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Abstract

Spatial trends represent an obstacle to genetic evaluation in maize breeding. Spatial analy-

ses can correct spatial trends, which allow for an increase in selective accuracy. The objec-

tive of this study was to compare the spatial (SPA) and non-spatial (NSPA) models in diallel

multi-environment trial analyses in maize breeding. The trials consisted of 78 inter-popula-

tional maize hybrids, tested in four environments (E1, E2, E3, and E4), with three replica-

tions, under a randomized complete block design. The SPA models accounted for

autocorrelation among rows and columns by the inclusion of first-order autoregressive

matrices (AR1� AR1). Then, the rows and columns factors were included in the fixed and

random parts of the model. Based on the Bayesian information criteria, the SPA models

were used to analyze trials E3 and E4, while the NSPA model was used for analyzing trials

E1 and E2. In the joint analysis, the compound symmetry structure for the genotypic effects

presented the best fit. The likelihood ratio test showed that some effects changed regarding

significance when the SPA and NSPA models were used. In addition, the heritability, selec-

tive accuracy, and selection gain were higher when the SPA models were used. This indi-

cates the power of the SPA model in dealing with spatial trends. The SPA model exhibits

higher reliability values and is recommended to be incorporated in the standard procedure

of genetic evaluation in maize breeding. The analyses bring the parents 2, 10 and 12, as

potential parents in this microregion.

Introduction

Maize (Zea mays L.) is the most cultivated crop worldwide [1]. Quantitative traits, such as

grain yield and plant height, are controlled by several genes and are highly influenced by the

environment [2]. In this scenario, the genotype-by-environment (G × E) interaction, also

known as phenotypic plasticity [3, 4], plays an essential role in phenotypic expression and can

lead to difficulties in genetic selection [4].
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Diallel mating designs are used for progeny tests [5] and are widely adopted in plant breed-

ing [6–9]. These mating designs allow the evaluation of general and specific combining abili-

ties, which are additive genetic effects based on general combining ability (GCA), and

dominance genetic effect based on specific combining ability (SCA) [10, 11]. The GCA is

given by the mean of the performance of a particular individual in combination with many

others, and the SCA is the genetic effect of a specific cross [11, 12].

There are few examples of diallel multi-environment trials (MET) in maize breeding [13–

15]. The mixed model methodology, or the residual maximum likelihood (REML)/best linear

unbiased prediction (BLUP) [16, 17] procedure, has been widely adopted for analyzing MET

in plant breeding [18–21]. However, diallel analyses are still underused [22], even being an

effective procedure for genetic evaluation [23].

In diallel analyses, the REML/BLUP procedure allows the estimation of additive and domi-

nance genetic variances, as well as the narrow- and broad-sense heritabilities [24–26]. In addi-

tion, it allows the prediction of additive and dominance genetic effects and the gains with

selection, derived directly from parents and hybrid selection [22]. In MET analyses, the

REML/BLUP procedure allows modeling different residuals [27–30] and genetic [18, 31–36]

covariance structures and may be applied to unbalanced data [19, 37].

In diallel MET analyses, there are many sources of variation [38]. As main environmental

sources, Burgueño et al. [39] cited soil structure, moisture, light interception, pathogen infec-

tions, and even crop management. To deal with spatial trends, one of the most adopted model

structures is the separable first-order autoregressive (AR1�AR1), which considers a parti-

tioned residual structure (e), composed of the correlated error (ξ) and, the independent ran-

dom error (η) [40, 41], where e = ξ+η. For MET analyses, Smith et al. [31, 42] proposed the

two-stage analysis, being stage 1 the modeling of AR1�AR1 spatial structure of residuals, to

determine the best-fitted model. The output of stage 1 is imputed in stage 2, where the MET

analysis is performed. This analysis has recently been applied in wheat [43] and soybean [44]

breeding.

The two-stage analysis can present some issues, such as convergence failure and high

computational demand, owing to the large amount of data [45]. Selective accuracy, heritability,

and gain with selection can be used to compare different statistical models [46]. Selective accu-

racy indicates the precision of the predicted genotypic values [46], guides the strategies of

breeding programs, and assists in decision-making [47].

There are several studies regarding diallel designs in maize breeding [14, 48–50], but only a

few of them performed spatial analyses, mainly diallel MET analyses [51]. In addition, the use

of spatial analyses has been increasing in recent years [43, 45, 52–57]. Therefore, the objective

of this study was to compare the spatial (SPA) and non-spatial (NSPA) models for diallel MET

analyses in maize breeding.

Material and methods

Genetic material

A diallel mating design (13 × 13), with no reciprocal crossing, was implemented (Fig 1 and S1

Table in S1 File). The genetic material consisted of 78 interpopulational hybrids evaluated in

four environments (E1 to E4). Six commercial hybrids (F1), which were widely adopted in the

region, were used as checks (S2 Table in S1 File).

Experimental data

The trials were carried out during the 2018 winter season at four locations in the southwestern

Goiás State, Brazil: the environments, E1 and E2, in the municipality of Jataı́, and the
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environments, E3 and E4, in the municipalities of Caiapônia and Mineiros, respectively. The

planting and harvesting dates, geographic coordinates, altitudes, average temperatures, and

precipitation data for each environment are presented in S3 Table and S1 Fig in S1 File [58].

