden hydrogels [30,31]: Mazaki et al. prepared bone marrow-derived stromal
cell-laden hydrogels by irradiating visible light to cell-suspending furfurylamine-conjugated gelatin
solution containing rose bengal [30]. Fenn et al. prepared mesenchymal stem cell-laden hydrogels by
irradiating visible light to cell-suspending methacrylate hyaluronic acid solution containing eosin Y
and triethanolamine [32]. Ruthenium(II) tris-bipyridyl dication ([Ru(bpy)3]2+) is a photoredox catalyst
that catalyzes the cross-linking of phenolic hydroxyl moieties, including those in tyrosine residues
under blue light irradiation (Figure 1) [28,33–36]. This system has been used for obtaining hydrogels
containing fibroblasts [37] and carcinoma cells without applying bioprinting [35].
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Recently, we reported the potency of the blue light-mediated cross-linking system for fabricating
cell-laden hyaluronic acid/gelatin hybrid hydrogels [28]. The hybrid hydrogels were obtained from
derivatives of hyaluronic acid and gelatin, both possessing phenolic hydroxyl (Ph) moieties (gelatin-Ph
and HA-Ph). Ph moieties were cross-linked through the blue light-mediated reaction. The aim of
this study was to investigate the effect of the content of gelatin-Ph and HA-Ph in precursor solutions
on gelation behavior, properties of hydrogels, and stem cell marker gene expression of human
adipose-derived stem cells (hASCs) enclosed in the hydrogels (Figure 1). It is recognized well that
hydrogels are bioactive materials that regulate stem cell fate [38]. Detailed studies on the effect of
the content of gelatin-Ph and HA-Ph have not been performed in previous bioprinting work. In
this study, we investigated the effects under the condition of fixing one polymer concentration and
changing the other polymer concentration based on the condition of the previous study for bioprinting
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(3.0% gelatin-Ph/0.5% HA-Ph) [28]. The knowledge obtained in this study would further enhance the
utility of hybrid hydrogels obtained through blue light-mediated cross-linking in a variety of tissue
engineering applications. ASCs are multipotent stem cells and are widely used in research because they
can be obtained in abundance with minimal invasiveness [39]. It has been reported that hyaluronic
acid and gelatin support the maintenance of differentiation potentials [40] and proliferation [41] of
ASCs, respectively.

2. Materials and Methods

2.1. Materials

Gelatin (bovine skin, ca. 225 g bloom, type B) and sodium hyaluronic acid (HA, average molecular
weight, approximately 1000 kDa) were purchased from Kewpie (Tokyo, Japan) and Sigma-Aldrich
(St. Louis, MO, USA), respectively. Tyramine hydrochloride and Tris(2,2′-bipyridyl)dichlororuthenium(II)
hexahydrate [Ru(bpy)3]Cl2·6H2O were obtained from Tokyo Chemical Industry (Tokyo, Japan).
Sodium ammonium persulfate (SPS) and N-hydroxy sulfosuccinimide were purchased from Wako
Pure Chemical Industries (Osaka, Japan). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)
was obtained from the Peptide Institute (Osaka, Japan). Gelatin-Ph (2.3 × 10−4 mol-Ph/g) and HA-Ph
(1.2 × 10−4 mol-Ph/g) were synthesized through conjugation with 3-(4-hydroxyphenyl)propionic acid
and tyramine hydrochloride, respectively, using EDC and N-hydroxy sulfosuccinimide according
to previous reports [42,43]. The contents of introduced Ph moieties were determined based on the
absorbance at 275 nm (Supplemental Figure S1) using a calibration curve obtained by measuring
the absorbance of known percentages of tyramine hydrochloride. The polymeric aqueous solutions
used in the study were obtained by dissolving Gelatin-Ph and HA-Ph at 1.0%–5.0% and 0%–0.75%,
respectively, in phosphate-buffered saline (PBS, pH 7.4). The contents of [Ru(bpy)3]2+ and SPS in the
solutions were fixed at 1.0 and 2.0 mM. hASCs were obtained from Lonza (Walkersville, MD, USA)
and cultured in growth medium for ASCs (PT-4505, Lonza) containing 10% (v/v) fetal bovine serum.

