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Abstract
Tissue fibrosis is a key factor leading to disability and death worldwide; however, thus far, there are no approved treatments 
for fibrosis. Transforming growth factor (TGF)-β is a major pro-fibrotic cytokine, which is expected to become a target in 
the treatment of fibrosis; however, since TGF-β has a wide range of biological functions involving a variety of biological 
processes in the body, a slight change in TGF-β may have a systematic effect. Indiscriminate inhibition of TGF-β can lead to 
adverse reactions, which can affect the efficacy of treatment. Therefore, it has become very important to explore how both 
the TGF-β signaling pathway is inhibited and the safe and efficient TGF-β small molecule inhibitors or neutralizing antibod-
ies are designed in the treatment of fibrotic diseases. In this review, we mainly discuss the key role of the TGF-β signaling 
pathway in fibrotic diseases, as well as the development of fibrotic drugs in recent years, and explore potential targets in the 
treatment of fibrotic diseases in order to guide subsequent drug development.
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Introduction

According to relevant statistics, in the USA, nearly 45% of 
deaths for patients who suffered from various diseases can 
be attributed to tissue fibroproliferative diseases [1]. Thus 
far, there is no approved treatment effective against fibro-
sis. Although the average life expectancy has been greatly 
improved as medical technology continues to develop, there 
is an increasing incidence of organ fibrotic diseases among 
younger patients and more generalized disease patterns 
[2–6]. Therefore, there is an urgent need to develop effec-
tive drugs for the treatment of fibrosis.

There are many factors leading to fibrosis, including 
occupation, hereditary disease, lifestyle, aging [7, 8], as well 
as physical, chemical, and biological factors, etc. [6, 9, 10]. 
For example, silicosis is a serious occupational disease in 
China. Due to the long-term exposure to the environment 
containing silica dust, these particles will accumulate in the 
lungs and will not be metabolized by the body. Workers who 
work for a long time will form nodules in the lungs, forming 
inflammatory lesions and inducing pulmonary fibrosis, and 
eventually causing irreversible damage to the body [11, 12]. 
In addition to the above reasons, studies have also reported 
that the lack of neuraminidase 1(NEU1) is closely related 
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to the formation of fibrosis in muscles, kidneys, liver, heart, 
and lungs[13]. There is also a genetic link between rheuma-
toid arthritis-related interstitial lung disease and idiopathic 
pulmonary fibrosis [14, 15]. Finally, a poor lifestyle is also 
the main cause of chronic inflammation and even organ 
fibrosis.

In the process of fibrosis formation, a variety of molecu-
lar mechanisms and changes in the microenvironment are 
involved. For example, TGF-β, platelet-derived growth fac-
tor (PDGF), connective tissue growth factor (CTGF), inter-
leukin-4 (IL-4), interleukin-13 (IL-13), and other cytoki-
neshave chemotactic effects on fibroblasts and regulate 
the synthesis and degradation of collagen, which in turn is 
closely related to the occurrence and development of fibro-
sis [16–19]. In addition, oxidative stress and inflammation 
can promote the formation of fibrosis [18–21]. Among the 
above factors that cause fibrosis, TGF-β plays a vital role. 
As shown in Fig. 1, TGF-β will be overactivated in per-
sistent inflammation such as tissue damage. The activated 
TGF-β not only mediates SMAD signaling pathway but 
also activates the PI3K-AKT-mTOR signaling pathway for 

transcriptional regulation, which in turn promotes epithelial-
mesenchymal transition (EMT) and triggers the accumula-
tion of extracellular matrix [22, 23]. On the other hand, 
TGF-β can also regulate the activity of RhoA, promoting 
the activation of Rho-related kinase (ROCK) and inhibiting 
cofilin (CFL) [24]. Rac and Cdc42 are also involved in the 
non-Smad signaling pathway mediated by TGF-β signaling 
[25–29]. Most notably, TGF-β1 is the strongest profibrotic 
cytokine discovered to date [30–34]; many studies have 
shown that blocking the TGF-β1 pathway can improve organ 
fibrosis [32, 35]. However, TGF-β participates in the regula-
tion of a variety of other signal pathways in the body and has 
an important role in maintaining physiological homeostasis 
(including immune regulation and tumor suppression) [32]. 
Therefore, in the drug design process, it is necessary to con-
sider minimizing the potential adverse effects of systemic 
blocking of TGF-β.