According to Alvares et al. [59], the weather in the southwestern region Goiás State is wet

and temperate, with dry winters and hot summers (Cwa). The average annual temperature is

around 21.5˚C and the average rainfall is between 1.400 and 2.000 mm year-1. Agricultural

practices for maize crops in Brazil [60] were adopted in this study and irrigation was not

applied in the field (S3 Table in S1 File). The experiments were conducted in a randomized

complete block design with three replications and 44 plants per plot. Plots were 4m long, with

four rows spaced 0.45 m apart and a plot size of 7.2 m2.

To evaluate the grain yield (GY) trait, the ears at physiological maturity were harvested and

shelled. Then, the grain weight and grain moisture percentage were recorded, and the GY trait

was calculated at 13% moisture. All phenotypic measurements were taken from the middle

rows, leaving the two border rows.

Statistical analyses

The estimation of variance components and the prediction of genotypic values for the GY trait

were made using the REML/BLUP procedure [16, 17], according to Gilmour et al. [61].

The individual analyses, considering the randomized complete block design with one

observation per plot, was given by the following equation:

y ¼ Xtþ Zgug þ Zsus þ e; ½1�

where y is the vector of phenotypic data, τ is the vector of replications and checks (assumed to

be fixed) added to the general mean, ug is the vector of the GCA effect (assumed as random),

us is the vector of the SCA effect (assumed as random), and e is the vector of residuals (ran-

dom). Uppercase letters refer to the incidence matrices for these effects.

In this model, ugNð0; s2
gÞ; usNð0; s

2
s Þ; and e N(0,R); where s2

g is the GCA variance (related

to additive genetic variance), s2
s is the SCA variance (related to dominance genetic variance),

and R refers to the residual variance matrix. Models accounting for different residual variance

structures considering the correlations among observations (rows and columns) were tested.

The joint analysis, considering the randomized complete block design with one observation

per plot and four environments, was performed using the following equation:

y ¼ Xtþ Zgug þ Zsus þ Zgeuge þ Zseuse þ e; ½2�

where y is the vector of phenotypic data, τ is the vector of block-locations-checks combinations

(assumed to be fixed), which comprises the effects of environment, replication within the environ-

ment, and checks added to the overall mean; ug is the vector of additive genetic effects (assumed

as random); us is the vector of dominant genetic effects (assumed as random); uge is the vector of

the interaction between additive genetic effects and environments (random), use is the vector of

the interaction between dominance genetic effects and environments (random), and e is the vec-

tor of residuals (random). Uppercase letters refer to the incidence matrices for these effects.

In this model: ugNð0; Is2
gÞ; usNð0; Is

2
s Þ; ugeNð0; Is

2
geÞ; useNð0; Is

2
seÞ, and eN(0,R); where s2

g

is the GCA variance (related to additive genetic variance), s2
s is the SCA variance (related to

Fig 1. Interpopulational hybrids development process. The process occurred as following: (I) the most recommended commercial genetic materials (F1)

were selected as parents 1 to 13; (II) these parents (F1) were cultivated in isolated fields; (III) the isolated fields were harvested and generated 12 F2 hybrids

and one rustic genetic material; (IV) the F2 genetic materials were crossed artificially (controlled pollination) among themselves, in a diallel mating design;

(V) as a result it was generated 78 interpopulational hybrids; and, (VI) the 78 interpopulational hybrids were cultivated in 4 environments (E1 to E4).

https://doi.org/10.1371/journal.pone.0258473.g001
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dominance genetic variance), s2
ge is the GCA by environment interaction variance, s2

se is the

SCA by environment interaction variance, and R refers to the residual variance matrix. Models

accounting for different residual variance structures considering the correlations among

observations (rows and columns) were tested.

SPA and NSPA analyses were performed for comparison purposes.

Modelling non-genetic effects. In the individual analyses, the residual (co)variance struc-

ture could account for heterogeneity within the trial. The best fitted models were tested by the

inclusion or the absence of the spatial information (given by rows and columns) in the fixed

and random parts of the model. The joint analysis accounted for heterogeneity across environ-

ments in residual and genetic (co)variance matrices in two different ways: (i) by assuming spa-

tially independent observations and (ii) by allowing spatial autocorrelations among

observations, indexed by rows and columns.

The presence of autocorrelation among rows and columns was considered by the inclusion

of first-order autoregressive matrices (AR1) for rows (Sr(ρr)) and columns (Sc(ρc)). There are

three possible models beyond the NSPA model (R ¼ s2
e Ir � Ic), where s2

e is the residual vari-

ance, Ir is the identity matrix of rows (r × r), and Ic is the identity matrix of columns (c × c).
The baseline model did not consider any correlations among the rows and columns. The fol-

lowing two residual structures account for the correlation among rows (M2) and columns

(M3), respectively, by the inclusion of the AR1 structure. M2 and M3 contemplate the residual

structure as R ¼ s2
x
SrðrrÞ � Ic and R ¼ s2

x
Ir � ScðrcÞ, respectively. The last model accounts

for correlations among rows and columns (M4), being R ¼ s2
x
SrðrrÞ � ScðrcÞ, where s2

x
is the

SPA variance among columns and among rows,� is the Kronecker product, and, AR1x, or,

Sx, represent first-order autoregressive correlation matrix, for x (row or column).