2.2. Viscosity and Gelation Time of Solutions

The viscosities of the solutions and the gelation times were measured using a rheometer (HAAKE
MARS III, Thermo Fisher Scientific, Waltham, MA, USA) equipped with a parallel plate geometry.
A top plate with a 25 mm radius was set at a 0.5 mm height from a transparent glass bottom plate,
and solution (0.7 mL) was put between the plates. The transitions of storage elastic moduli and loss
elastic moduli with time were measured with irradiating blue light (0.45 W/m2 at a 452 nm wavelength)
through the glass bottom at 25 ◦C. Blue LED light (Microscope LED Blue Ring Light, Srate, Nanyang,
China) was used as the light source. Gelation time was defined as the time it took to achieve the
intersection point of the transitions of the two moduli [44]. Measurements were performed in triplicate
for each condition.

For evaluating the effect of the gelation speed on printability, the spreading of the solutions
extruded from a 27 gauge stainless-steel needle onto a glass stage was determined by measuring the
width of the gelled filaments. The solution was extruded at 22 mm/s at the tip of the needle onto a
stage moving at 22 mm/s under blue light irradiation (0.45 W/m2 at 452 nm). Measurements were
performed on eight specimens for each condition.

2.3. Mechanical Properties and Molecular Permeabilities of Hydrogels

Hydrogels with a 12 mm diameter and 3.5 mm thickness were obtained by irradiating 0.4 mL of
solution, poured into the molds, with blue light (0.45 W/m2 at 452 nm) for 20 min. The irradiation
time was decided based on the result of a preliminary study showing that 15 min was necessary
to achieve plateau storage modulus (G’) at conditions giving 35 s of gelation time (Supplemental
Figure S2). The hydrogels were compressed using a table-top material tester (EZ-Test, Shimadzu, Kyoto,
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Japan) at 1.0 mm/min. Young’s modulus was calculated from the data for less than 10% compression.
Measurements were performed on four specimens for each condition.

Diffusion coefficients of 4, 10, and 70 kDa fluorescein isothiocyanate (FITC)-labeled dextran in
hydrogels were determined as reported previously [45]. In brief, hydrogels were soaked in PBS
containing FITC-dextran for 24 h at room temperature. The diffusion coefficients of FITC-labeled
dextrans were determined by the method of fluorescence recovery after photobleaching (FRAP) based
on the measurement using confocal laser scanning microscopy (CLSM, Nikon C2 Plus, Tokyo, Japan).
Measurements were performed five times for each condition.

2.4. Human Adipose-Derived Stem Cell (hASC) Studies

hASCs were suspended in polymer solutions at 5.0 × 105 cells/mL. The solutions were poured into
a 24-well tissue culture plate at 0.4 mL/well after covering the bottom of each well with 1.0% agarose
gel to prevent cell adhesion. Then, blue light (0.45 W/m2 at 452 nm) was irradiated for 20 min. After
several rinses with medium, the specimens enclosing the hASCs were incubated in a medium. At 1, 7,
and 14 d of culture, cells were stained with Calcein-AM and propidium iodide (PI) to evaluate the
viability. The morphology of the cells at a 400 to 500 µm height from the bottom of the specimens
was observed using CLSM after staining the cells with Calcein-AM. To monitor the expression of
the stemness-related genes—Nanog, Oct4, and Sox2—in hASCs, RT-PCR studies were performed at
1, 7, and 14 d of culture for the cells collected from the hydrogels by degrading using the solution
containing hyaluronidase (1000 U/mL) and trypsin (0.025 w/v%). Total RNAs of the collected hASCs
and adhered cells in cell culture dishes were extracted with RNeasy Plus Micro Kits (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The total RNA concentration was determined
by optical density at 260 nm using a spectrophotometer (e-spect, BM Equipment, Tokyo, Japan). cDNA
was generated from the extracted RNA using a SuperScript™ VILO™ cDNA Synthesis Kit (Invitrogen,
Carlsbad, CA, USA). The target sequences from the resultant cDNA templates were then amplified and
quantified using a qPCR system (Promega, Madison, WI, USA) and previously reported primers [46].
Briefly, qPCR was performed in triplicate for each condition. The expression level was analyzed and
normalized to β-actin. The relative quantity of gene expression was calculated with the cells obtained
before enclosing them in hydrogels as the reference.