Judging from the current clinical incidence rate of fibrotic 
diseases, pulmonary fibrosis, renal fibrosis, and liver fibro-
sis are the most common fibrotic diseases, and there is an 
enormous need for the treatment of these diseases clinically 

Fig. 1   Schematic diagram of TGF-β signaling pathway. A Synthe-
sis of TGF-β precursor and activation of mature TGF β. In the cyto-
plasm, SLC and LTBP combine to form a large latent complex (LLC) 
that is secreted into the peripheral circulation of the cells. LTBP can 
mediate the non-covalent binding of LLC to fibrillin and promote 
the release of TGF-β by different means such as proteases, integrins, 
pH, and reactive oxygen species-mediated ways as mentioned above. 
B Nonclassical Smad signaling pathway mediated by TGF-β. TGF-β 

phosphorylates downstream adaptor molecules such as RhoA, Ras, 
TAK1, and P13K and activates the downstream signal amplification 
cascade including MKKs and MEKs, JNK/SPAK, p38, and other 
pathways. C Classical Smad signaling pathway mediated by TGF-β. 
TβRIII presents TGF-β to TβRII, and TβRII combined with TGF-β 
recruits and phosphorylates TβRI. Finally, the dimerized TβRI and 
the dimerized TβRII are cross-linked and then trigger the intracellular 
TGF-β signaling pathway
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which is not being met [36–38]. An understanding of 
fibrotic disease mechanisms has accelerated the research 
and development of its clinical treatment. Currently, doz-
ens of anti-fibrosis drugs with different targets are under 
development. The main treatments are listed below. (1) 
Chemically synthesized oligonucleotides as miRNA inhibi-
tors or analogs. Since studies have shown that some miR-
NAs could upregulate or downregulate the transcription 
of specific genes related to fibrosis [39–43]. For example, 
it was found that the injection of miR-326 into mice with 
bleomycin-induced pulmonary fibrosis caused significant 
downregulation of TGF-β1, Smad3, matrix metallopro-
teinase-9 (MMP-9), and upregulation of Smad7, which in 
turn have good anti-fibrosis effects [39]. (2) Recombinant 
serum amyloid P (Pentraxin-2), which has the function of 
regulating the natural immune response, has the function of 
inhibiting the differentiation of monocytes into fibroblasts 
or fibrosis-promoting phenotypes and activating macrophage 
subpopulations. It is located at the injury site and has a dual 
effect by inhibiting fibrosis and promoting repair. PRM-151 
is a recombinant protein of Pentraxin-2, which has shown 
good efficacy in the treatment of pulmonary fibrosis and is 
currently undergoing phase III clinical trials in patients with 
idiopathic pulmonary fibrosis (IPF) [22, 44]. (3) Another 
potential therapeutic target is LoxL2 (a lysyl oxidase fam-
ily member), which plays a key role in ECM cross-linking, 
affecting the expression of certain specific genes, which are 
related to fibrosis and carcinogenesis [45–50]. GS-6624 is a 
humanized IgG4 monoclonal antibody that targets LoxL2, 
blocks the activity of LoxL2, reduces the production of ECM 
by myofibroblasts, and has shown good efficacy in treating 
fibrosis [51]. (4) Drugs that target IL-4 and IL-13; IL-4 and 
IL-13 are also potential targets in the treatment of fibrosis, 
which are important for mediating innate immune activation 
and helper T-cell 2 (Th-2) cell response[16]. Studies have 
shown that IL-13 participates in the generation of TGF-β1 
by regulating IL-13 Ralpha2 receptors and promotes the pro-
cess of fibrosis [52–54]. (5) Drugs that target TGF-β [33, 55, 
56]. For example, it has been found that the small molecu-
lar inhibitor LY364947 selectively inhibits TGF-β1 could 
effectively block the activation and proliferation of mouse 
cardiac fibroblasts with fewer side effects and is safer than 
pan-TGF-β blocking in vivo [33]. In order to avoid harm-
ful effects, choosing appropriate inhibitory strength, drug 
duration, combination with other drugs that can reduce side 
effects [57], and local inhibition of TGF-β1 signaling may 
be good drug development strategies. For example, design-
ing bifunctional antibodies to make the drug more enriched 
at the lesion site may be a good choice. Since TGF-β has a 
high degree of pleiotropy, there are still many problems to 
be resolved in fibrosis treatment by targeting TGF-β. How-
ever, it is clear that this cytokine has great therapeutic value. 
In this paper, we will outline the application and potential 

of targeting TGF-β in the treatment of tissue fibrosis by 
introducing advances made in scientific research involving 
mechanisms that TGF-β may be involved in.