After selecting the best residual structure for each trial, the SPA information (row and col-

umn specifications) was included in the fixed and random parts of the model. First, the

selected residual structure (MRx) of each trial was adopted as the first model, named Mx.1.

Second, we tested the presence of fixed linear effects for rows and columns (Mx.2 and Mx.3).

Third, we tested the presence of random linear effects for rows and columns (Mx.4 and Mx.5).

Finally, the measurement error was added to the random part of the model (Mx.6).

The fixed part of the model (rows and columns) deals with rows and columns as covariates,

and was developed as a regression of the phenotypic responses as a function of the row and

column positions. In the random part of the model, the rows and columns effects were

included to quantify the variability among rows and columns. Finally, we also tested the inclu-

sion of an independent error regarding the measurement error, which is an independent resid-

ual variance, s2
Z
.

Fig 2 presents the flowchart of all steps to encounter the best SPA models for each trial by

modeling the fixed and random effects and to select the best genetic structure when analyzing

all trials jointly in a MET analysis.

Modelling genetic effects. Five different genetic variance structures were tested across

different environments: diagonal (DIAG), compound symmetry (CS), heterogeneous correla-

tion (CORH), and factor analytic of first (FA1) and second (FA2) orders.

Model selection, significance test, and gain with selection. To select the best-fit model,

the conditional Bayesian information criterion (BICc) [62] was used. The comparison among

models was based on the parameter vector (b̂k), which stands for the covariance matrix to cal-

culate the corrected LogL (LogLc), as follows:

BICc ¼ � 2LogLc þ ðpþ qÞln ðnÞ; ½3�
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where LogLc is the corrected LogL by b̂kb̂k; p is the number of random parameters, q is the

number of fixed parameters, and n is the model’s degrees of freedom.

The variances of the random effects were assessed using the likelihood ratio test (LRT) as

follows [63]:

LRT ¼ � 2ðlogLR � LogLÞ; ½4�

where LogLR is the logarithm of the maximum residual likelihood function of the reduced

model. For the LRT test, chi-square statistics with 1 degree of freedom and 5% probability of

Type I error were considered.

The additive genetic variance (ŝ2
A), dominance genetic variance (ŝ2

D), and broad-sense (H2)

heritability (given by the additive genetic variance among hybrids) were estimated for each

trial using the following equations [64–66]:

ŝ2

A ¼ 4ŝ2

g ; ½5�

ŝ2

D ¼ 4ŝ2

s ; and ½6�

H2 ¼

ŝ2
A
2
þ

ŝ2
D
4

ŝ2
A
2
þ

ŝ2
D
4
þ ŝ2

R

; ½7�

Fig 2. Flowchart of the spatial analysis in each trial and jointly. All steps of the spatial analysis by considering the spatial

information (rows and columns) in the fixed and random parts of the model, in each trial. Following, it is considered all

individual models to encounter the best joint model, and the most adequate genetic covariance structure in the multi-

environment analysis.

https://doi.org/10.1371/journal.pone.0258473.g002
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where ŝ2
g and ŝ2

s are the estimates of the general and specific combining ability variances,

respectively.

In addition to the genetic parameters by each trial, the additive genetic variance (ŝ2
A), domi-

nance genetic variance (ŝ2
D), additive by environment interaction variance (ŝ2

AE), dominance

by environment interaction variance (ŝ2
DE), and broad-sense (H2) heritability, were estimated

considering the four environments in a joint analysis using the following equations [64–66]:

ŝ2

A ¼ 4ŝ2

g ; ½5�

ŝ2

D ¼ 4ŝ2

s ; and ½6�

H2 ¼

ŝ2
A
2
þ

ŝ2
D
4

ŝ2
A
2
þ

ŝ2
D
4
þ ŝ2

AE þ ŝ
2
DE þ ŝ

2
R

; ½8�

In addition, the genotypic correlation across environments (rg) and the overall mean (μg)
for the GY trait was also calculated as follows:

rg ¼
ŝ2
A þ ŝ

2
D

ŝ2
A þ ŝ

2
AE þ ŝ

2
D þ ŝ

2
DE

: ½9�

Selective accuracies (rÂA and rD̂D) were estimated for individual and joint (rĜG) analyses

using the following expression [67]:

rÂA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
PEV
ŝ2
A

s

; ½10�

rD̂D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
PEV
ŝ2
D

s

; and; ½11�

rĜG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
1 � 1 � PEV

ŝ2
A

� �h i
1 � 1 � PEV

ŝ2
D

� �h i

1 � 1 � PEV
ŝ2
A

� �
1 � PEV

ŝ2
D

� �

v
u
u
u
t : ½12�

where PEV is the prediction error variance, according to the respective effect obtained by the

diagonal elements of the inverse of the coefficient matrix of the mixed model equations.

