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A global pandemic has emerged following the appearance of the new severe acute respiratory virus whose official name is the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strongly affecting the health sector as well as the world economy. Indeed,
following the emergence of this new virus, despite the existence of a few approved and known effective vaccines at the time of
writing this original study, a sense of urgency has emerged worldwide to discover new technical tools and new drugs as soon as
possible. In this context, many studies and researches are currently underway to develop new tools and therapies against SARS
CoV-2 and other viruses, using different approaches. The 3-chymotrypsin (3CL) protease, which is directly involved in the
cotranslational and posttranslational modifications of viral polyproteins essential for the existence and replication of the virus in
the host, is one of the coronavirus target proteins that has been the subject of these extensive studies. Currently, the majority of
these studies are aimed at repurposing already known and clinically approved drugs against this new virus, but this approach is
not really successful. Recently, different studies have successfully demonstrated the effectiveness of artificial intelligence-based
techniques to understand existing chemical spaces and generate new small molecules that are both effective and efficient. In this
framework and for our study, we combined a generative recurrent neural network model with transfer learning methods and
active learning-based algorithms to design novel small molecules capable of effectively inhibiting the 3CL protease in human
cells. We then analyze these small molecules to find the correct binding site that matches the structure of the 3CL protease of
our target virus as well as other analyses performed in this study. Based on these screening results, some molecules have
achieved a good binding score close to -18kcal/mol, which we can consider as good potential candidates for further synthesis
and testing against SARS-CoV-2.

1. Introduction

The presence of coronaviruses constitutes a serious threat for
the human population. Indeed, these viruses belong to a large
family that causes a variety of diseases ranging from the com-
mon cold to more serious diseases that attack the human
respiratory system. Recently, a new type of virus known as
the new SARS-CoV-2 or COVID-19 coronavirus was discov-
ered in Wuhan, China (CO-Coronavirus, VI-Coronavirus,
D-December, 19-2019) [1]. So far, this new virus has caused
a global pandemic [2] with more than 74,299,042 cases and
1,669,982 deaths [3] and these numbers are dangerously

increasing day by day. In addition, previous outbreaks have
involved severe acute respiratory syndrome viruses [4], such
as “SARS-CoV” in 2003 [5] and also the Middle East respira-
tory syndrome virus known as “MERS-CoV” in 2012 [6].
Unfortunately, despite the existence of new vaccines that
have been approved and are in use, the current lack of effec-
tive drugs against these coronaviruses has slowed the count-
less efforts to stop the spread of SARS-CoV-2 worldwide.
And despite this delay in finding appropriate therapies, the
threats posed by coronaviruses should not be underestimated
and it is essential to advance our research to understand how
coronaviruses replicate while interacting with their hosts so
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that appropriate and effective treatments can be developed as
soon as possible. Furthermore, these successive outbreaks
have clearly highlighted the long-term threat of interspecies
transmission events leading to human epidemics and the
possible reemergence of similar viral infections, which must
be seriously considered [7].

Although we are familiar with this type of virus, SARS
occurs suddenly, as mentioned above. This disease was
quickly identified as a new coronavirus. Studies on the epide-
miological, clinical and radiological characteristics of this
disease showed that the infection caused severe respiratory
illnesses similar to those of SARS-CoV [8]. Preliminary clin-
ical analyses showed that although COVID-19 could cause
severe disease in some patients, it was not initially easily
transmissible from person to person. Nevertheless, current
epidemiological data show that this novel virus is self-
adapting and self-evolving in the human host and that
human-to-human transmission is becoming increasingly
active. Analyses performed by researchers on the SARS-
CoV-2 genome sequences collected at the beginning of the
epidemic have shown that they are almost identical to those
of SARS-CoV [9]. Indeed, coronaviruses are members of
the Coronaviridae family, which includes four genera: Alpha,
Beta, Gamma, and Deltacoronavirus. Analyses show that the
SARS-CoV-2 strain is a member of the Betacoronavirus fam-
ily [10]. Their genomic sequence was used for genetic and
functional comparison with that of the human SARS virus
as well as with other coronaviruses recovered from other spe-
cies. Based on phylogenetic analysis of coronaviruses from
different species, the new coronavirus may have originated
from bats, as its genome is about 96% identical to that of
bat coronavirus, but the intermediate transmission remains
to be determined [8]. As for all coronaviruses, the main struc-
tural proteins are the nucleocapsid proteins (N), membrane
proteins (M), envelope proteins (E), and spike glycoprotein
(S) [11, 12]. The latter plays an important role in the penetra-
tion of the virus into host cells by direct interaction with cel-
lular receptors such as angiotensin-converting enzyme 2
(ACE2) and serine protease TMPRSS2 [13]. Upon infection,
it directly triggers the process that allows the synthesis and
replication of two long polyproteins [10].