2.5. Statistical Analysis

The data shown represent the mean and standard deviation. Comparisons between two datasets
were made using an unpaired t-test. Values of p < 0.05 were considered significant.

3. Results and Discussion

3.1. Solution Viscosities

First, we studied the effect of the content of gelatin-Ph and HA-Ph on the viscosity–shear rate
profiles of solutions. As shown in Figure 2a, the viscosity of solutions at a low shear rate (between 0.01
and 1 s−1) increased with increasing HA-Ph content at a fixed gelatin-Ph content (3.0%). The viscosities
of solutions containing 0.5% and 0.75% HA-Ph were around 1000 and 5500 mPa s at a shear rate of
0.01 s−1. At higher shear rate values, viscosities of these solutions decreased and showed similar values
at around 50−1 (Figure 2b), indicating an enhancement of the shear-thinning property by increasing
the HA-Ph content. The contribution of hyaluronic acid on the enhancement of the shear-thinning
property has been reported in previous studies [47–49]. The shear-thinning property, it is argued,
occurs when the rate of breakdown of the stiff intermolecular network junctions exceeds the rate of
reformation of associations and entanglements [47].
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At a fixed content of HA-Ph (0.5%), as shown in Figure 2, the viscosity of solutions at a low shear
rate (between 0.01 and 1 s−1) decreased when the content of gelatin-Ph increased from 1.0% to 3.0%.
The trend was reversed when the gelatin-Ph content further increased to 5.0%. The viscosity of 5.0%
gelatin-Ph solution at 0.01 s−1 was about three times larger than that of 3.0% gelatin-Ph solution. The
result of the reversal of the trend in the transition of viscosity with increasing gelatin-Ph content is
attributed to the change in the degree of the intermolecular interactions between the polysaccharide
and protein [50–52]. A bimodal curve was established, which separates the region of co-solubility from
the region of separation for the effect of the concentrations of the protein and polysaccharide [52]. The
above result would be helpful for predicting the cellular damage caused by shear stress during the
handling of precursor solutions and the force required when the precursor solution flows in capillaries
and needles [53]. In addition, the result relating to the shear-thinning property is useful for fabricating
3D constructs with good printability in an extrusion-based 3D printing [54].

3.2. Gelation Behavior

The time necessary for gelation of precursor solutions under the exposure of blue light (450 W/m2

at 452 nm) decreased with increasing gelatin-Ph content and HA-Ph content at fixed HA-Ph (0.5%)
and gelatin-Ph (3.0%), respectively (Figure 3) (p < 0.05). The shortest gelation time was 6.8 ± 0.8 s at
3.0% gelatin-Ph + 0.75% HA-Ph. The decrease in gelation time with an increase in the total amount of
polymer-Ph resulted from the increase of the content of Ph moieties in the reaction system. Typically,
the enzyme reaction rate increases with increasing substrate concentration, except in the range of
excess substrate concentration. Similar results of a decrease in gelation time with increasing the
content of Ph moieties in solutions have been reported for solutions containing a variety of single
polymer-Ph [42,55,56]. The conditions that provide a gelation time of less than 10 s are useful for in
situ fabrication of hydrogels in vivo by injecting precursor solutions [57,58] with irradiation of blue
light. The concentrations of [Ru(bpy)3]2+ and SPS also govern the gelation time [28]. In this study,
their concentrations were fixed (1.0 mM [Ru(bpy)3]2+ and 2.0 mM SPS) based on a previous result,
indicating a successful enclosure of mammalian cells without decreasing their viability [28].