TGF‑β superfamily signaling pathway

TGF‑β superfamily members

TGF-β superfamily members can regulate the proliferation, 
differentiation, apoptosis, adhesion, and migration of a vari-
ety of cells, such as macrophages, T cells, B cells, imma-
ture hematopoietic cells, neutrophils, and dendritic cells, 
etc. [58–61]. The TGF-β family consists of 33 members, 
including TGF-β, growth differentiation factors (GDFs), 
bone morphogenetic protein (BMP), activin, NODAL, and 
anti-Mullerian hormone (AMH) [53, 62].

TGF-β has three subtypes in mammals, namely TGF-β1, 
TGF-β2, and TGF-β3. Although their structures are highly 
similar, they perform different functions. TGF-β1 plays an 
important role in maintaining the stability of the body. It can 
activate fibroblasts and promote the synthesis of the extra-
cellular matrix [63]. Studies have also shown that loss of 
TGF-β1 may cause defects in hematopoietic and endothelial 
cell differentiation or autoimmune diseases [64], and lack of 
TGF-β2 can affect epithelial-mesenchymal interactions, cell 
growth, extracellular matrix production, and result in tissue 
remodeling disorders, causing defects in the heart, lungs, 
cranium and face, limbs, spine, eyes, inner ears, and urogeni-
tal system [65]. TGF-β3 plays an important role in the nor-
mal morphogenesis of the palate and lungs and participates 
in epithelial-mesenchymal interaction [66], in which it can 
reduce scar formation during wound healing [67]. Among 
the three TGF-β subtypes, TGF-β1 is the most fully studied 
member of the transforming growth factor family, which 
plays a major role in tumor development and tissue fibrosis.

TGF‑β receptors

TGF-β receptors are divided into three categories: trans-
forming growth factor-β type I receptor (TβRI), transform-
ing growth factor-β type II receptor (TβRII), and trans-
forming growth factor-β type III receptor (TβRIII)[68, 69]. 
TβRII contains a serine/threonine-rich sequence, which can 
undergo autophosphorylation. TβRI contains a conservative 
serine/glycine-rich sequence (TTSGSGSGLP, also known 
as GS region), which plays a key part in TβRI activation. 
Both TβRI and TβRII can directly participate in the signal 
transmission process [69]. TβRIII is a co-receptor of the 
TGF-β superfamily. The extracellular domain of TβRIII con-
tains an independent amino terminal domain, a zona pelu-
cida domain (ZPD) potentially involved in the oligomeriza-
tion reaction of the receptor, and two independent TGF-β 
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ligand-binding domains [70]. TβRIII can mediate both the 
classic Smad signaling pathway and the non-classical Smad 
signaling pathway to regulate the downstream signaling of 
TGF-β [71–73] and plays a role in ligand presentation in the 
TGF-β classic signaling pathway. However, in many dis-
eases, TβRIII can block the TGF-β signaling pathway by 
forming a complex with TβRI and TβRII [74]. In the classi-
cal TGF-β pathway, active TGF-β can first bind to TβRIII, 
then be presented to the receptor complex composed of TβRI 
and TβRII, and initiate downstream signaling pathways 
(Fig. 1) [75, 76].

TGF‑β secretion and activation

The TGF-β family members are composed of latency-related 
peptide (LAP), precursor domain, and C-terminal TGF-β 
fragment, where the precursor domain and growth factor are 
connected by a cleavage site of proprotein convertase (PC) 
[77, 78]. The TGF-β precursor is first synthesized on the 
rough endoplasmic reticulum [79]. After being transferred 
into the Golgi complex and cleaved by the invertase furin, 
it is bound with LAP homodimer in a non-covalent form 
and forms a symmetrical heterotetrameric structure, which 
is called small latent complex (SLC) [79]. This SLC func-
tions as a cover to prevent mature TGF-β from binding to 
cell surface receptors. SLC can be hydrolyzed by protease or 
non-protease to form mature TGF-β with biological activity 
[80, 81]. During the process, the homodimer part of LAP is 
connected by two disulfide bonds, and the interaction of the 
mature TGF-β part is also stabilized by disulfide bonds [82].