Following this knowledge of the origin and genomic
structure of our target, attempts are currently being made
to develop small molecules capable of effectively inhibiting
the main protein of SARS-CoV-2 [14]. However, current
therapeutic development is focused on viral proteases.
Indeed, in this area, several researchers and pharmaceutical
companies are attempting to adapt existing antivirals to the
novel SARS-CoV-2 protein [15]. Protease inhibitors such as
remdesivir, darunavir, lopinavir, ritonavir, indinavir, saquin-
avir, chloroquine, and ASC-09 are in clinical trials [15]. Inno-
vation Pharmaceuticals is evaluating brilacidin as a candidate
treatment for the virus, CytoDyn is also investigating a
potential treatment for the virus called leronlimab [16], and
alternative approaches from the traditional Chinese medicine
have also been reported [17-20]. Currently, hospital treat-
ment relies largely on symptom-based therapies [19, 21].
Therefore, there is an urgent need to develop strategies for
rapid identification of drug candidates.
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Figure 1 shows the current global distribution of clini-
cal trials against novel SARS-CoV-2 and the main types of
trials [22].

However, there is still hope, especially with developments
in the field of artificial intelligence (AI) that have made it pos-
sible to build on existing knowledge and use the information
obtained to explore the virtually unlimited chemical space
and develop new small molecules with desired biological
and physicochemical properties [23-25]. Recently, Al-based
methods have been used to develop new antibacterial mole-
cules [25]. Given also that the chemical domain is too large
to allow for exhaustive selection of drugs active against a
specific target, techniques that allow for both design and
selection of selected substances with desired properties and
probability of activity are a promising approach for the
future. Indeed, computer-aided design of new drugs requires
extensive exploration of this vast chemical space to find com-
pounds that may never have been synthesized before, and
“deep learning” methods also provide concepts to navigate
this chemical space [26]. In various research efforts, recurrent
neural networks have been successfully used in activities
requiring machine learning, including natural language pro-
cessing [27], translation [28], and music composition [29].
One reason for this success is the technical implementation
of LSTM (long-term memory), which was first used by
Hochreiter and Schmidhuber in 1997 [30]. In the field of
molecular informatics, LSTM-based RNNs have, among
other things, been applied to predict protein functions based
on their sequence [31] as well as the aqueous solubility of
pharmaceutical substances [32]. In addition, Als have been
found to act as autoencoders to give a certain form of molec-
ular structure in a chemical environment [33]. It is worth
noting that several research teams have recently demon-
strated the possibility of using RNNs to obtain conventional
SMILES and to refine them by transfer learning [34, 35].

In this study, we used a generative and predictive model
based on active learning using multiple drug databases to design
novel small molecule drug-like compounds (new chemical enti-
ties known as NCEs) targeting the SARS-CoV-2 protease 3CL
which is a homodimeric cysteine protease [36]. The crystal
structure of the 3CL protease is available in the Protein Data
Bank (PDB: 7BQY) [36]. This technique allowed us to find
new molecules capable of limiting viral maturation and thus
reducing infection in humans. This is done by binding all can-
didate drug samples and determining which one has the highest
binding affinity. The drug with the highest binding strength will
be a possible treatment for the target virus.

2. Methods

Figure 2 illustrates the flow of our SARS-CoV-2 drug candi-
date identification strategy.

High-throughput compound screening is a time- and
resource-intensive process, and considerable effort is
invested in screening compound libraries, profiling, and
selecting the most promising candidates for further testing.
The novelty of this work, therefore, lies in the use of active
learning with generative recurrent neural networks (RNNs)
containing long-term memory cells (LSTMs). Active learning
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FIGURE 1: Number of trials in each therapeutic area.

methods facilitate the selection process by focusing on areas
of chemical space that have the best chance of success while
taking into account structural novelty. The main feature of
these algorithms is their ability to adapt structure-activity
scenarios by feedback. To avoid performing a full screen,
only targeted subsets of compounds are tested, and the exper-
imental results are used to refine the selection of molecules in
subsequent screens. Once implemented, these techniques
have the potential to reduce costs and save valuable materials.
The code and models are available at https://github.com/yas-
sinerabhi/A-new-molecule-effective-against-SARS-CoV-2

2.1. Atomic Structure of Target Proteins. The high-resolution
atomic structure of the SARS-CoV-2 protein (PDB ID-
7BQY) was downloaded from the RCSB PDB (protein data-
base) as previously described and processed using PyMOL,
as shown in Figure 3. Prior to analysis or docking, the protein
molecule was optimized using Autodock Tool 4 (ADT) [37]
for molecular docking with the generated entities.