The correlations among the NSPA and SPA models were evaluated using the Pearson corre-

lation coefficient. Cohen’s Kappa coefficient (K) [68] was applied to estimate the agreement

between the NSPA and SPA models. The agreement among the selected interpopulational

hybrids was calculated as follows:

K ¼
A � C
D � C

x100; ½13�

whereA is the number of matching selected interpopulational hybrids between the NSPA and SPA

model rankings, C is the number of selected interpopulational hybrids due to chance (C = bD, where

b is the selection intensity = 0.13), andD is the number of selected interpopulational hybrids (10).

Contrasting SPA and NSPA analyses. After selecting the individual and joint SPA mod-

els, further analyses were conducted using the NSPA model to expose the relative importance

PLOS ONE Spatial analysis in maize breeding

PLOS ONE | https://doi.org/10.1371/journal.pone.0258473 October 21, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0258473


of the SPA model. Therefore, all analyses performed under the spatial approach were also re-

made under a non-spatial approach, considering the independence among rows and columns.

Software. All statistical analyses were carried out using ASReml v.4.1 [61], ASReml-R

[69], and R software [70].

Results

Modelling non-genetic effects

In trials E1 and E2, the NSPA model (MR1), which did not consider any correlation among

the rows, and among the columns, was the best fitted model (Table 1). In trial E3, the best fit-

ted model (MR4) considered the existence of correlation among rows and columns in the

residual effects, while in trial E4, the best fitted model (MR3) considered the correlation

among columns in the residual effects (Table 1).

Modelling fixed and random effects

The E1, E2, and E3 trials did not consider any other effect beyond the selected residual in the

previous step; the E4 trial was the only trial that considered the inclusion of a linear effect of

rows (M3.2), which improved the model’s goodness-of-fit (Table 2).

Modelling the genetic effects in multi-environment trials

After selecting the best-fitted model for each trial, a joint analysis was performed, considering

the best-fitted models, indicated by BICc in the previous steps. In the joint analysis, the genetic

Table 1. One-dimensional and two-dimensional autoregressive spatial models fitted for the grain yield trait.

Trials Models Variance Models p/q Full-LogL BICc

Natural

E1 MR.1 s2
RIr � Ic 9/3 -1844.75 3755.21#

MR.2 s2
x
SrðrrÞ � Ic 9/4 -1844.10 3759.39

MR.3 s2
x
Ir � ScðrcÞ 9/4 -1841.98 3755.15

MR.4 s2
x
SrðrrÞ � ScðrcÞ 9/5 -1841.38 3759.42

E2 MR.1 s2
RIr � Ic 9/3 -1845.73 3757.33#

MR.2 s2
x
SrðrrÞ � Ic 9/4 -1844.05 3759.45

MR.3 s2
x
Ir � ScðrcÞ 9/4 -1843.23 3757.82

MR.4 s2
x
SrðrrÞ � ScðrcÞ 9/5 -1841.51 3759.86

E3 MR.1 s2
RIr � Ic 9/3 -1872.64 3811.04

MR.2 s2
x
SrðrrÞ � Ic 9/4 -1863.07 3797.39

MR.3 s2
x
Ir � ScðrcÞ 9/4 -1852.78 3776.81

MR.4 s2
x
SrðrrÞ � ScðrcÞ 9/5 -1846.40 3769.53

#

E4 MR.1 s2
RIr � Ic 9/3 -1807.35 3680.42

MR.2 s2
x
SrðrrÞ � Ic 9/4 -1801.14 3673.46

MR.3 s2
x
Ir � ScðrcÞ 9/4 -1797.21 3665.61

#

MR.4 s2
x
SrðrrÞ � ScðrcÞ 9/5 -1793.83 3664.33

The variance model includes just the Natural, which means the residual effects. Number of fixed parameters (p), number of variance parameters (q), the full log-

likelihoods (Full-LogL), and Conditional Bayesian information criteria (BICc), are given for the spatial models fitted for each trial.
#: best-fitted model; s2

R and s2
x
: variance components of units and correlated residuals; Ir and Ic: identity matrices of rows and columns; Sr(ρr) and Sc(ρc): correlation

matrices for the row model (order r, autocorrelation parameter ρr) and column model (order c, autocorrelation parameter ρc).

https://doi.org/10.1371/journal.pone.0258473.t001
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(additive and dominance effects) covariance matrix was also modeled. The compound symme-

try model (CS) was assigned as the best-fit model (Table 3).

Estimates of variance components, heritability, and coefficient of

determination of the dominance effects

The LRT results for both the SPA and NSPA analyses are presented in Fig 3. We observed dif-

ferences in the significance of the random effects, where the SPA and NSPA models were con-

sidered, beyond the additive by environment interaction and dominance genetic effects, the

additive genetic effects (GCA) were significant. When analyzing each trial (Fig 3), the same

pattern was observed for trials E3 and E4, where, after SPA, genetic effects were considered sig-

nificant and were not considered by NSPA.

The SPA and NSPA models used for the joint analyses fit the compound symmetry struc-

ture (Table 4). The NSPA model fitted a homogeneous residual structure, while SPA

Table 2. Spatial models fitted for the grain yield trait.

