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Tau accumulation is a prominent feature in a variety of neurodegenerative disorders

and remarkable effort has been expended working out the biochemistry and cell

biology of this cytoplasmic protein. Tau’s wayward properties may derive from

germline mutations in the case of frontotemporal lobar degeneration (FTLD-MAPT)

but may also be prompted by less understood cues—perhaps environmental or from

molecular damage as a consequence of chronological aging—in the case of idiopathic

tauopathies. Tau properties are undoubtedly affected by its covalent structure and in

this respect tau protein is not only subject to changes in length produced by alternative

splicing and endoproteolysis, but different types of posttranslational modifications that

affect different amino acid residues. Another layer of complexity concerns alternate

conformations—“conformers”—of the same covalent structures; in vivo conformers can

encompass soluble oligomeric species, ramified fibrillar structures evident by light and

electron microscopy and other forms of the protein that have undergone liquid-liquid

phase separation to make demixed liquid droplets. Biological concepts based upon

conformers have been charted previously for templated replication mechanisms for

prion proteins built of the PrP polypeptide; these are now providing useful explanations

to feature tau pathobiology, including how this protein accumulates within cells and

how it can exhibit predictable patterns of spread across different neuroanatomical

regions of an affected brain. In sum, the documented, intrinsic heterogeneity of tau

forms and conformers now begins to speak to a fundamental basis for diversity in

clinical presentation of tauopathy sub-types. In terms of interventions, emphasis upon

subclinical eventsmay be worthwhile, noting that irrevocable cell loss and ramified protein

assemblies feature at end-stage tauopathy, whereas earlier events may offer better

opportunities for diverting pathogenic processes. Nonetheless, the complexity of tau

sub-types, whichmay be present evenwithin intermediate disease stages, likely mitigates

against one-size-fits-all therapeutic strategies and may require a suite of interventions.

We consider the extent to which animal models of tauopathy can be reasonably enrolled

in the campaign to produce such interventions and to slow the otherwise inexorable

march of disease progression.
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INTRODUCTION

Propelled by documentation of tau accumulation in a variety of
neurodegenerative disorders and a causal role in some instances,
as defined by MAPT mutation kindreds, the past two decades
of work has seen both remarkable efforts applied to this errant
cytoplasmic protein and new insights into its biology and
pathobiology. Some strides in understanding have been helped
by the availability of corresponding rodent models, but advances
in this period have also arisen from the emergence of new,
generalized biological techniques such as inducible pluripotent
stem cells, three-dimensional cell cultures, optogenetics, gene
editing, and cryo electron microscopy (cryo-EM)—to name but
a few. In the conceptual realm, prion replication mechanisms
of templated protein misfolding derived from study of the
prion protein (PrP) have been instrumental in considering how
tau disease events are perpetuated inside cells and also how
they might spread in an infection-like manner between cells.
Similarly, the new understanding that there are forms of protein
folding and assembly unrecognized by earlier textbook concepts
of secondary, tertiary and quaternary structure is also gaining
influence. Thus, the concept of liquid-liquid phase separation
(LLPS) of proteins arising from curiosity-driven insights into the
why’s and wherefore’s of low complexity domains in proteins has
been extended to encompass DNA-binding protein 43 (TDP-43),
heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and
fused in sarcoma (FUS) in neurodegenerative diseases and now
tau itself. Here we recap the remarkable diversity of covalent
and conformational variants of tau in tauopathies and some
parallels in diverse cell biological effects, these including transit
within cells of the same lineage type and across cell lineages.
We present an emphasis upon subclinical events, noting that
irrevocable cell loss and ramified protein assemblies feature
at end-stage tauopathy, whereas earlier malleable events may
offer better targets for diverting disease processes. We also
discuss uses and limitations of animal models of tauopathy to
produce interventions and the trend toward use of low-expresser
rodent transgenicmodels as slower, yet potentiallymore accurate,
embodiments of disease pathogenesis.

In terms of the disease landscape to be considered here,
there are no <27 tauopathies described to date. Some
examples include frontotemporal lobar degeneration associated
with MAPT mutations (FTLD-MAPT), Pick’s disease (PiD),
corticobasal degeneration (CBD), progressive supranuclear palsy
(PSP), globular glial tauopathy (GGT) and argyrophilic grain
disease (AGD) (1, 2), with considerations of effects in different
cell lineages included in Section cell lineages harboring abnormal
forms of tau. All tauopathies share the common feature of tau
aggregation and deposition in the brain. They are also categorized
into two subgroups: primary and secondary. Primary tauopathies
are the diseases in which tau aggregation plays a prominent role
in disease pathogenesis. In secondary tauopathies, the disease is
fueled by defects of other proteins or by tissue trauma which
then lead (by means that are sometimes debated) to changes in
the repertoire of tau molecular species. Alzheimer’s disease (AD)
and the inherited prion disease Gerstmann–Sträussler–Scheinker
syndrome (GSS) may be classified as secondary tauopathies

(3). Arguably the most well-studied tau accumulations are
paired helical filaments (PHFs), the principal constituent of the
neurofibrillary tangles (NFTs) in AD patients. These filaments
consist of two structurally distinct parts: an external “fuzzy
coat” comprised of N- and C-terminal areas of the protein
that can be removed by treatment with the broad-spectrum
protease pronase and then a distinct pronase-resistant region,
closer to the center of the protein, containing the tandem
microtubule-binding repeats (4); the domain structure of tau will
be considered in more detail in Section tau physiology, spliced
forms and posttranslational covalent variations.