2.2. Construction of Compound Databases. To carry out our
mission, our generative and predictive models require a large
database to learn models to generate new drug molecules.
Until now, the pharmaceutical industry has been responsible
for much of the development and large-scale testing of
molecular libraries through virtual screening. To this end,
we have constructed a database that consists of (a) FDA-
approved drugs (from the ZINC database), (b) natural prod-
ucts (from SuperNatural), and (c) a manually developed
database that represents drug-like bioactive molecules. As
shown in Table 1, the largest datasets correspond to the
libraries used in this study were used in medicinal chemistry.
Subsequently, all compounds were transformed into three-
dimensional structure data files (SDF).

Our database was preprocessed and duplicates, salts, and
stereochemical information were removed using “cleanup.py”,
and only SMILES (simplified molecular-input line-entry sys-
tem) strings between 34 and 128 in length are retained, so
we get about 2492861 SMILES in total. In addition, during
preprocessing, we filtered out nucleic acids and long peptides
that were coming out of the chemical space we were trying
to collect.

We also selected a set of drug candidates, shown in
Table 2, that had been previously published with positive
experimental results on coronaviruses and specifically
against SARS-CoV-2. We did this to see the usefulness of
these drugs and also to make a comparison with the candi-
date drugs that we subsequently generated.

Finally, the final list contains about 2.5 million SMILES
on which the initial model was trained.

2.3. LSTM-Based RNN Model. In this section, we used the
RNN deep learning methodology as previously described in
Figure 2 to design new drugs. In the first phase of this study,
we train the LSTM-based RNN model to generate reliable
and high-quality SMILES. We then use transfer learning to
refine the model, generating molecules that are very similar
in structure to drugs with known activity against our specific
SARS-CoV-2 targets.

In this way, we were able to find a generative model capa-
ble of discovering new drugs using fragment-based drug dis-
covery (FBDD) [43] to create a library containing a series of
SMILES inspired by the well-known paradigm.

To model molecules instead of language, for example
with the RNN, it is enough to exchange words or letters with
atoms or, more concretely, the characters of the alphabet
with SMILEs, which form a formal chemical language.
Indeed, if the model receives the sequence clcccce, there is
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a strong probability that the next symbol is a “1,” which
closes the chemical sequence and gives benzene.

Specifically, for a sequence S of S; symbols at steps ¢, € T,
the model assigns a probability:

T

Py(S) = Po(sy)e [T Polse 15010+ 51), (1)

t=2

in which the parameters 0 are learned through the training
set [44].

In this paper, we use a recurrent neural network (RNN)
to estimate the probabilities associated with Equation (1).
Unlike ordinary neural networks, RNNs retain state, which
is essential to keep track of symbols seen previously in the
chemical sequence. In general, an RNN takes a sequence of
input vectors x,., = (x;, -**, x,,) and an initial state vector h,
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FIGURE 3: SARS-CoV-2 main protease: cartoon form (a) and surface form (b).

TaBLE 1: Datasets for generation tasks.

Dataset Purpose

ZINC [38, 39] Commercially available compounds for virtual screening

ChEMBL [40] A manually curated database of bioactive drug-like molecules

ChEMBL [41] Named compounds from chemical patents

eMolecules Purchasable molecules

Natural [42] Natural product molecules

DrugBank FDA-approved drugs, experimental drugs, drugs available worldwide

TaBLE 2: Selected drug information of current ongoing clinical studies on SARS-CoV-2.