Trials Models Variance Models (p/q) Full-LogL BICc

Global/Extraneous Natural

E1 M1.1 s2
RIr � Ic 9/3 -1841.98 3755.15#

M1.2 βr×R s2
RIr � Ic 10/3 -1841.84 3760.29

M1.3 βr×R, βc×C s2
RIr � Ic 11/3 -1841.99 3766.12

M1.4 βr×R, βc×C, s2
r Ir s2

RIr � Ic 11/4 -1841.99 3771.59

M1.5 βr×R, βc×C, s2
r Ir; s

2
r Ic s2

RIr � Ic 11/5 -1841.99 3777.07

M1.6 βr×R, βc×C, s2
r Ir; s

2
r Ic s2

RIr � Ic;s2
RIn 11/6 -1844.75 3782.59

E2 M1.1 s2
RIr � Ic 9/3 -1845.73 3757.33#

M1.2 βr×R s2
RIr � Ic 10/3 -1845.63 3762.56

M1.3 βr×R, βc×C s2
RIr � Ic 11/3 -1845.74 3768.32

M1.4 βr×R, βc×C, s2
r Ir s2

RIr � Ic 11/4 -1844.19 3770.71

M1.5 βr×R, βc×C, s2
r Ir; s2

r Ic s2
RIr � Ic 11/5 -1840.20 3768.22

M1.6 βr×R, βc×C, s2
r Ir; s2

r Ic s2
RIr � Ic;s2

RIn 11/6 -1840.20 3773.71

E3 M4.1 s2
x
SrðrrÞ � ScðrcÞ 9/5 -1846.40 3769.53

#

M4.2 βr×R s2
x
SrðrrÞ � ScðrcÞ 10/5 -1845.31 3772.76

M4.3 βr×R, βc×C s2
x
SrðrrÞ � ScðrcÞ 11/5 -1846.55 3780.79

M4.4 βr×R, βc×C, s2
r Ir s2

x
SrðrrÞ � ScðrcÞ 11/6 -1841.86 3776.88

M4.5 βr×R, βc×C, s2
r Ir; s2

r Ic s2
x
SrðrrÞ � ScðrcÞ 11/7 -1841.86 3782.36

M4.6 βr×R, βc×C, s2
r Ir; s2

r Ic s2
x
SrðrrÞ � ScðrcÞ; s

2
RIn 11/8 -1841.87 3787.86

E4 M3.1 s2
x
Ir � ScðrcÞ 9/5 -1793.83 3664.33

M3.2 βr×R s2
x
Ir � ScðrcÞ 10/5 -1783.50 3649.07

#

M3.3 βr×R, βc×C s2
x
Ir � ScðrcÞ 11/5 -1786.03 3659.67

M3.4 βr×R, βc×C, s2
r Ir s2

x
Ir � ScðrcÞ 11/6 -1785.88 3664.86

M3.5 βr×R, βc×C, s2
r Ir; s

2
r Ic

βr×R, βc×C, s2
r Ir; s

2
r Ic

s2
x
Ir � ScðrcÞ 11/7 -1785.88 3670.34

M3.6 s2
x
Ir � ScðrcÞ; s

2
RIn 11/8 -1783.70 3671.44

Number of fixed parameters (p), number of variance parameters (q), the full log-likelihoods (Full-LogL) and the conditional Bayesian Information Criteria (BICc), are

given for the spatial models fitted for each trial.
#: best-fitted model; s2

r ; s
2
c ; s

2
R, and s2

x
: variance components of rows, columns, units, and correlated residuals, respectively; Ir, Ic, and In: identity matrices of rows,

columns, and units, respectively; βr and βc: liner regression coefficient for rows (R) and columns (C), respectively; Sr(ρr) and Sc(ρc): correlation matrices for the row

model (order r, autocorrelation parameter ρr) and column model (order c, autocorrelation parameter ρc).

https://doi.org/10.1371/journal.pone.0258473.t002
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considered all required spatial information for each trial in the residual structure, as well as

fixed and random effects.

Differences between SPA and NSPA analyses were observed for the estimates of additive

and dominance genetic variances and residual variance in each trial (Table 4). In the joint

analyses, where the additive by environment interaction (ŝ2
AE) and dominance by environment

interaction (ŝ2
DE) variances were estimated, the NSPA and SPA also conducted different esti-

mates (Table 4). Trials E1, E3, and E4 presented higher dominance genetic variances than

additive genetic variances (Table 4). Conversely, trial E2 presented a higher additive genetic

variance (Table 4). The joint analyses conducted to similar genetic variance estimates among

NSPA and SPA, except for dominance by environment interaction variances that were 50%

lower in NSPA (Table 4). The residual structure, which was homogeneous in NSPA, became

heterogeneous in SPA, and it was possible to obtain residual variances per environment.

Regarding the residual variance, E3 and E4 trials presented reduced values in SPA, achieving a

Table 3. Models fitted for the multi-environment trial for the grain yield trait.