In 3D bioprinting applications, the time necessary for gelation and the viscosity of solution govern
the printability. We evaluated the effect on 3D printing by determining the stabilization of solutions
extruded from a needle with a 220 µm inner diameter and 400 µm outer diameter with an exposure of
blue light (0.45 W/m2 at 452 nm). As shown in Figure 4, the width of the gelled filament extruded from
the needle at the same linear velocity as the movement speed of the stage decreased with increasing the
total content of gelatin-Ph and HA-Ph (Figure 4). A value far from 1.0 means the solution spread before
gelation. The trend of decreasing hydrogel filament width with increasing the content of gelatin-Ph
and HA-Ph was consistent with the trend obtained for viscosity (Figure 2) and gelation time (Figure 3):
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hydrogel filaments with smaller widths were obtained at the conditions giving a higher viscosity at
a low shear rate and shorter gelation time. The smallest relative width of hydrogel filaments to the
needle diameter was 1.02 ± 0.04 at 3.0% gelatin-Ph + 0.75% HA-Ph. The value was 1.05 ± 0.04 at 3.0%
gelatin-Ph + 0.5% HA-Ph. The reason the hydrogel filament width converged to the outer diameter of
the needle was due the extruded solution contacting the tip wall of the needle before being placed on
the stage [59].Biomolecules 2019, 9, x 6 of 15 
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Figure 4. Effects of gelatin-Ph and HA-Ph content on the width of hydrogel filaments extruded on a
stage. (a) Values normalized by an outer diameter of an extrusion needle (400 µm). The linear velocity
of the solution at the tip of the needle and the movement speed of the stage were set to be the same. Bars:
S.D. (n = 8). * p < 0.05, ** p < 0.01. (b) Microphotographs of hydrogel filaments at typical conditions.
Bars: 200 µm.

3.3. Hydrogel Properties

The mechanical properties of hydrogels play vital roles in their mechanical stability toward
external forces as well as their behaviors when contacting cells, including the differentiation of stem
cells [60,61]. As shown in Figure 5, stiffer hydrogels formed from the solution with higher polymer-Ph
contents, except for the trend when increasing the HA-Ph content from 0.5% to 0.75% at 3.0% gelatin-Ph
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(p = 0.40). The smallest and the largest Young’s moduli were 0.26± 0.05 at 1.0% gelatin-Ph + 0.5% HA-Ph
and 1.14 ± 0.10 kPa at 5.0% gelatin-Ph + 0.5% HA-Ph, respectively. The polymer content-dependent
increase of Young’s modulus is explained by the increase in the density of cross-linked polymers.
The results for the diffusion coefficients of 4, 10, and 70 kDa FITC-labeled dextran in the hydrogels
(Figure 6) well support this explanation: smaller diffusion coefficients were detected for the hydrogels
with a higher Young’s modulus. A polymer network offers transport resistance for solutes, and a
denser network offers higher transport resistance [62].
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3.4. Human Adipose Stem Cell Behaviors