Drug name Mechanism of action Indication Druﬁ];’ank

Remdesivir RNA polymerase inhibitor Anti-Ebola passed phase III, COVID-19 phase III DB14761

Lopinavir Protease inhibitor Anti-HIV approved, COVID-19 DB01601

Ritonavir Protease inhibitor Anti-HIV approved, COVID-19 DB00503

Emtricitabine Nucleoside reverse transcriptase Anti-HIV approved, anti-HBV DB00879
inhibitor

Tenofovir Nucleoside reverse transcriptase Anti-HIV phase III, anti-HBV DB14126
inhibitor

a Viral mRNA and protein synthesis Anti-HCV, anti-HBV, anti-SARS, anti-influenza,
Ribavirin inhibitor COVID-19 DBo0s11
Methylprednisolone Corticosteroid COVID-19 phase. I, allergic asthma and rheumatic DB00959
disorders approved

Oseltamivir Neuram1n1dafse 1.nh1b1t0r; sialidase Anti-influenza approved, COVID-19 phase III DB00198
inhibitor

Danoprevir Protease inhibitor Anti-HCV phase III, COVID-19 phase 4 DB11779

Chloroquine . Antimalarial approved, anti-HIV phase III, anti-HCV, DB14761

COVID-19 phase 4
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FIGURE 4: The RNN-LSTM model used to generate SMILES chains. To start, the character “S” is introduced, initializing the hidden and cell
states. The network starts sampling symbol by symbol until the end character, “\n” is produced.

, and returns a sequence of state vectors h,., = (hy, -+, h,)
and a sequence of output vectors y,., = (y;, -, y,). Finally,
another function O allows to make the correspondence
between the state vector h; and the output vector y, [41].

RNN(hO, xl:n) = hl:n’ylzn’
h;=R(h;_y, x;), (2)
= Olh).

Recurrent connections allow RNNs to learn complex tempo-
ral problems. In our model, RNN cells are part of the LSTM
class. LSTMs have an input gate, a forget gate, an update gate,
and an output gate to determine the information to be kept in
a specific cell state. In this way, the hidden state of an LSTM
acts as a short-term memory, while the cell state acts as a
long-term memory. Therefore, LSTMs solve the problem of
gradient disappearance or explosive growth that RNNs
encounter due to backpropagation over long sequences.
Figure 4 illustrates the structure of our proposed model.
It consists of two LSTM layers, each having a hidden state
vector of size 256, regularized by a dropout [45]. These two
layers are followed by dense output layers and neurons with
a Softmax activation function. Backpropagation through
time was used to train the network with the cross-entropy
loss function and ADAM optimizer [46, 47]. The model
was created using the popular Python machine learning
library TensorFlow Core v2.1.0 [48]. The input to the LSTM
is a one-hot-encoded sequence of a molecule’s SMILES
string, where each string is split up into tokens. Each SMILES
string is given an “S” token (for “Start”) at the beginning, and
an EOL (\n) is added to denote the end of the SMILES string.
After training the RNN-LSTM with “Train the Networ-
kipynb”, the proposed model allowed us to generate about
25000 new SMILES. It is possible to generate more than this
to start with a larger set of molecules to evaluate before focus-
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FIGUre 5: Flowchart of the strategy to identify the best binding
performance candidates.

ing on those that react well with the SARS-CoV-2 target, but
the time factor was a major constraint in this outbreak since
the generation process takes several hours with our machine
(laptop) whose characteristics were average.

In fact, the model was trained over 230 epochs, giving us
a training accuracy of 99.86% and a validation accuracy of
99.63%. The model achieved 99.66% accuracy on a sample
of test data.

And to better evaluate the relative performance of our
new network, we used two parameters well known in this
type of work (validity, uniqueness), and we added a third
parameter (originality) to confirm the effectiveness of our
method:

(i) Validity: out of the total number of SMILES gener-
ated, the percentages of SMILES are actually valid
for the molecules
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(ii) Uniqueness: on the total number of generated
valid SMILES, the percentages of SMILES are not
duplicates

(iii) Originality: out of the total number of valid SMILES
generated, percentages of new creations do not
appear in the training data

2.4. Evaluation and Refinement. When it comes to quantita-
tive information analysis, there are many indicators and
operators that we can use to identify candidate molecules.
However, in addition to choosing which indicator to track,

the most important thing is to define the right parameters
to use. Therefore, one method we could use to find these can-
didate molecules without spending too much time simulating
a large number of combinations would be to use active
learning.