Models‡ p q Full-LogL BICc

DIAG 37 15 -7328.15 15013.38

CS 37 11 -7309.11 14947.82#

CORH 37 17 -7305.91 14982.64

FA1 37 23 -7306.00 15024.01

FA2 37 29 -7297.82 15048.86

Number of fixed parameters (p), number of variance parameters (q), the full log-likelihoods (Full-LogL) and the

conditional Bayesian information criterion (BICc).
#: best-fitted model
‡Models: DIAG: diagonal, CS: compound symmetry, CORH: heterogeneous correlation, FA: Factor Analytic of first

order (FA1), and Factor Analytic of second order (FA2).

https://doi.org/10.1371/journal.pone.0258473.t003

Fig 3. Likelihood ratio test for spatial and non-spatial analyses. Likelihood ratio test (LRT), using the Chi-square test with 1 degree of freedom (p< 0.05) (represented

by the dashed line), for the genetic (additive and dominance) effects and their interaction with environment (in joint analysis) for (a) non-spatial and (b) spatial analyses.

https://doi.org/10.1371/journal.pone.0258473.g003
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reduction of 20% in the E4 trial when adopting the indicated SPA models over the NSPA

model (Table 4).

In individual analyses, heritability estimates varied across trials. Considering the broad-

sense heritabilities, trials E1 and E2 presented estimates superior to trials E3 and E4. In trial

E3, SPA showed an increase of approximately 1.2% over the NSPA estimate. Broad-sense heri-

tability presented estimates that were superior to 15% in all trials. In addition, trials E1 and E2

had the same estimates in the SPA and NSPA analyses, since they did not require any spatial

information. In trials E3 and E4, the broad-sense heritability increased by 1.1% and 3%,

respectively, due to the adoption of SPA instead of NSPA models.

The selective accuracies (rĜG; rÂA, and, rD̂D) varied from NSPA to SPA analyses in each

trial. E1 and E2 presented the same values in the NSPA and SPA analyses, which were superior

to 0.80 the selective accuracy of genotypic effects and selective accuracy for genetic additive

effects. The selective accuracies for dominance genetic effect were 0.60 and 0.52 in the trials E1

and E2, respectively. The trials that required spatial information (E3 and E4) had increased

accuracy values from the NSPA to SPA analyses. The highest difference was observed in the

Table 4. Variance components, genetic parameters and phenotypic mean for the four trials (individual and joint analyses), by non-spatial (NSPA) and spatial

(SPA) analyses.

Variance Components / Genetic Parameters E1 E2 E3 E4 Joint

NSPA SPA NSPA SPA NSPA SPA NSPA SPA NSPA SPA

ŝ 2̂
A

148290.5� 148290.5� 117052.3� 117052.3� 34659.3 49338.4� 33305.9 32158.0 36901.36 36459.54�

ŝ 2̂
D

215948.2� 215948.2� 114923.1 114923.1 161769.3 158303.6� 94081.3 103489.8� 126732.59� 130537.40�

ŝ 2̂
AE

- - - - 45903.86� 47679.46�

ŝ 2̂
DE

21115.96 9071.981

ŝ 2̂
R

856498.4 856498.4 760842.2 760842.2 1129629.3 1098305.3 705513.7 590915.9 862757.39 -

ŝ 2̂
R1

- - - - - 934131.2

ŝ 2̂
R2

740443.1

ŝ 2̂
R3

1107782.70

ŝ 2̂
R4

572230.99

Ĥ 2̂ 0.1301 0.1301 0.1029 0.1029 0.0487 0.0553 0.0539 0.0663 0.0512 -

Ĥ 2̂
1

- - - - - 0.0488

Ĥ 2̂
2

0.0600

Ĥ 2̂
3

0.0418

Ĥ 2̂
4

0.0748

r^ĜG 0.8648 0.8648 0.8628 0. 8628 0.7059 0.7903 0.7489 0.7745 0.8334 0.8453

r^ÂA 0.8391 0.8391 0.8472 0.8472 0.6168 0.7274 0.6949 0.7117 0.7130 0.7183

r^D̂D 0.6085 0.6085 0.5201 0.5201 0.5242 0.5922 0.5055 0.5663 0.7362 0.7705

rG 0.7094 0.7464

μg 5452.49 5871.85 5697.91 3849.46 5221.57

E1: trial 1, E2: trial 2, E3: trial 3, E4: trial 4, and Joint: Joint analysis.

�: Significantly at 0.05 Type I probability of error by the chi-square test; ŝ 2̂
A: additive genetic variance; ŝ 2̂

D: dominance genetic variance; ŝ 2̂
AE: additive by environment

interaction variance; ŝ 2̂
AE: dominance by environment interaction variance; ŝ 2̂

R: residual variance; Ĥ 2̂: broad-sense heritability; r^ĜG: selective accuracy for genotypic

effect; r^ÂA: selective accuracy for genetic additive effect; r ^D̂D: selective accuracy for dominance genetic effect; rG: genotypic correlation across environments; μg: overall

mean.

https://doi.org/10.1371/journal.pone.0258473.t004
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trial E3, where the selective accuracy for genetic additive effects increased from 0.62 to 0.73

when considered the spatial information. The same behaviors were observed in the accuracy

estimates in trials E3 and E4.

