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ABSTRACT: Many environmentally relevant poly-/perfluoroalkyl sub-
stances (PFASs) including perfluorooctane sulfonic acid (PFOS) and
perfluorooctanoic acid (PFOA) exist in different isomeric (branched and
linear) forms in the natural environment. The isomeric distribution of
PFASs in the environment and source waters is largely controlled by the
source of contamination and varying physicochemical properties imparted
by their structural differences. For example, branched isomers of PFOS
are relatively more reactive and less sorptive compared to the linear
analogue. As a result, the removal of branched and linear PFASs during
water treatment can vary, and thus the isomeric distribution in source
waters can influence the overall efficiency of the treatment process. In this
paper, we highlight the need to consider the isomeric distribution of
PFASs in contaminated matrices while designing appropriate remediation
strategies. We additionally summarize the known occurrence and
variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.
KEYWORDS: PFAS isomers, treatment, sequestration, destructive, analytical bias

1. INTRODUCTION
Two of the most used and studied PFASs are perfluoroocta-
noic acid (PFOA) and perfluorooctanesulfonic acid (PFOS).
Although the intent is to manufacture linear forms of PFOA
and PFOS for various applications, the type of manufacturing
process used can result in the formation of different chain
lengths and structural isomers of PFASs as impurities.1−3

Electrochemical fluorination (ECF) and telomerization are the
major manufacturing processes for PFOA.1 As the ECF
process is of a free-radical nature, it leads to the rearrangement
and breakage of the carbon chain. This leads to the production
of linear and branched isomers, mainly perfluorinated, as well
as homologues of the raw material.2 3M Co. was the major
manufacturer of PFOA from the 1950s until 2002, after which
perfluorooctyl chemistries were phased out. 3M Co. produced
PFOA, measured in 18 production lots over 20 years, was
found to be approximately 78% linear and 22% branched.1,2,4

Since 2002, the large scale production of linear PFOA has
continued by a telomerization process and is considered to be
the predominant perfluoroalkyl carboxylic acid (PFCA)
manufacturing process. The telomerization process is one
that involves the addition of a free radical to a starting telogen
with a taxogen that is usually unsaturated. This results in chain
lengthening by units of CF2-CF2, which when subjected to
oleum oxidation can yield PFOA.5 The result of the

telomerization process is a product (e.g., PFOA) that is
isomerically pure but can contain chain length impurities.

In contrast, ECF can result in greater numbers of
byproducts, including branched and linear isomers that can
have odd and even chain lengths.5 PFOS has predominantly
been manufactured by ECF, while telomerization sources for
PFOS are unknown. 3M Co. produced PFOS from the 1950s
to 2002 with a distribution of approximately 70% linear and
30% branched.1,4 Since the phase out of PFOS by 3M Co. in
2002, production of perfluorooctane sulfonyl fluoride (POSF)
and its derivatives has continued in developing countries.1 The
residual impurities, generated as byproducts of PFAS
manufacturing processes, can influence the isomeric distribu-
tion of PFASs in the environment. In addition to PFOA and
PFOS, other PFASs can also exhibit isomerism, including
several PFCAs such as PFBA/perfluorobutanoic acid (C4),
PFPeA/perfluoropentanoic acid (C5), PFHxA/perfluorohex-
anoic acid (C6), PFHpA/perfluoroheptanoic acid (C7),
PFNA/perfluorononanoic acid (C9), PFUnA/perfluorounde-
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canoic acid (C11),5,6 and perfluorosulfonic acids (PFSAs) such
as PFPeS/ perfluoropentanesulfonic acid (C5), PFHxS/
perfluorohexanesulfonic acid (C6),5,7,8 POSF,5,9 and perfluor-
ooctane sulfonamide (FOSA).10

In the past two decades, although many pieces of literature
have reported multiple PFASs in diverse aquatic environments,
PFAS isomers (i.e., branched or br-PFAS vs linear or L-PFAS
forms) have received relatively little attention probably due to
analytical difficulty and the relatively low abundance of
branched isomers compared to their linear counterparts in
the environment.7,10,11 The structural difference between linear
and branched PFAS isomers would determine their physical
and chemical properties, such as hydrophobicity, leading to
differing fates and transport mechanisms of PFAS isomers in
the environment. In some instances, the concentration of
branched isomers may surpass linear isomers in source
waters.7,12 This may have an impact on the overall treatment
efficiency of PFASs as a few studies have highlighted the
variation in the treatment efficiency between linear and
branched isomers of PFASs.13−19 For example, early break-
through of a branched isomer from a granular activated carbon
(GAC) filtration system19,20 and preferential degradation of
branched isomers over a linear form in destructive
approaches16,17,21 have been reported. In this paper, we
highlight the need for differentiating the isomers of PFASs
during treatment/remediation approaches as the branched-to-
linear ratio in source waters can influence the overall treatment
efficiency of the selected approach. The specific objectives of
this critical review paper were to (i) summarize the
environmental occurrence of branched and linear isomers of
PFASs; (ii) highlight isomer-dependent physicochemical
properties and toxicokinetics of PFASs; (iii) provide the
current understanding of the variability in treatment efficacy
between PFAS isomers; and (iv) highlight the impact of isomer
profile on PFAS treatability.