Active learning, which can also be called “selective sam-
pling,” is a generic term in the field of machine learning for
methods that select data points for testing and feeding them
back into the model. Recently, this topic has gained momen-
tum due to technological advances in small-scale organic
synthesis systems and the accuracy of machine learning pre-
diction models.
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In chemical space, known activity data is provided as
training data to a machine learning model that generalizes
this knowledge. A selection strategy is used to choose from
a list of new molecules with unknown activity. These selec-
tion strategies generally attempt to identify molecules that
would be particularly suitable to improve the quality of the
model (“exploratory strategies”) if they are included in
the training database with their activity value. Otherwise,
the molecules that could have favorable activity values are
selected (“exploitation strategies”). Once the selected mole-
cules have been tested (“tagged”), they are added to the train-
ing data to form an improved machine learning model.

Indeed, active learning is an optimization method
inspired by the evolution of species and natural selection.
Although it is not strictly speaking a field of machine learn-
ing, it can be a good basis for building the machine learning
algorithm.

Thus, after randomly selecting 1000 SMILES and what
we call “generation 0” using the “Refinement and evaluatio-
n.ipynb” script, we evaluated them with the PyRx AutoDock
Vina software [49], which allowed us to obtain different
scores for a diverse set of molecules. PyRx then produces a
csv file of the molecules and their binding scores as well as
their direct impact with the target. Subsequently, we used
the techniques and principles of active learning and transfer
learning to take the knowledge from the original realistic
molecule creation network and transfer it to the field of cre-
ating molecules specifically capable of reacting with SARS-
CoV-2.

Figure 5 illustrates our technique used in this study.

For each generation that follows, we followed the follow-
ing steps:

(a) We ordered all previously tested molecules according
to their binding scores across generations and then

(b)

(©)

(d)

()

selected the top fifty SMILES with the highest bind-

ing scores

Next, we calculate the similarity of each remaining
molecule to the set of molecules from the previous
step, as well as an adjusted score that stimulates mol-
ecules that are very different from the top-ranked
molecules and have good scores but not high scores,
i.e., they may work by a different mechanism. Then,
we take the top 10 SMILES ranked according to this
adjusted similarity score

After fundamental studies, we noticed that one of the
most important characteristics of small molecules is
their weight below 900 daltons [50]. We noticed that
large molecules over 900 daltons seemed to have high
binding affinity scores. In order to learn what made
these large molecules good, but also to favor small
molecules, we calculated a weight-adjusted score that
favored lighter molecules with good but not great
scores. We then ranked based on this adjusted score
and I selected the top 10 molecules

These steps allowed us to obtain a list of 70 molecules
considered as “good fits” according to the three cri-
teria described above: (i) global score, (ii) similarity-
adjusted score (guaranteeing the inclusion of various
molecules), and (iii) weight-adjusted score (guarantee-
ing the inclusion of particularly small molecules). In
order to favor random “mutations” (inspired by a
genetic algorithm approach), the RNN model already
used and allowed us to generate a random sample of
10 molecules at each generation

In total, we have 80 target SMILES (these are the
“parents”). We then cumulated the results obtained
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TaBLE 3: A summary of some drug properties for the top anti-SARS-CoV-2 molecules generated using our proposed method and the
remdesivir and HIV drugs.