Subsequently, we studied the effect of the content of gelatin-Ph and HA-Ph on the viability,
morphology, and stem cell marker gene expression of hASCs enclosed in gelatin-Ph/HA-Ph hydrogels.
Figure 7a shows the transition of the viability of hASCs during 14 d of culture in hydrogels. All
viabilities at 1 d of culture were almost identical, more than 95%, for all the conditions. Except for the
condition of 5.0% gelatin-Ph + 0.5% HA-Ph, the viabilities were more than 90%, even at 7 d of culture.
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These results demonstrate that blue light-induced gelation did not give a significant adverse effect that
would induce cell death on the enclosed hASCs independent of the hydrogel composition. A notable
result was that the viabilities of the cells in 5.0% gelatin-Ph + 0.5% HA-Ph hydrogel at 7 and 14 d of
culture were clearly lower than those in other hydrogels (p < 0.05). This result is attributed to the higher
mechanical stress given to the cells by the surrounding hydrogels and the lower permeability in the
hydrogel than those in other hydrogels (Figures 3 and 4). A similar result of a decrease in cell number
in stiffer hydrogels was reported for human embryonic stem cells enclosed in hydrogels composed
of HA-Ph alone [63]. Yang et al. indicated an increase in hASC apoptosis in a hydrogel composed
of gelatin alone, with an increase in the polymer concentration resulting in an increase in hydrogel
stiffness [41]. They demonstrated that the enclosed hASCs in such hydrogels increased in the first
10–14 d of culture but then decreased [41].
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(Bars: S.D., n = 3) and (b) morphology of enclosed hASCs at 7 days of culture (Bars: 500 µm). Confocal
fluorescence images in panel b were taken at a 400 to 500 µm height from the bottom of the specimens
(1 mm thickness) at 7 days of culture. The numerical characters in each image, X and Y, mean the
contents of gelatin-Ph (%) and HA-Ph (%), respectively.
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The confocal images of hASCs in hydrogels at 7 d of culture demonstrate suppression of cellular
growth in 1.0% gelatin-Ph + 0.5% HA-Ph and 2.0% gelatin-Ph + 0.5% HA-Ph hydrogels compared to
other hydrogels (Figure 7b). This result means a certain amount of gelatin is necessary for improving
the spreading of enclosed hASCs. A notable result was the difference in cell morphology in hydrogels.
The hASCs in 3.0% gelatin-Ph + 0.5% HA-Ph were the most elongated (Figure 7b: 3.0–0.5). In contrast,
the hASCs in 3.0% gelatin-Ph hydrogels (Figure 7b: 3.0–0), without HA-Ph, were the least elongated.
The less elongated morphology of enclosed hASCs is consistent with hASCs enclosed in hydrogels
composed of gelatin alone obtained through transglutaminase-mediated gelation [41]. The difference
in the cellular morphology clearly demonstrates the function of HA-Ph for elongation of the hASCs.
Hyaluronic acid binds to its cluster determinant 44 (CD44) receptor [8,20,64]. In addition, the binding
of hyaluronic acid and CD44 enhances adhesion, migration, and cell–cell interaction in varieties of
cells, including hASCs [8,20]. The greater elongation of the cells in 3.0% gelatin-Ph + 0.5% HA-Ph
hydrogel (Figure 7b: 3.0–0.5) than those in 3.0% gelatin-Ph + 0.75% HA-Ph hydrogel (Figure 7b:
3.0–0.75), despite the similar stiffness and molecular permeability of the hydrogels (Figures 5 and 6),
also indicates the composition-dependent elongation of the enclosed hASCs. Microenvironmental
changes caused by proteolytic degradation of gelatin-Ph by hASC-secreted metalloprotease may
have induced the difference. The degradation of matrix surrounding cells provides the space for cell
elongation and proliferation [38,65]. Lei et al. reported that mouse mesenchymal stem cells can only
spread in Arg-Gly-Asp (RGD)-modified HA hydrogel with proteolytic degradable character than in
nondegradable hydrogel [66]. Due to the lower content of HA-Ph, 3.0% gelatin-Ph + 0.5% HA-Ph
hydrogel would have provided more space for cell elongation. Investigating the microenvironmental
changes during cell culture would give important information for understanding the results.