2. ISOMERIC DISTRIBUTION OF PFASs IN THE
ENVIRONMENT

Source waters can have large variations in the isomeric
distribution of PFASs. One of the factors contributing to this is
the proximity and type of PFAS manufacturing industry, which
can greatly influence the type of PFASs released into the
environment. The isomeric distribution in natural waters can
also be influenced by the inherent properties of linear and
branched forms. A recent study7 summarized the global
distribution of linear and branched forms of PFASs in surface
water, groundwater, and seawater. They found that the ratio of
br-PFAS to L-PFAS in certain surface waters was higher than
expected. This was attributed to the higher normalized organic
carbon to water partition coefficient10 of L-PFAS compared to
the branched forms, which is elaborated more on in the later
sections. They further theorized that this could lead to stagnant
water bodies such as lakes having a reduced percentage of L-
PFAS than flowing bodies such as rivers, as river currents
might reduce adsorption further from equilibrium conditions.
Linear isomers accounted for 42−87% in lake waters and 24−
89.5% in river waters, with the distribution highly dependent
on the location and water source. Similar to behavior in
sediments, L-PFAS sorb better to soils than the br-PFAS,
leading to relatively higher concentrations of br-PFAS in
groundwaters.1,7 The br-PFAS are less retarded during
subsurface transport, leading to a possible enrichment of br-
PFAS in groundwater with distance.22,23 This was also

observed in a recent study conducted in El Paso County,
Colorado, when the PFOS isomer concentration was analyzed
at locations near and farther away from the source. The
average br-PFOS contribution (br-PFOS to PFOS-total) was
∼26% near the source but increased to ∼46% at the location
farthest from the source.24 It is also important to note that
biotransformation could enhance the concentration of L-PFAS
in the environment due to the preferential degradation of br-
PFAS.22 However, the preferential transformation of br-PFAS
precursors over L-PFAS precursors25,26 could increase the br-
PFAS/L-PFAS ratio in the environment, making concentration
estimations and predictions entirely based on source tracking
in environmental samples difficult.

Figure 1 summarizes the percentage of L-PFOS out of total
PFOS in the environment reported in the literature. The

number of studies used to construct Figure 1 for each matrix is
listed as follows: n(freshwater) = 169, n(seawater) = 31,
n(groundwater) = 14, n(sediment) = 13, n(biota) = 63. The
ratio (L-PFOS/∑PFOS), represented as % L-PFOS, varies
significantly (p value < 0.01) between the aqueous phases,
abiotic solids (sediment and suspended particles), and biota
and is also influenced by different locations and studies. The
largest variation of the L-PFOS was observed in freshwater
systems, ranging from 25% to 100%. In contrast, % L-PFOS
showed a more compact distribution in sediment and biota
samples, ranging from ∼70% to 100%. These distributions
seem to be impacted by the differences in the sorption
properties of linear and branched isomers of PFOS. For PFOA,
the L-PFOA accounted for 50% to 100% in water and 80% to
100% in sediment and biota samples.32,33 For PFHxS, the
linear L-PFHxS accounted for 64% to 99% in water and 85% to
96% in sediment and biota samples. PFOS exhibited a more
considerable variation in terms of the isomeric fractionation
than PFOA and PFHxS. Because of the nature of the longer
chain-length of PFOS, the outcome of isomeric fractionation of
L-PFOS from br-PFOS would be more distinct after a series of
natural and anthropogenic processes, possibly due to the

Figure 1. Representation of percentage of L-PFOS present in various
environmental matrices.1,5−7,10−12,22,23,27−51 Dots represent ratios
calculated at multiple data points using either individual L-PFOS and
br-PFOS values or average concentrations, depending on availability
in the literature.
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greater variation in physicochemical properties reported
between the isomeric forms with increasing chain length.8