ChemlEéIFf)ormula Source Blréﬁg;ig/ I:;ﬂglr;lty Molec(l;;[a\fv ;velght logP logS PSA S;Lnnlllgzlsti}:’i tro
1 C46H50N408 Generated -18.3 786.92 3.82 -6.94 190.99 0.30
2 C51H59N506 Generated -18.2 838.05 432 -7.85 156.93 0.35
3 C52H62N606 Generated -18.2 867.10 4.06 -7.62 169.82 0.38
4 C51H60N60O6 Generated -18.1 853.07 3.72 -7.35 169.82 0.38
5 C50H58N606 Generated -18 839.04 3.38 -7.08 169.82 0.38
6 C45H49N507 Generated -17.7 771.91 320 -6.75 196.78 0.35
7 C45H48N408 Generated -17.7 772.89 3.59 -6.67 190.99 0.35
8 C45H48N408 Generated -17.7 772.89 3.48 -6.67 190.99 0.30
9 C52H61N507 Generated -17.7 868.08 390 -7.72 166.16 0.42
10 C53H63N506 Generated -17.7 866.11 501 -839 156.93 0.34
11 C46H52N407 Generated -17.6 772.93 430 -7.07 173.92 0.36
12 C52H61N506 Generated -17.5 852.08 4.67 -8.12 156.93 0.34
13 C52H61N506 Generated -17.4 852.08 4.67 -8.12 156.93 0.34
14 C49H56N606 Generated -17.3 825.01 3.03 -6.81 169.82 0.39
15 C52H66N409 Generated -17.1 891.11 4.89 -8.11 211.22 0.37
16 C46H52N606 Generated -16.9 784.95 3.857 -7.49 178.61 0.43
17 C44H46N408 Generated -16.9 758.86 3.09 -6.25 190.99 0.40
18 C47H53N506 Generated -16.7 783.96 480 -8.26 165.72 0.37
19 C52H62N406 Generated -16.6 839.08 532 -827 148.06 0.35
20 C45H48N408 Generated -16.5 772.89 3.48 -6.67 190.99 0.31
21 C45H50N606 Generated -16.4 770.92 3.51 -7.22 178.61 0.43
22 C46H51N506 Generated -16.2 769.93 446 -7.99 165.72 0.37
23 C45H48N408 Generated -16.2 772.89 3.48 -6.67 190.99 0.31
24 C48H58N409 Generated -16.1 835.00 3.39 -7.40 22521 0.37
25 C53H62N607 Generated -16 895.11 5.17 -9.07 194.82 0.33
26 C53H62N607 Generated -16 895.11 530 -851 198.58 0.41
27 C48H58N4010 Generated -16 851.00 4.06 -7.12 211.66 0.46
28 C47H53N505 Generated -16 767.96 431 -7.55 140.72 0.41
29 C44H54N606 Generated -15.9 762.94 247 -6.49 168.96 0.37
30 C48H57N3010 Generated -15.8 835.99 3.79 -7.33 219.42 0.38
31 C43H51N506 Generated -15.7 733.90 394 -7.52 16572 0.34
32 C42H51N506 Generated -15.7 721.89 4.04 -7.38 165.72 0.33
33 C43H51N506 Generated -15.6 733.90 394 -7.52 165.72 0.34
34 C51H66N4010 Generated -15.5 895.10 5.06 -8.28 201.61 0.47
35 C43H50N406 Generated -15.5 718.89 4.00 -7.09 153.69 0.33
36 C45H51N505 Generated -15.4 741.92 3.75 -7.27 140.72 0.40
37 C43H52N408 Generated -15.3 752.90 3.37 -6.34 190.99 0.31
38 C50H64N4010 Generated -15.1 881.07 476 -7.96 201.61 0.47
39 C49H62N4011 Generated -15 883.04 4.13 -8.09 210.84 0.46
40 C49H62N4011 Generated -15 883.04 492 -7.89 210.84 0.47
41 C49H63N5010 Generated -14.9 882.06 4.60 -7.62 204.85 0.52
42 C27H35N608P Remdesivir -13.2 602.58 0.30 -4.99 213.35 1.0
43 C38H53N507S82 Hg\i;l;ll\/ic- -11.2 755.99 507 -6.40 179.17 0.58
44 C38H50N605 HIV-saquinavir -11.1 670.85 2.83 -5.65 166.74 0.48
45 C38H52N607 HIV-atazanavir -9 704.86 337 -6.07 171.21 0.45
46 C27H37N307S HIV-darunavir -8.8 547.67 223 -3.95 148.79 0.47
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TaBLE 3: Continued.

ChemlfélFf)ormula Source Blrzl(irilg/ re;ﬂ(:llr;lty Molec(l;i{a\fv ;velght logP logS PSA S;anrlllgzlsti}\,,iio
47 C32H45N304S HIV-nelfinavir -8.3 567.79 445 -5.58 127.19 0.43
48 C25H35N306S HIV-amprenavir -8.3 505.63 225 -3.74 139.56 0.40
49 C36H47N504 HIV-indinavir -8.1 613.80 2.84 -3.32 118.02 0.47
50 C33H44N406S HIV-PPL-100 -8.1 624.80 418 -5.05 159.43 0.43

by the previous generation with these 50 target
SMILES. By applying a rule of thumb, we trained
the network enough to minimize its loss between
the first and the last epoch (5 epochs).

(f) Then, after retraining our model on the well-adapted
“parents” of the generation, we used it to generate the
next generation of ideally better-adapted “children.”
In this work, we generated 500 SMILES per genera-
tion each time, which, after eliminating duplicates,
invalids, etc., means that we only had a few hundred
children to evaluate

(g) We saved the new generation in molecular SDF for-
mat and then introduced it into PyRx for evaluation

We repeated the above steps over 10 generations, always
using the training set of best fit and best mutation from the
previous generation to train the network to create molecules
that are increasingly responsive to our target. Figure 6 shows
an example of generated molecules.