The activation of latent TGF-β complex involves several 
important molecular mechanisms as shown in Fig. 1. (1) The 
arginine-glycine-aspartate (RGD) motif in TGF-β precur-
sor fragment bound with integrin β chain via non-covalent 
bonds. When integrin αvβ6/αvβ8 on stromal cells binds to 
RGD sequence on the TGF-β precursor domain, under the 
combined action of mechanical force of cytoskeleton and 
the reaction force of the extracellular matrix or cells pre-
senting TGF-β, the closed loop of precursor domain opens 
and mature TGF-β with biological function is released [79, 
81, 83]. (2) The TGF-β precursor fragment is cleaved by 
proteases such as metalloprotease MMP-2, MMP-3, MMP-
9, and plasmin to release mature TGF-β [79, 84]. (3) Reac-
tive oxygen species (ROS); in the process of liver fibrosis, 
activated hepatic stellate cells release a large amount of 
ROS, and a high level of ROS can promote the release of 
transforming growth factor-β [85]. (4) Changes in pH; in a 
tissue microenvironment with a low pH, mature TGF-β is 
released more easily [54, 86, 87]. (5) Studies have shown 
that the small latent complex can also bind to glycoprotein-
A repetitions predominant (GARP, usually overexpressed 
on the membrane of the Treg cells) on cell surfaces, lead-
ing to the release of active TGF-β and the regulation of 

the proliferation and differentiation of Treg cells [80, 83] 
(Fig. 1).

TGF‑β signaling pathway

Once activated, mature TGF-β initiates transmembrane sign-
aling by binding itself to two distinct transmembranes Ser/
Thr protein kinases, termed as TβRI and TβRII receptors. 
Among them, transforming growth factor-β can also bind to 
the helper receptor TβRIII, and then the signal molecules 
are transmitted to TβRI and TβRII by T-β RIII. TβRII can 
phosphorylate specific cytoplasmic GS domains of TβRI, 
leading to conformational regulation of TβRI so as to 
phosphorylate Smad2 and Smad3 proteins. Subsequently, 
phosphorylated Smad2 and Smad3 proteins bind to Smad4 
protein to form heterologous complexes, with the formed 
heterotrimers translocating into the nucleus and bound to 
DNA to regulate the transcription of multiple target genes 
[62, 88–90]. In the nucleus, with the participation of certain 
DNA-binding proteins, Smad molecules act on specific tar-
get genes to regulate their expression. For example, phos-
phorylated Smad2/3/4 heterocomplexes can form complexes 
with p300 and CREB-binding proteins (CBP) to promote the 
transcription of target genes such as plasminogen activator 
inhibitor-1 (PAI-1), collagen type I alpha 1 (COL1A1), and 
connective tissue growth factor (CTGF) [91] to regulate the 
production of the extracellular matrix. In addition to inter-
acting with transcription factors, Smad complexes have been 
shown to regulate epigenetic modifications by transferring 
histone acetyl and methyltransferases to specific gene sites. 
Phosphorylated Smad2/3 protein can bind to M6A meth-
yltransferase complex to regulate m6A RNA methylation 
modification of target genes, thus exerting the biological 
function of DNA repair and posttranscriptional regulation 
[62, 92].

More and more pieces of evidence clearly demonstrate 
that in addition to activating classic Smad-dependent signal-
ing, TGF-β also participates in nonclassical signaling path-
ways, which mainly include MAP kinases, PI-3 kinase-Akt, 
and Rho-like GTPase [93–96]. Figure 1 depicts the classic 
TGF-β signaling pathway and nonclassical TGF-β signaling 
pathway.