Several factors are known to govern the composition of
PFAS isomers in water. Some of these factors include (i) the
initial isomeric distribution from manufacturing process
release; (ii) interactions with and effects of both natural and
biological processes; and (iii) isomer-specific precursor
transformations. First of all, the release from manufacturing
processes (e.g., ECF and telomerization processes) can directly
determine the isomeric distribution of PFASs in water. Natural

and anthropogenic processes can further modify the ratio
between linear and branched isomers. For natural processes in
water, L-PFAS would preferentially sorb to suspended
particles, sediments, and phytoplankton cells, therefore leading
to scavenging of L-PFAS from the aqueous phase and the
enrichment of L-PFAS in abiotic solids10 and algal cells.
Floating foam formed by natural organic matter could also take
up more L-PFAS than br-PFAS, leaving more br-PFAS in the
bulk of water. Preferential degradation of branched over the
linear precursors can increase the concentration of br-PFAS in

Table 1. Reported and Predicted Physicochemical Properties of PFAS Isomers in the Literature along with Their Significance

PFAS analyte property reported values
difference in value for br-

PFAS relative to L-PFAS (%) significance

L-PFOS53 CCC bond angle (deg) ∼115 ∼4.3−5.2 ↓ Distortion in molecular structure impacts molecule
stability.

br-PFOS53 ∼109−110
L-PFOS53 relative ΔG of the acidic form

(normalized) (kJ/mol)
0 More positive ΔG indicates higher reactivity.

br-PFOS53 1.4−14.6
L-PFOS10 sediment derived log Koc (cm3/g) ∼3.3 ∼6.2−34 ↓ Higher Koc values indicate higher partitioning onto

sediment phase.
br-PFOS10 ∼2.2−3.1
L-PFOA10 ∼3.1 ∼4.8−11 ↓
br-PFOA10 ∼2.7−2.9
L-PFOSA10 ∼4.4 ∼18 ↓
br-PFOSA10 ∼3.6
L-PFOSA26 dynamic bioconcentration factor

(BCF) in carp (L/kg)
∼134 ∼92 ↓ Higher BCF indicates longer retention in the

body.
br-PFOSA26 10.7
br vs L-PFOS55 retention in rats NA Branched isomers are preferentially excreted in

rats compared to linear forms.
L-PFNA56 growth-corrected elimination rate

constants in male rats
0.012−0.018 ∼50 ↑ (average) Branched isomers are preferentially excreted in

rats compared to linear forms.
br-PFNA56 0.019−0.026
L-PFOS54 Human population average half-lifea

(years)
2.9 ∼77−81 ↓ are preferentially excreted in humans compared to

linear forms
1m-PFOS54 0.55
3/4/5m-PFOS54 0.64
2/6m-PFOS54 0.66
L-PFOS57 Kd (dissociation constant for human

serum albumin)
8(±4) × 10−8 ∼105 to 5 × 105 Linear isomer preferentially binds to human serum

albumin.
3m-PFOS 4(±2) × 10−4

4m-PFOS 8(±1) × 10−5

5m-PFOS 9(±5) × 10−5

L-PFOA 1(±9) × 10−4 ∼200−300
3m-PFOA 4(±2) × 10−4

4m-PFOA 3(±2) × 10−4

L-PFOS58 drinking water equivalent levels
(DWELs) in μg/L53

0.29 206−638 ↑ Higher DWEL levels suggest less effectiveness in
reducing thyroid hormonal blood levels.

1m-PFOS58 1.26
2m-PFOS 58 1.84
3m-PFOS58 1.40
4m-PFOS58 1.75
5m-PFOS58 2.14
6m-PFOS58 0.89
br-PFPeA8 predicted octanol−water partitioning

coefficient, dry (log KOW, dry)
3.24−3.42 0.3−5.5 ↓ Higher KOW values indicate higher potential for

bioaccumulation.
L-PFPeA8 3.43
br-PFHxA8 3.54−4.01 1.2−13 ↓
L-PFHxA8 4.06
br-PFHpA8 3.61−4.64 0.6−23 ↓
L-PFHpA8 4.67

aModel considers original serum levels in humans. ↑ and ↓ indicate increase and decrease respectively in the percentage value of the property being
considered. Note: m-PFAS indicates the branching at the mth carbon.
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the environment. The distribution among the branched isomer
products can also differ due to the difference in biotransfor-
mation rates of br-PFAS precursors.26 In organisms, L-PFAS is
known to be more bioaccumulative and br-PFAS can be
eliminated faster, explaining why L-PFASs are often highly
enriched in biota (Figure 1).