There are many software tools for virtual screening.
However, the efficiency of most of these tools may not be
applicable to large drug libraries such as the full list of drugs
we selected from our database. In fact, we used AutoDock
Vina as mentioned above as a basic docking utility to recon-
struct our virtual screening pipeline and ran our smart
method with all refinement processes (Figure 1) to generate
the best drug candidates.

To simulate the binding affinity between protein and
ligands, the 3D structure of each generated drug candidate
was recorded in structure data file (SDF) format. The gen3d
operation of PyRx was used for energy minimization. This
operation iterated 500 cycles of geometry optimization with
MMFF94 force field and weighted rotor-conformal search,
to generate a probable minimum energy global conformer
in MOL2 file format. Since AutoDock Vina only takes the
PDBQT format as input, we used AutoDockTool to convert
the file format from MOL2 to PDBQT with the default
settings. After that, we applied rigid body docking on these
converted files using AutoDock Vina. In order to consider
all potential docking positions, the entire protein is taken as
the search space in the blind search. We noted that the num-
ber of runs of the docking simulation should be adjusted
accordingly considering the variety of the target protein size.
In AutoDock Vina, the number of runs is defined by the
completeness parameter, which was set to eight by default
for a search space smaller than 30 x 30 x 30°A. We propor-
tionally scaled the completeness to the protein size by a factor
of 2. For example, if the size of a protein is 60 x 60 x 60 A, the

completeness would be 8 x (60/30) x (60/30) x (60/30) x
2=128. AutoDock Vina showed us several docking scores
for each run, and the best score was selected as the final result.
Once docking is complete, AutoDock Vina generates multiple
docking poses for each ligand-protein pair. To get a direct rep-
resentation of the docking results, the top 20 docking poses
from AutoDock Vina were taken.

3. Results and Discussion

In this study, two points are addressed: First, we wanted to
generate a large number of diverse molecules that react and
bind with high affinity. Second, we wanted to generate
smaller, targeted collections enriched with molecules that
are potentially active for a specific target in particular, in
our case SARS-CoV-2. For the first task, we trained our
model on a large general set of molecules to learn the SMILES
“grammar.” This model would then allow us to generate sets
of diverse but nontargeted molecules. For the second task,
and in order to obtain new active molecules for our target
of interest, we performed transfer learning and the principle
of active learning method: We selected a small set of known
active molecules for this target and retrained our pretrained
chemical language model with this small dataset. After each
epoch, we sampled the model to generate new actives.

Based on the results of the many experiments we con-
ducted, we selected a model after training over 230 epochs,
and the model (as described in Section 2.3) produced an
average of 97.05% valid SMILES. The model was therefore
selected for production runs.

Using our model, 25000 SMILES chains were generated.
99.13% of these SMILES were unique, and 94.38% of the
unique SMILES were valid SMILES and 94.44% were original
SMILES. In order to compare the generated molecules to the
original molecules that were used for RNN training, we per-
formed a principal component analysis (PCA) on the charac-
teristics of the training data and the newly generated. Figure 7
shows the original molecules as well as the generated mole-
cules in relation to these principal components; we can see
that the generated molecules were placed in the same space
as the original molecules. In Figure 8, we specifically compare
the molecular weight and calculated log P (clogP) distribu-
tion for the generated and original molecules. We find that
the medians and distributions are very similar.

The trained generative model was used to sample 25000
small molecules from the learned chemical space as described
above. After removing duplicates and identical molecules
from the database used for training, the residual dataset con-
sisted of 22173 molecules. These molecules were subjected to
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FIGURE 9: (a) The best candidate found and SARS-CoV-2 main protease (cartoon view). (b) The best candidate found and SARS-CoV-2 main
protease (surface view). (c) The best candidate found and SARS-CoV-2 main protease connections.

rigorous filters for physicochemical properties, including
drug similarity [51] and synthetic accessibility [52], resulting
in a set of 6962 molecules. These molecules were considered
as potential candidates for the inhibition of the SARS-CoV-2

3CL protease. The generated molecules were screened for
protease affinity using our evaluation and refinement
method. After virtual screening, a total of 41 small molecules
were obtained, with a virtual screening score of less than -7.0.
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In Table 3, we took the best candidates we found in all
generations (score < —7 and weight <900 daltons) and
reranked them with PyRx software, separating the highest
binding score values of each molecule and its average binding
score (its average over the molecule’s modes in PyRx). In
addition, we subsequently calculated the molecular weight
since optimizing compounds for high activity on a biological
target is almost always accompanied by an increase in molec-
ular weight. However, higher weight compounds are less
likely to be absorbed and thus reach the target of action.
Thus, trying to keep molecular weights as low as possible
should be the goal of any drug discovery, as we have already
done in this study for the SARS-CoV-2 protease 3CL. In fact,
more than 80% of all marketed drugs have a molecular
weight below 900.