The role of TGF‑β in the progression of tissue 
fibrosis

It has been well known that fibrosis is not a disease but 
a result of tissue damage repair dysfunction [54]. TGF-β 
plays an important role in this process. During tissue dam-
age repair, mesenchymal cells undergo significant meta-
bolic changes to promote energy-consuming cell functions 
including cell proliferation and protein synthesis [97–99]. 
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The increased glycolysis activity of fibroblasts results in 
the synthesis of pyruvic acid and lactic acid. The gener-
ated lactic acid reduces extracellular pH, which induces 
the activation of potential TGF-β1 [54, 100]. Meanwhile, 
integrin-mediated TGF-β activation promotes the expres-
sion of IL-17A, which increases the expression of TGF-β 
receptors in fibroblasts, thereby promoting the response of 
fibroblasts to TGF-β signals [54, 101–103]. In addition, in 
fibroblasts stimulated by TGF-β1, the increase in the level 
of glutaminase promotes the decomposition of glutamine, 
endows the cells with antiapoptotic properties [104], finally 
promotes the production and stability of collagen through 
mTOR signal transduction [105]. Studies have shown that 
inhibiting glutaminase I can improve the symptoms of pul-
monary fibrosis induced by bleomycin and TGF-β1 in vivo 
[106]. And TGF-β is one of the main regulators of cell 
differentiation, migration, proliferation, and gene expres-
sion [107]. In injured or diseased tissues, sustained, dys-
regulated, or hyperactive TGF-β transcriptional activation 
leads to enhanced fibrogenesis, which impairs normal tissue 
regeneration and may cause dysfunction by interfering with 
the structure of organ structural units [108]. The specific 
cell source of TGF-β in the body is unclear. Epithelial cells, 
platelets, T cells, fibroblasts, and mast cells can all produce 
TGF-β [109–112]. In the study of acute and chronic fibrotic 
injury models, it was found that disrupting the pathways 
involved in the recruitment of macrophages can reduce the 
synthesis of TGF-β and relieve fibrosis, which indicates 
that macrophages are also an important source of TGF-β 
[113, 114]. The continuous increase in TGF-β will further 
deepen the degree of fibrosis and form a serious vicious 
circle (Fig. 2).

Anti‑fibrosis drug research

Fibrosis is a common manifestation of chronic tissue dam-
age. A further understanding of the mechanisms of fibrotic 
diseases will help accelerate the development of its clini-
cal treatment. At present, the main mechanism of action 
used by drugs under development against fibrosis is related 
to the inhibition of various factors in the formation of 
fibrosis, including inhibition of the signaling of cytokines 
such as TGF-β, PDGF, and CTGF, inhibition of fibroblast 
division and proliferation, regulation of collagen synthesis 
and degradation, and regulation of oxidative stress, inflam-
mation, and other reaction processes that contribute to the 
formation of fibrosis [17, 38, 54, 115]. For example, HSC 
activation is a key step in the formation of liver fibrosis, 
so HSC is regarded as an important target in the develop-
ment of drugs used against liver fibrosis [44]. Since the 
discovery of the importance of TGF-β in fibrotic diseases, 
drug research targeting the TGF-β signaling pathway has 
increased significantly [58, 67, 90]. Related drug types 
include antisense oligonucleotides (AON), neutralizing 
antibodies, cyclic RGD pentapeptides, TGF-β ligand 
traps, and small molecule kinase inhibitors (SKIs), etc.[80, 
116–118]. In early anti-fibrosis drug research, researchers 
found that pan-TGF-β antibody drugs might cause cardio-
toxicity [54, 119]. Through the mouse model experiments, 
it was found that the cardiotoxicity caused by pan-TGF-β 
antibody drugs may be related to the indiscriminate block-
ing of TGF-β2 and TGF-β3 signaling pathways [119], the 
results also provide guidance for the design of selective 
targeting of TGF-β drugs. There are already a variety 

Fig. 2   Schematic diagram of the partial sources of TGF-β. Under the 
conditions of organ or tissue damage, TGF-β can increase its own 
expression by inducing the secretion of TGF-β from epithelial cells, 

immune cells, fibroblasts, etc., thereby promoting the excessive pro-
duction of extracellular matrix
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of drugs targeting TGF-β superfamily members or their 
receptors under development, such as the highly selective 
antibody SRK-181 developed by Scholar Rock, which tar-
gets the TGF-β1 precursor. The main mechanism of SRK-
181 is to prevent the cleavage of TGF-β1 precursor and 
release mature TGF-β by binding to TGF-β1 precursor 
[120]. In the 4-week repeated-dose rat toxicity study of 
SRK-181 (the highest dose was 100 mg/kg, which was 
much higher than the dose required to induce a strong 
antitumor response in combination with PD-1 antibody), 
the researchers did not observe other histological features 
of cardiac valvulopathy or cardiotoxicity. This indicates 
that selective blocking of TGF-β1 activation may avoid 
the dose-limiting toxicity caused by the indiscriminate 
TGF-β inhibitor drugs to a certain extent [119, 121]. The 
AVID200 developed by Forbius has also attracted wide-
spread attention [122, 123]. AVID200 is a highly effec-
tive and selective inhibitor specifically targeting TGFβRII 
mutant that enhances the binding activity of TGFβRII to 
TGF-β1 and TGF-β3 and thus greatly reduces the bind-
ing activity to TGF-β2 [123]. In clinical phase I trials, 
researchers found that AVID200 has a good anti-fibrosis 
effect, and preclinical models showed that blocking TGF-β 
signal transduction can reverse myelofibrosis and restore 
hematopoietic function without safety risks [122–124]. 
Other than that, a polypeptide drug HTPEP-001 target-
ing TGF-β1 for the treatment of IPF, which was devel-
oped by Chengdu Huitai Biotechnology has also shown 
good results in preclinical experiments [125]. The study 
found that by inhibiting the production of active TGF-
β1 and Smad signaling, aerosol inhalation of HTPEP-001 
effectively blocked the fibrosis process in the rat model 
of bleomycin-induced pulmonary fibrosis, and there were 
no obvious adverse events related to immunological or 
histological changes [125]. The above studies all support 
selective targeting TGF-β as a promising direction for the 
treatment of fibrotic diseases. The table below summarizes 
some of the drugs under development for the treatment of 
fibrotic diseases (Table 1).