3. VARIATION IN PHYSICOCHEMICAL PROPERTIES
OF DIFFERENT PFAS ISOMERS

There are only a few studies that report the variation in
physicochemical properties of PFAS isomers as summarized in
Table 1.8,9,52−54 In a study done by Chen et al. (2015), the
field-based water sediment distribution coefficients (Kd) were
used to calculate the organic carbon−water partitioning
coefficient (KOC) values.10 For PFOA, the L-PFOA had a log
Koc value of 3.11 ± 0.38 cm3/g, whereas the iso, 4m, and 5m
(br-PFOA) forms had relatively lower log Koc values of 2.96 ±
0.48, 2.77 ± 0.53, and 2.82 ± 0.51 cm3/g, respectively.

A similar trend was observed for PFOS where the L-PFOS
had the highest log Koc value of 3.38 ± 0.43 cm3/g, and the
values for br-PFOS ranged from 2.65−3.17 cm3/g.10 These
values suggest that the L-PFASs are more likely to be
preferentially distributed (∼16% more) in the particulate
phase than the br-PFASs. This could explain the lower-than-
expected concentrations of the L-PFOS in surface and
groundwaters (as shown in Figure 1) as the preferential
adsorption would enrich the br-PFOS/L-PFOS ratios in the
aqueous phase.

Unlike traditional lipophilic persistent organic pollutants
that partition primarily to storage lipids, PFAS bioaccumula-
tion factors and tissue distribution appear to be influenced
both by interactions with transporter proteins as well as
partitioning to phospholipids.59,60 The composition of
branched and linear PFOS in human serum and their
association with adverse health outcomes were recently
reviewed.7 Branched PFOS isomers tend to have shorter
half-lives in the human body than linear PFOS, likely due to
the variation in affinity for lipids and transporter proteins,
including varying binding affinities for human serum albumin
and organic anion transport proteins.54,61,62 The average half-
lives for L-PFOS were found to be 4.4−5.3 times greater than
that of br-PFOS in a cohort with AFFF-impacted drinking
water.54 It is important to note that the serum levels were
obtained after subtracting general population levels or were
replaced with half of the these levels, if the serum PFAS levels,
post subtraction, were less than half of the background levels.54

This may have implications for remediation targets and safe
drinking water levels that are defined for branched versus linear
isomers. Differences in toxicokinetics have been considered
when developing drinking water equivalent levels (DWELs),
resulting in lower values for L-PFOS (0.26 μg/L) versus br-
PFOS isomers (0.89−2.14 μg/L), in this case suggesting that
the linear isomers pose a greater risk for lowering thyroid
hormonal blood levels.58 For the most part, current regulatory
levels do not differentiate between branched and linear
isomers. In cases where branched isomers make up a significant
portion of total drinking water contamination, this may mean
that recommended levels would become more conservative.
While branched isomers generally display more rapid
elimination rates and lower bioaccumulation factors, it is
important to note that each branched isomer is distinct. In
some studies, certain branched isomers have displayed longer
elimination rates than L-PFOS.56 Due to branched isomers

being summed during analysis, there is very little information
on specific isomers, and elimination rates reported for the
human population usually represent an average for multiple
isomers with unknown composition. At this time, there are not
sufficient data related to differences in relative source
contributions and reference doses for branched versus linear
isomers to safely define distinct isomer-specific drinking water
guidelines.

Despite their faster elimination rates, summed branched
PFOS is detected at concentrations similar to linear isomers in
serum from some populations, with typical % br-PFOS ranging
from 30 to 50%.7 In contrast, most wildlife studies report lower
contributions from branched isomers (Figure 1). This may
indicate greater direct exposure of humans to PFAS precursors,
which are transformed in vivo to form perfluoroalkyl acids
(PFAAs), with preferential formation of branched isomers.26,63

This elevated exposure likely arises from sources other than
drinking water, such as certain foods, paper products, textiles,
and other consumer products.64−66