The joint analyses showed improvement of the genetic parameter estimates (heritability,

accuracy, and genotypic correlation) from NSPA to SPA analyses. First, the NSPA analyses

presented broad-sense heritability estimates of approximately 5%. For SPA analysis, the broad-

sense heritability estimates were split per environment, and their values varied according to

each environment, from 4% (E1 and E3) to over 7% (E4). Compared to the individual analysis,

the broad-sense heritability decreased from 13% in trial E1 to 4.8% in joint analysis, but in trial

E4, it increased from 6.6% to 7.5%. The genotypic correlation across environments increased

from 0.71, in NSPA analysis, to 0.75, in SPA analysis.

Contrasting additive and dominance genetic effects rankings

We contrasted the additive and dominance genetic effects by NSPA and SPA analyses, in each

trial, to check the differences when the spatial information was used. Considering the three

best parents selected, the same selected parents were observed in trials E1 and E2 (P1, P10, and

P12) (S4 Table in S1 File). In trial E3, only one parent (P6) was identified among the top three

highest additive genetic values in both NSPA and SPA. In trial E4, two parents were the same,

P6 and P12, in the NSPA and SPA analyses. Based on the predicted additive and dominance

genetic effects, it was also possible to predict the genotypic effects of the interpopulational

hybrids in each trial (S5 Table in S1 File) and the gains with selection (Fig 4) by NSPA and

SPA analyses.

The predicted dominance genetic effects of the parents’ combinations (S6 Table in S1 File),

represented by the interpopulational hybrids (Hi,j, where i and j the parents crossed). The top

ten genetic materials were compared and detached. The E3 and E4 trials presented different

crossings into the top 10 dominance genetic values. The Pearson correlation coefficients were

equal to 1.0 in the E1 and E2 trials, while in the E3 and E4 trials, they were higher than 0.8 (S6

Table in S1 File). The Cohen’s Kappa coefficients presented the same results in the E1 and E2

trials (1.0), while in E3 and E4 trials they were around 0.60 (S6 Table in S1 File).

Fig 4. Selection gains for 10 (A) and 5 (B) selected hydrids. Direct gain, considering spatial and non-spatial analyses,

and indirect gain, given by joint analysis, in both approaches, in all four environments. The values between

parentheses indicated the predicted mean of each environment (E1 = trial 1, E2 = trial 2, E3 = trial 3, E4 = trial 4).

https://doi.org/10.1371/journal.pone.0258473.g004
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Discussion

The use of statistical methods in breeding programs enables the breeder to access all informa-

tion available from simpler, as phenotypic data, to complex inputs, such as genomic relation-

ships and spatial correlations [71–73]. The accuracy tends to increase by modeling more

sources of information, leading to more efficient use of resources [74].

According to Cooper et al. [75], there are some variations among plots that the breeder can-

not predict a priori, even when the soil fertility is well controlled and the experimental design

is appropriate. These spatial trends contribute to a large number of non-target signals [76].

Indifference or proper accounting for exogenous sources of variation decreases the accuracy

[73, 77] and selection mistakes [41, 78].

The occurrence of diseases and insects within and across blocks, missing plots, irrigation

misdistribution, and micro soil fertility spots can affect the residual independence among plots

[79]. In this manner, trials E3 and E4, which required first-order autoregressive (AR1) model-

ing for rows and/or columns, also presented the lowest values for broad-sense heritability,

selective accuracy, and phenotypic means for the GY trait.

So and Edwards [29] found, in a simulated balanced dataset study, similar results compared

compound symmetry and unstructured models. This statement is relevant because of the

genotypic correlation estimate across environments (0.75), by SPA analysis, where the com-

pound symmetry structure, even being a more conservative structure [36], is capable of dealing

with the level of G×E interaction effect without loss of predictive capability.

When comparing the NSPA and SPA models, the results demonstrated the importance of

spatial analysis. Relevant studies on potato [80] and soybean [44] also presented satisfactory

results when spatial trends were considered. Higher selective accuracies were encountered in

the SPA models, reinforcing the importance and potential of the SPA analyses in crop breed-

ing. Another simulation study of soybean breeding considering the accounting of spatial infor-

mation in the model also presented gains in selective accuracy when autoregressive structures

were used for spatial information [76].

The significance of the random effects tested by the LRT differed when spatial information

was considered in both individual and joint analyses. The selective accuracies and genetic

gains demonstrate the capacity of data correction, when necessary, by spatial analyses. Similar

results were reported by Resende [11], who affirmed that the presence of spatial dependence is

required when there is any kind of heterogeneity in the experiment, or even inside the block.

Furthermore, by the adoption of SPA analyses, when applicable, it was possible to estimate

higher values of genetic variances and parameters, which proves the importance of considering

the best-fitted model. For instance, in trial E3, after modeling the residuals and including spa-

tial information in the model, it was possible to obtain a higher portion of the additive and

dominance genetic effects, turning them into significant effects. They were non-significant in

the NSPA analyses and became significant in the SPA analyses. In addition, the genetic vari-

ances, heritabilities, and selective accuracies were maximized using SPA analyses. The geno-

type ranking also varied between the NSPA and SPA analyses. This information can be used in

breeding programs for genetic selection purposes.