The log P of a compound was also calculated. It is the
logarithm of its n-octanol/water partition coefficient log
(Coctanol/ Cyater)» @ well-established measure of the com-
pound’s hydrophilicity. Low hydrophilicities and thus high
log P values result in poor absorption or permeation. For
compounds to have a good chance of being well absorbed,
it has been shown that their log P values should not be
greater than 5.0. The distribution of log P values calculated
for many currently marketed drugs confirms this fact.

The degree of water solubility of a compound signifi-
cantly affects its absorption and distribution characteristics.
In general, low solubility goes hand in hand with poor
absorption, so the general goal is to avoid poorly soluble
compounds. The log S value we calculated in this work is a
stripped logarithm (base 10) of the solubility measured in
mol/liter. In fact, more than 80% of the drugs on the market
have an (estimated) log S value greater than -4.

The polar surface area (PSA) was calculated in the same
table; it is defined as the sum of the surface areas of all polar
atoms (oxygen, nitrogen, sulfur, and phosphorus), including
the fixed hydrogens. This measure is commonly used in
medicinal chemistry to optimize cell permeability. Molecules
with a small polar surface area, measured in square ang-
stroms, are generally considered good for cell membrane
permeability.

Finally, the similarity of each molecule was calculated
with respect to existing HIV inhibitor drugs and remdesivir,
which is currently in clinical trials.

As you can see, our model generated much better results
than existing drugs in all tests.

The best docking pose for the highest compound in
Table 3 is shown in Figures 9(a)-9(c). Based on comparative
analysis with remdesivir and existing protease inhibitors in
clinical trials, the generative model is able to accurately cap-
ture all the protease inhibitor features governing binding
affinity. Indeed, these characteristics are expected to contrib-
ute to the inhibition of the SARS-CoV-2 3CL protease, result-
ing in a reduction of viral infection in the human body.

4. Conclusion

SARS CoV-2 has rapidly become a major global epidemic
that has caused severe economic losses and human deaths.
There is a high risk that the disease will continue to spread

BioMed Research International

around the world. With a particularly high rate of transmis-
sion in the 183 affected countries and territories, it will be dif-
ficult to control this epidemic without drugs despite the
existence of new vaccines that have been approved and are
in use. There is an urgent need to find drugs that inhibit
SARS-CoV-2.

For this purpose, small molecules were designed to
inhibit the SARS-CoV-2 protease 3CL, which is responsible
for viral replication. We also applied the power of advanced
learning methods combined with evaluation and refinement
algorithms to learn the inherent grammar of small molecules
and generate new molecules that satisfy the learned gram-
mar. Our model predicts nearly 25000 potential drugs for
SARS-CoV-2 and we also used various physicochemical
property filters to ensure that the generated molecules have
drug-like properties. Finally, virtual screening with PyRx
and AutoDock Vina was performed to obtain a ranked list
of molecules. We also observed that the generative model
could generate small molecules that are similar to HIV prote-
ase inhibitors, but bind better to the SARS-CoV-2 protease
3CL. A list of small molecules, which have a good virtual
screening score, is also provided and presented in Table 3.

In addition, we selected the best potential anti-SARS-
CoV-2 candidates for partition coefficient (log P), solubility
(log S), and molecular weight (MW) analysis based on the
calculated binding affinity ranking. Reasonable log P, log S,
and MW show that our best anti-SARS-CoV-2 drug candi-
dates are potentially effective in inhibiting SARS-CoV-2.
Finally, the efficacy of selected anti-HIV/Ebola drugs for the
treatment of SARS-CoV-2 is analyzed. Although anti-HIV
drugs may indeed have a moderate effect in treating SARS-
CoV-2, the analysis of these anti-HIV/Ebola drugs in
combination with our best anti-SARS-CoV-2 molecules
shows that the new compounds generated by our predefined
method seem to have better drug properties than these
HIV inhibitors.
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