The structural and thermodynamic properties of the PFAS
isomers can provide insights into their overall stability and
susceptibility to degradation. It was found that all the carbon−
carbon−carbon (CCC) angles for L-PFOA were approx-
imately 115°, whereas in br-PFOS, the CCC angles where the
-CF3 group was bonded were approximately 109−110°.53 This
distortion in the CCC angle in the backbone structure can
affect the stability of the br-PFAS,53 making them less stable
and more susceptible to degradation. This can be further
elucidated by comparing the Gibbs free energy (ΔG) of the
PFOS isomers by setting the least positive value to zero for
relative comparison. It was observed that, for the acidic forms,
L-PFOS had the least positive value of ΔG and was set to zero,
while 1-CF3-PFOS, 2-CF3-PFOS, 3-CF3-PFOS, 4-CF3-PFOS,
5-CF3-PFOS, and 6-CF3-PFOS had ΔG values ranging from
1.4−14.6 kJ/mol, where n-CF3-PFOS indicates branching at
the carbon position ‘n’.53 A more positive ΔG value for br-
PFAS indicates that these isomers are more likely to be reactive
and degraded by reactions with species such as hydrated
electrons or hydroxyl radicals53 than their linear counterparts.
However, it is important to note that the study done by Rayne
et al. (2010) using different models to predict the ΔG values of
isomers of PFOS and PFOA pointed out the lack of utility of
using thermodynamic data for PFAS isomeric distribution
studies. When the authors studied the thermodynamic stability
of isomeric forms of alkanes such as hexane and heptane, the
modeling data agreed with the experimental data in stating that
the linear form of alkanes was the least stable thermodynami-
cally. The model predicted similar results for PFASs, where the
L-PFOS and L-PFOA were predicted to be the least stable,
with the stability increasing with branching. The authors
attributed this to a lack of thermodynamic data available for
PFCAs and stated that improved models might be essential for
accurate data sets,9 which could bridge the gap between
predicted and experimental data, where L-PFAS have been
found to be the dominant isomers. As a result, although certain
models may predict L-PFAS as the most stable form under
certain conditions, more information is needed to accurately
predict stability of various PFAS isomers from mere
thermodynamic data.

A similar conclusion, favoring the stability of the L-PFASs,
however, can also be drawn based on the bond dissociation
energies (BDE) of L-PFAS and br-PFAS. Previous studies have
reported that the BDE values were ranked in the order of
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tertiary < secondary < primary bonds.67 This means that the
initial C−F bond cleavage occurs at the bond with the lowest
BDE, i.e., the tertiary C−C bond.67 Thus, it can be expected
for br-PFASs to behave differently during various physical and
chemical treatment processes impacting the overall PFAS
treatment efficiency.

4. IMPACT OF ISOMERIC PROPERTIES ON
TREATMENT PERFORMANCE

Difference in the physicochemical properties between PFAS
isomers and their relative levels in source waters can influence
the overall treatment efficiency of PFAS. In the case of
adsorption techniques such as GAC filtration, where the
dominant mechanism is hydrophobic interaction with
contaminants, the L-PFASs tend to show better removal
than the br-PFASs. This has been reported in previous
studies13−15,19 using GACs as well as materials such as
Geothite.68 A study involving a pilot scale GAC system
indicated that the br-PFAS showed an earlier breakthrough
than their respective linear isomer, attributed to better
interactions between L-PFAS and GAC.20 In another study
involving two-stage carbon filters, the relative percentage of br-
PFOS kept increasing in treated waters as water passed
through the filters.14 This would also imply that the br-PFAS
would exhibit an earlier breakthrough from GAC columns than
L-PFAS.

In the case of adsorption processes involving charged
interactions as the dominant mechanism, there would be
minimal effect on the final L-PFAS/br-PFAS ratio after
treatment.15,18 In a previous study that utilized anion exchange
resins (AIX) and GAC to remove PFCAs, PFSAs, and FOSA,
similar removals were observed for PFOS, PFHxS, and FOSA
isomers using AIX, but branched isomers showed lower
removals using GAC.15 In another study to remove PFCAs and
PFSAs utilizing magnetic AIX, identical uptake was observed
for br-PFAS and L-PFAS.18 As br-PFAS and L-PFAS will have
similar electrostatic interactions, we hypothesize that treatment
techniques that rely on charged interactions with PFAS will not
have an observable impact on the isomeric distribution of
PFASs in treated water.

ΔG and the BDE will play a crucial role when considering
the interactions of PFAS isomers with reactive species during
chemical treatment processes. As mentioned previously, in
certain cases, the br-PFAS possesses more positive ΔG (thus
more reactive) and a lower BDE than L-PFAS. This makes
them more prone to an attack by reducing species and
susceptibility to degradation. In a study done to evaluate
reductive defluorination of PFOS, br-PFOS showed more
susceptibility to reductive dehalogenation than L-PFOS.21

When PFOS degradation was performed by electron beam, br-
PFOS preferentially degraded over L-PFOS and this was
attributed to higher electron affinity of branched isomers.17