Selective accuracy demonstrates the correlation between the predicted and true genetic val-

ues. As mentioned previously, there was an increase from NSPA to SPA analyses. These results

reinforce the superiority of SPA analyses, which maximize the selective accuracy when com-

pared to NSPA analyses. Residual modeling considering the dependence among rows and/or

columns decreased the residual variance within the trials. The consideration of two errors,

dependent and independent, allows modeling of the dependence part and mitigates the residue

in explained portions. This error investigation maximized the selective accuracies in the
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environments, which indicated the spatial models as the best-fitted model because of the possi-

bility of modeling more environmental effects that were not considered in the NSPA analyses.

One of the main goals of plant breeding programs is to select the best genotypes to increase

genetic gains [81]. In addition, to maximize the frequency of favorable alleles for a specific

trait, plant breeders use the best-ranked genotypes in the selection process to develop hybrids

[81]. Following this idea, the selection gains based on the predicted genotypic effects by the

BLUP method confirm the corrective capacity of SPA analyses over the NSPA analyses. The

predicted genetic values can be used to predict the breeding value of individuals [82]. The joint

analysis allows the calculation of the additive genetic effect and its interaction with the envi-

ronment when considering all four environments. This fact increases the accuracy of the selec-

tion gain, as it is based on the additive genetic effect free of the GxE interaction effect. Herein,

we confirmed the corrective capacity of spatial analyses when considering the selection gains,

as well the genotype ranking, which led to the selection of the right genotypes in the SPA anal-

yses ranking.

Furthermore, the differences between SPA and NSPA analyses rankings, in trials E3 and E4

(which spatial information was used) reinforce the importance of this analysis. It was observed

that the spatial information was useful for selecting different parents and interpopulational

hybrids using SPA over NSPA analyses. In addition, using the Pearson correlation coefficient

demonstrates the existence of different genetic materials when contrasting NSPA and SPA

analyses, and the Cohen’s Kappa coefficient, which focuses on the selected genetic materials,

confirms the difference among the selected.

By observing the differences between the additive and dominance genetic effects, some

interesting conclusions can be drawn for use in maize breeding programs. For instance, in trial

E1, the H10,12, from the best parents (by additive effects) also presented a high dominance

genetic effect; however, in trial E2, this effect was negative, demonstrating the presence of domi-

nance by environment interaction effect, and its importance to calculate it. P6, which showed

one of the lowest additive genetic effects, when combined with P12 (one of the highest additive

genetic effects) presented one of the highest dominance genetic effects. These characteristics

were observed in all the trials. In trial E3, a significant difference was noted between variance

estimates and genetic parameter values from NSPA and SPA analyses, which demonstrates the

importance of the SPA analyses in this study. Focusing on P3 and P12 as an example, the P3

was into three better parents in NSPA analyses, and decreased significantly in SPA analyses,

while P12 arose from a median rank (in NSPA) to the third better in SPA analyses. Following,

when looking into the dominance genetic effects just of the same two parents cross (H3,12), it

was in the top 10 in the NSPA analyses, and dropped to the 16th position in SPA analyses. As

demonstrated, the spatial trend corrections affected the additive and dominance genetic effects

and must be considered by the breeder in breeding program strategies. The selection will be

made based on these genotypic, additive genetic, and dominance genetic effects values, and

their accuracy will directly affect the subsequent cycles of the breeding process.

Identifying the best genetic material is the main goal of any breeding program. The main goal

of this study was to identify the best potential parents and their combinations to form heterotic

groups. The interpretation individually and jointly brings the parents 2, 10 and 12, as potential

parents in this microregion composted by the four environments. Overall, they presented a high

additive genetic effect (meaning they have a high proportion of favorable alleles to GY trait) and a

high dominance genetic effect (seem to be contrasting and complementary), which would be very

interesting in a hybrid composition, as the heterosis effect is expected in maize.

In this way, this study highlighted the importance of considering the dependence among

rows and columns when required for specific trials and applied all additional information into

the joint analysis, combined with the best genetic covariance structure. The adoption of SPA
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analyses led to better results, as observed in BICc, selective accuracy, heritability, and selection

gains. This study confirmed the importance of SPA diallel MET analyses in maize breeding,

which is a pioneer in the literature.

Conclusion

The adoption of MET permits a better understanding of the genetic effect, as it enables the

breeder to account for the GxE interaction effect. This makes it possible to isolate the genetic

effect or further explore the GxE interaction effect, depending on the goal. In addition, the

diallel matching design enriches the study as it accesses the effects within the genotypic effect,

both additive and dominance genetic effects, by crossing all parents among themselves. We

found that the SPA analyses maximize the selective accuracy when compared to NSPA analy-

ses, confirming the superiority of the SPA models. In addition, the LRT confirmed that the

mismodeling process can lead to the misinterpretation of model effects, where some signifi-

cant effects can be considered non-significant due to inappropriate analyses.

Based on the fitted information, it was possible to identify the genotypes with the highest

potential for future heterotic groups that can be used as potential commercial hybrids. The

parents 2, 10 and 12, were indicated as potential parents in this microregion. Owing to their

high additive genetic effects, bringing favorable genes to the future parental lines, their positive

combination, given by the dominance genetic effect, will be expressed as a strong heterosis in

future hybrids.
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