Figure 8 shows the transition of the expression of stem cell marker genes—Nanog, Oct4, and
Sox2—in the hASCs during 14 d of culture in the hydrogels. It has been reported that the expression
of Nanog, Oct4, and Sox2 genes are an indicator of stemness of hASCs [67]. Except for the cells in
the hydrogel composed of gelatin-Ph alone (Figure 8b), all cells showed higher expressions of the
stem cell marker genes compared to those cultured in the tissue culture dish (relative expression > 1,
p < 0.05). The degrees of the expression were higher in the cells containing a smaller amount of
gelatin-Ph at 0.5% HA-Ph (Figure 8a) and a higher amount of HA-Ph at 0.3% gelatin-Ph (Figure 8b). In
addition, the degrees increased with increasing the period of culture. These results demonstrate that
HA-Ph cross-linking through blue light-induced gelation is effective for the preservation of stem cell
properties in hASCs in the same way as with native hyaluronic acid [25,64]. Regarding the mechanism
of the upregulation of the stem cell marker gene expression by hyaluronic acid, it has been explained
as a result of the enhancement of the expression of CD44, a receptor of hyaluronic acid [64]. This
explanation supports the result of the upregulation of stem cell marker gene expression with increasing
HA-Ph content. Regarding the decrease in stem cell marker gene expression with increasing gelatin-Ph,
it can be explained by the increase in the degree of the intermolecular interaction between HA-Ph with
gelatin-Ph, which caused the decrease in viscosity with increasing gelatin-Ph from 1.0% to 3.0% in
0.5% HA-Ph solution (Figure 2). The intermolecular interaction would inhibit or lower the interaction
between HA-Ph and CD44. The differentiation of enclosed ASCs was not examined in this study, but
the capacity of differentiation was reported in a previous study for hASCs enclosed in 3.0% gelatin-Ph
+ 0.5% HA-Ph hydrogel [28]. The effects of the content of gelatin-Ph and HA-Ph on differentiation
to specific cell types, such as adipocytes, chondrocytes, myocytes, osteoblasts, and neurocytes, are
currently under investigation.
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4. Conclusions

In this study, we examined hyaluronic acid/gelatin composite hydrogels obtained through blue
light irradiation in the presence of [Ru(bpy)3]2+ and SPS from the viewpoint of their applications in
tissue engineering. In detail, we investigated the effects of the content of gelatin-Ph and HA-Ph in
PBS on the viscosity and gelation behavior of solutions, including the printability, mechanical and
molecular permeability properties of resultant hydrogels, and hASC behaviors in the hydrogels. The
contents of gelatin-Ph and HA-Ph greatly influenced their behaviors, that is, these features can be
controlled by altering concentrations of these polymers without changing the intensity of blue light
and the concentration of [Ru(bpy)3]2+ and SPS. An increase in the content of polymers did not always
result in a solution with higher viscosity. It was necessary to determine the content, taking into account
the influence of the interaction between the polymers for obtaining the solution with an intended
viscosity. The time necessary for gelation changed in the range around 5–20 s. The Young’s modulus
of hydrogels changed in the range of 0.2–1.2 kPa. The hASCs in the hydrogels containing HA-Ph
became more elongated than those in the hydrogel obtained from gelatin-Ph alone (Figure 7a). In
addition, the degrees of stem cell marker gene expression of Nanog, Oct4, and Sox2, were upregulated
in the composite hydrogels compared to those in the hydrogel containing gelatin-Ph alone and the
tissue culture dish (Figure 8). Especially, the degree of upregulation was enhanced with an increase
in the HA-Ph content. Recently, the influence of the mechanical signal on cell behaviors, such as
proliferation, elongation, and differentiation, has become widely recognized [19]. In the fabrication
processes of cell-laden hydrogels, the viscosity and gelation rate of precursor solutions govern the
damage to cells [53] and the ease in handling. This means that the composition of precursor solutions
has to be decided based on a comprehensive view. We believe the results obtained in this study will be
helpful in future works using blue light-mediated gelation in tissue engineering applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/8/342/s1,
Figure S1: UV-vis absorbance spectrum of unmodified gelatin, Gelatin-Ph, HA, and HA-Ph at 0.1 w/w%. Figure S2:
Transition of storage elastic modulus of aqueous solution containing 1.0 w/v% alginate derivative possessing
phenolic hydroxyl moieties, 1.0 mM [Ru(bpy)3]2+ and 1.0 mM SPS under blue light irradiation (33 mW/m2 at a
452 nm). The gelation time at this condition was 35 s.
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