Similar results were observed for PFOS using a UV-sulfite
system and using photodegradation69 where the br-PFOS
degraded faster than L-PFOS due to the tertiary − CF3 group
being more susceptible to degradation.16 In another study
done by using UV-sulfite to degrade PFASs of different chain
lengths and functional groups, rate constants for degradation
for branched forms (>2 h−1) of PFOS, PFHpA, PFHpS,
PFHxS, and PFOA were an order of magnitude higher than the
corresponding linear forms (0.018−0.440 h−1).70 Thus, it can
be concurred that contrary to adsorption techniques,
destructive treatment will enrich the L-PFAS-to-br-PFAS

ratio due to the preferential degradation of branched isomers.
However, this may not be valid in certain destructive
techniques such as electrochemical oxidation processes
(eAOPs) that employ a two-step mechanism. This technique
consists of inactive electrodes such as boron-doped diamond
or Magneli-phase titanium suboxide anodes, where the first
step is the adsorption of PFAS on the surface of the electrodes,
followed by a direct electron transfer68,71−74 (DET) reaction
and mineralization of the PFAS radical by hydroxyl radicals. As
the first step of this technique involves a sorption step, the
linear isomers would be preferentially adsorbed and partake in
the DET and get degraded in the process. This may lead to a
scenario where more L-PFAS are degraded than br-PFAS,
leading to a possible enrichment in the br-PFAS in the treated
water. Thus, as more and more destructive techniques
involving multistep mechanisms are looked at for PFAS
treatment, it is essential to understand the behavior and
monitor the final concentrations of PFAS isomers.

5. ANALYTICAL CHALLENGES IN QUANTIFYING
ISOMERS OF PFAS

EPA Methods 537.1 and 533 are commonly used by research
and commercial laboratories for PFAS measurements in water
matrices. However, the fraction of linear and branched isomers
for the same compound can vary based on the supplier for the
analytical standards. This was clearly shown by Vyas et al.
(2007) that for potassium perfluorooctane sulfonate (K-
PFOS) from different manufacturers the percentage of linear
form varied from 76.0 ± 1.9% to 82.2 ± 0.9%.75 Similarly, for
perfluorooctane sulfonyl fluoride, the linear form accounted for
71.8 ± 1.3% to 74 ± 1.6%, based on the manufacturer.75 In the
majority of commercially available PFAS standards and neat
materials, the relative mass or concentration of linear and
branched PFAS is often not reported. 19F NMR is required to
accurately determine the fraction of the isomeric composition.
Although liquid chromatography tandem mass spectrometer
(LC-MS/MS) can differentiate branched and linear PFASs
(for PFOS, PFHxS, etc.), the EPA methods require the users
to integrate both peaks together and report total concentration
rather than isomeric-specific concentrations. Ideally, the
assumption is that the peak area can reflect the mass of the
uncharacterized isomers in samples. However, the instrument
sensitivity, the collision energy, and the abundant ion
transitions of each isomer is different and therefore can
potentially lead to a bias in quantification of total PFAS levels.
A summary of analytical techniques including column
specifications, reagents utilized, etc. to identify different
PFAS isomers by previous studies can be found in Table 2.

Previous researchers have also observed in the case of PFOS
that if the isomer profile in the sample and the quantification
standards were not identical, this could lead to an analytical
bias of unknown proportion.5,81 This was further quantified by
a later study that used individual, purified PFAS isomers to
compare the response factors, albeit relative to the linear
isomer. The 1-CF3 PFOS was monitored using a mass to
charge (m/z) ratio of 80, whereas 4,4-CF3 m2- and 4,5CF3-
PFOS (br-PFOS) were monitored using a ratio of 99. It was
observed that at least one PFOS isomer was missing from the
final chromatogram, irrespective of the product ion used.1,82

This could lead to underreporting of certain isomers, leading to
an analytical bias being introduced during quantification. An
example chromatogram featuring br-PFAS and L-PFAS with
different precursor−product pairs is shown in Figure 2. It is
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challenging to separate and quantify every single branched
isomer, and therefore it is understandable that EPA Methods
537.1 and 533 only require determining linear and “bulk”
branched isomers. Transitions 499 → 80 and 499 → 99 are
chosen for PFOS quantification and qualification because m/z
80 and m/z 90 are the most common products among all
PFOS isomers, and m/z 80 gives great sensitivity. A systematic
bias could also be introduced during analysis if the

concentration of branched isomers in samples reaches the
detection limit. This could lead to the contribution of the
linear form for PFAS to be incorrectly reported as 100%. This
bias can be eliminated by reporting the ratio of each
individually detected branched isomer to the linear isomer.1