It is well known that the tissues surrounding the tumor 
microenvironment are rich in dense fibrotic cells, which 
are usually referred to as cancer-associated fibroblasts 
(CAF) [126]. Therefore, the occurrence and development 
of tumors are closely related to fibrosis. The progress of 
drugs targeting TGF-β for tumor therapy under develop-
ment is also summarized in Table 1. More and more drugs 
targeting TGF-β are being developed to treat diseases such 
as fibrosis and tumors, which expand our understanding of 
the TGF-β signaling pathway and its mechanism of action 
and further promote the development of new anti-fibrotic 
drugs targeting TGF-β with few or no side effects.

Conclusions

With increasing in-depth research on the pathogenesis of 
fibrotic diseases, it has been shown that the TGF-β signal-
ing pathway is closely related to organ fibrosis [54, 57, 
67, 83, 91]. Since TGF-β participates in the regulation 
of multiple signaling pathways in the body, and TGF-β is 
closely related to the body’s metabolism, aging, circadian 
rhythm, epigenetics, EMT, and other cellular processes, 
learning how to regulate the TGF-β signaling pathway for 
the treatment of fibrosis while avoiding toxic side effects 
has become key to drug development [68, 127–129]. At 
present, by targeting different action sites of TGF-β and 
receptors, the search, design, and screening of various effi-
cient and low-toxic novel small molecule inhibitors have 
become a research hotspot. Although some preclinical 
and clinical drug candidates for blocking TGF-β signal-
ing pathway exhibit some side effects, such as pirfenidone 
(drug details are shown in Table 1), its anti-fibrosis effect 
is still quite encouraging [130], which provides some 
enlightenment for the development of new inhibitors of the 
TGF-β signaling pathway. However, a single drug often 
leads to obvious adverse reactions due to factors such as a 
single target and a large dose; hence, combination therapy 
has become the treatment trend of fibrosis disease. In addi-
tion, the use of the abovementioned inhibitors targeting the 
TGF-β signaling pathway reasonably combined with other 
drugs of different action mechanisms to treat a variety of 
fibrosis-related diseases has also attracted the attention of 
many researchers. In short, with the continuous improve-
ment of drug development strategies and the increasing 
number of safe and effective small molecule inhibitors, 
it is believed that more effective drugs targeting TGF-β 
signaling for the treatment of fibrosis will enter the clini-
cal practice.

Since a group of abnormal proliferation cells with high 
fibrotic characteristics also exists in most tumor micro-
environments in addition to being a popular target for 
fibrotic diseases, TGF-β signaling is also one of the most 
popular targets in the field of tumor immunotherapy in 
recent years [97]. The bifunctional antibody drug M7824, 
which is being developed by Merck, has attracted wide-
spread attention in the pharmaceutical industry due to its 
good synergistic therapeutic mechanism for tumors [131, 
132]. The drug can effectively reduce the formation of 
cell matrix around the tumor tissue by targeting TGF-β 
and anti-PD-L1 to further promote the penetration of T 
cells into the center of the tumor and trigger a more effec-
tive anti-tumor immune effect [131–133]. It also has fewer 
adverse effects on the tumor microenvironment and is safer 
compared with pan-TGF-β blocking. In this review, we 
illuminate that the specific blocking of TGF-β1 is a good 
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way to avoid the uncertainty caused by the indiscriminate 
suppression of TGF-β signal pathways. However, we still 
face great challenges in the future. For example, how to 
design and screen drugs targeting TGF-β1 and how to fur-
ther reduce or eliminate the side effects of targeted drugs. 
All of these problems require more in-depth thinking and 
more effective solution strategies.
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