To demonstrate the uncertainty that can occur with different
calibration methods, as an example here we use the K-PFOS
standard purchased from Wellington Lab Inc. with % L-PFOS
of 78.8%. Calibration Method 1 involved the addition of peak
areas of linear and branched isomers, creating one calibration
curve to calculate the total PFOS concentration and then
calculating linear and branched PFOS concentrations sepa-
rately based on the fraction of the peak area. Calibration
method 2 involved the generation of two calibration curves
based on the peak areas for linear and branched PFOS
individually with the well-characterized standard, calculating
their concentrations separately and then summing the values to
determine the total PFOS concentration. Both linear and
quadratic regressions were used for creating calibration curves
(Figure 3). To simulate the uncertainty in these two methods,
we fixed the total peak area equivalent to 1 μg-total PFOS/L
but varied the percentage of the linear isomer’s peak from 0%
to 100% to calculate total PFOS concentrations using Methods
1 and 2. The simulated result is shown in Figure 3. Because the
total peak area (linear plus branched) is fixed, the calculated
total PFOS concentrations by Method 1 were the same

Figure 2. LC-MS/MS chromatogram representing linear and
branched forms of PFOS isomers. The response is from 5 pg
injection. Figure inset is a zoomed in version of the chromatogram
with retention times of 7.4 to 8.2 min featuring peaks resulting from
different m/z transitions.

Figure 3. Calibration curves of K-PFOS using (a) linear and (b) quadratic regressions. The calibration ranges from 0.010 to 10.0 μg/L. The
intercept is forced to zero. Simulation of the calculated total PFOS concentration using Methods 1 and 2 with (c) linear regression and (d)
quadratic regression, as a function of the peak area of L-PFOS/total-PFOS. Green lines represent the relative percentage difference (RPD) between
two values calculated by Methods 1 and 2, respectively.
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regardless of the fraction of L-PFOS (Figure 3c,d, blue lines).
In contrast, the calculated total PFOS concentrations by
Method 2 (Figure 3c,d, red lines) showed a clear deviation
from Method 1. Two methods have a similar result only if the
fraction of L-PFOS in the sample is very close to the
calibration standard (where the blue and red lines cross, L-
PFOS/total-PFOS = ∼0.75). The deviation becomes greater as
the L-PFOS fraction declines or increases. The relative
percentage deviation (Figure 3c,d, green lines) between two
methods can be up to 15% in certain cases, and the deviation is
primarily contributed by branched isomers. It should be noted
that such deviation can vary a lot from one analytical batch to
another, depending on the quality of the calibration curves
established. This simulation demonstrates that biases could
occur merely due to the selection of calibration methods and
PFAS standards. As a result, the concentrations of L-PFAS and
br-PFAS reported in the literature and summarized in Figure 1
can differ based on the method employed. Thus, for accurate
quantitation of PFAS isomers in samples, it is important to
select not only the correct analytical techniques mentioned in
Table 2 but also the PFAS standards and the methods that can
distinguish different PFAS isomers.

6. THE NEED FOR TESTING PFAS ISOMERS IN
SOURCE WATERS AND TREATMENT PROCESSES

The scientific community has not recognized the need to
differentiate PFAS isomers during development and testing of
treatment technologies. This is partly due to the absence of any
differentiation in the regulation of PFAS isomers and
limitations with available analytical methods as highlighted
above. Many U.S. states have proposed stringent drinking
water limits for selected PFASs in drinking water at
concentrations lower than 10 ng/L.83−86 Changes in the
isomeric profile in source water can lead to preferential
treatment of L- or br-PFAS and depending on the type of
technologies used, and some scenarios may lead to
concentrations exceeding the regulatory limit in treated
water. Although the differences in properties and the resulting
fate of different PFAS isomers during treatment may seem to
be small, at such low regulatory limits, these differences could
influence the overall treatment efficiency. For example, the
presence of higher levels of br-PFAS in source waters can
impact GAC performance by reducing the life of the carbon
requiring frequent changeouts and thus increasing the cost of
treatment. For many destructive approaches, like advanced
oxidation processes (AOPs), the treatment conditions are
optimized in laboratory settings prior to full-scale operation. If
the PFAS isomer profile in the source water utilized for the
optimization process is different from actual field conditions,
the treatment technology may not perform ideally to achieve
treatment goals.

This can be elucidated by Figure 4 that simulates the PFOS
(total) concentration after treatment utilizing destructive
techniques (Figure 4a) and sequestration techniques (Figure
4b) as a function of L-PFOS in source water. The model
considers initial concentrations of PFOS in source water to
range from 50 to 100 ppt. The extreme scenarios are defined
by the treatment of PFOS from 100 ppt with the lowest
degradation efficiency reported in the literature (black curve)
and by the treatment of PFOS from 50 ppt with the highest
degradation efficiency reported in the literature for br-PFOS
and L-PFOS (red curve). The upper and lower limits of the
curve are chosen based on analysis of EPA’s UCMR3 data that

reported a mean PFOS concentration of 77 ppt in source
water.96 For destructive techniques, the model considers
efficiencies of 100% (br-PFOS) and 45% (L-PFOS) reported
for the UV-sulfite technique16 to generate the line of highest
degradation and of 90% (br-PFOS) and 13% (L-PFOS)
reported using the e-beam technique as the line of lowest
degradation.17 Similarly, the model considers removal
efficiencies of 90% (L-PFOS) and 80% (br-PFOS) using
GACs15 and 35% (L-PFOS) and 25% (br-PFOS) estimated for
treatment using coagulation97,98 as lines of highest and lowest
removal, respectively. The shaded regions below the
corresponding curve represent violation of state regulations
or federal limits as a function of the L-PFOS fraction.

For destructive techniques (Figure 4a), it can be noted that
the total PFOS concentration post-treatment increases with
the increase in % L-PFOS. This can result in a violation of
California reporting limit (6.5 ppt, notification limit) first and
eventually the New York State limit (10 ppt) at a L-PFOS
fraction of 0.21 for the high degradation scenario. As the
fraction of L-PFOS increases, the final PFOS concentration
(total) can violate the New Jersey State limit (13 ppt) and
New Hampshire State limit (15 ppt) at L-PFOS fractions of
0.35 and 0.46, respectively. A similar trend occurs for the line
with lowest removal observed in Figure 4a; however, the
individual U.S. state violations occur at a much lower fraction
of L-PFOS in the water, shown by numbers adjacent to the
fraction of L-PFOS at which the violation occurs, eventually

Figure 4. Simulation of total PFOS after treatment using (a)
destructive techniques and (b) sequestration techniques as a function
of fraction of L-PFOS in the source water. The upper black curve
represents a scenario featuring minimum removal percent efficiencies
for L-PFOS and br-PFOS at (a) 13 and 90%16 and (b) 35 and 25%,98

respectively, when treating a source water with an initial total PFOS
concentration of 100 ppt. The bottom red curve represents a scenario
featuring maximum removal percent efficiencies for L-PFOS and br-
PFOS at (a) 45 and 100%17 and (b) 90 and 80%,15 respectively, when
treating a source water with an initial total PFOS concentration of 50
ppt. The shaded regions below the curve represent scenarios showing
violation of individual state and federal PFOS limits after treatment.
Numbers adjacent to the curves indicate the fraction of L-PFOS at
which a particular violation occur.
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violating the EPA drinking water limit (70 ppt) at an L-PFOS
fraction of 0.81. For sequestration techniques, California State
regulation is violated using a coagulation approach to treat 50
ppt initial concentration of PFAS (Figure 4a), but as the
fraction L-PFOS increases, the system performance improves
below the California State limit at a fraction of ∼0.7. It is
important to note that this model does not include the interim
updated health advisory limit of 20 parts per quadrillion or
0.02 ppt published by the EPA.99 However, even at the lowest
initial PFOS concentrations used in the model of 50 ppt and at
highest removal efficiencies of 90 and 80% for L-PFOS and br-
PFOS, respectively, the lowest value attained of total PFOS is
still ∼5.5 ppt, approximately 275 times higher than the interim
health advisory limit proposed for PFOS of 0.02 ppt.99

This simulation demonstrates that the same treatment
system can violate or abide by a regulation limit if the isomeric
composition of the source water changes over time. This
simulation highlights the need for considering the isomeric
distribution of PFAS in source waters and during the design/
selection of treatment approaches for PFAS. This critical
review highlights the need to consider the following when
studying PFASs that exhibit isomers:

(i) Standardized analytical methods are needed to differ-
entiate and quantify the isomeric forms of PFASs in the
source waters.

(ii) Violation of federal and state regulatory limits may occur
due to inaccurate data processing and exclusion of
branched isomers from analysis.

(iii) Selection and optimization of treatment technologies are
contingent on the isomeric distribution of PFASs in
source waters;

(iv) Research needs on degradation rates, reaction mecha-
nisms, and competitive sorption of specific isomers in
environmentally realistic mixtures; and

(v) Consideration of the behavior and transformation of
different isomers of PFAS precursors and their impact
on the final results of different water treatment
technologies.
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