FTLD-MAPT [see (5)], as per its name, revolves around
MAPT mutations and is a neuropathological correlate of
frontotemporal dementia (FTD). With respect to the goal
of explaining tau diversity in chemical and cell biological
terms, as FTLD-MAPT is a primary tauopathy caused by
germline mutations, it seems potentially easier to understand
the pathogenic process than in cases of idiopathic (sporadic)
forms of AD and FTD that lack such mutations. In short,
it is perhaps an advantageous model for delineating steps in
disease progression. Even so, FTLD-MAPT pathogenesis is not
automatically straightforward, noting that cases harboring the
same mutation can have a diversity of clinical phenotypes
(6–8) including different neuropathological findings. Perhaps
surprisingly given a transcriptional profile defining tau mRNA
mainly in neurons, unusual forms of tau protein can be found in
astrocytes and oligodendrocytes (see below). This is generally the
case for FTLD-MAPT with different types of tau mutations and
the situation holds for the specific case of the P301L mutation,
a case which we have studied in detail using biopsy material
from an Iberian P301L kindred with a founder effect mutation
(9, 10). Due to the position of the P301L mutation in exon
10 encoding microtubule binding repeat 2, it only affects the
4R form of tau (Figure 1A); in this respect, it is notable that
P301L pathologies in astrocytes and oligodendrocytes resemble
other 4R-tauopathies such as CBD (11). In short, a recurring
observation for the FTLD-MAPT pathogenesis is phenotypic
heterogeneity. To begin to grapple with this diversity, we
will first consider some cardinal features of tau biochemistry
and cell biology.

TAU PHYSIOLOGY, SPLICED FORMS, AND
POSTTRANSLATIONAL COVALENT
VARIATIONS

Tau protein is a microtubule associated protein (MAP), encoded
by a single gene, MAPT, located on chromosome 17q21 of
the human genome and consisting of a total of 16 exons
(12) (Figure 1A). Tau mRNAs are mainly expressed in neurons
and exhibit a developmental change in the ratios of spliced
forms (13). Tau mRNAs and proteins have also been detected
in oligodendrocytes and astrocytes, but often to a lesser
extent (14–20). This observation presents an interesting twist
when considering the accumulation of aberrant and potentially
pathogenic tau protein in glial cell populations (as considered
further below). Primary transcripts ofMAPT undergo alternative
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FIGURE 1 | Schematic representation of MAPT and the splice isoforms of tau in the human brain. (A) Human MAPT contains 16 exons. Exons in turquoise boxes

(exons 1, 4, 5, 7, 9, 11, 12, 13) are constitutive, while the others are subject to alternative splicing. Exons 0 and 1 encode the 5′ untranslated sequences, and exon 14

is part of the 3′ untranslated region. Exon 4a, 6, and 8 are transcribed only in peripheral tissue, and alternative splicing of exon 2, 3, and 10 generates the six isoforms

of tau. Tau isoforms translated from mRNAs that include exon 10, which encodes an additional microtubule-binding motif, are commonly referred to as four-repeat

(4R) tau isoforms, whereas isoforms that exclude exon 10 are referred to as three-repeat (3R) tau isoforms. (B) Immunocytochemistry of tau (red) in primary

hippocampal neurons at 21 days in vitro culture using anti-tau monoclonal antibody (RTM47 detecting 2-44 amino acid) with microtubule-associated protein 2 (MAP2)

counter stains in blue and actin stain with TRITC-labeled phalloidin in gray. Yellow arrowheads indicate neuronal soma. Scale bars, 30µm and 10µm in the boxed

images. Image: L. Hromadkova.

splicing events which, upon translation, yield six protein isoforms
in the adult human brain. These spliced mRNA forms differ from
each other by the presence or absence of exons 2, 3, and 10.
Tau mRNAs that include exon 10, which encodes an additional
microtubule-binding repeat (repeat 2), are commonly referred to
as four-repeat (4R) tau spliced forms while mRNAs that exclude
exon 10 are referred to as three-repeat (3R) tau spliced forms
(Figure 1A). The distribution of spliced isoforms is inter-species
variable, affected by brain development stage and varies in both

temporal and spatial patterns on cellular and brain regional
levels (21–25).MAPT knock-out mice develop normally without
displaying any overt histological abnormalities, possibly due to
tau function being rescued by other MAPs, but morphological
phenotypes include a minor decrease in microtubule-stability of
small caliber axons and some effects on axonogenesis (26, 27).
Translation of these mRNAs yield a protein product distributed
predominantly in the neuronal axons, but also found in various
cellular locations.
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Seen in broad overview, tau is a soluble hydrophilic protein
described primarily as an essential factor for microtubule
assembly (28). The more acidic N-terminal region is mostly
involved in interactions with numerous tau binding partners
(even affecting its association with cell and nuclear membranes,
etc.) (29) while the positively charged C-terminal region
encompasses three or four imperfect repeat domains and plays
a crucial role in tau interactions with microtubule proteins
(although this region can also be involved in interactions with
other proteins) (30). Superimposed on this sketched ground-
plan, alternative splicing of exons 2, 3 to make mRNAs
encoding 0N, 1N, and 2N proteins isoforms can affect the
natively disordered N-terminal region in respect to its binding
properties with tau-interacting partners and, thus, even the
cellular distribution of the protein (23). The N-terminal can
itself be perceived as having sub-regions including an acidic
region subject to alternative splices and, most notably, a proline-
rich domain that can accept many phosphorylation events.
The C-terminal region is home to tandem microtubule-binding
repeats and subject to the 3R vs. 4R mRNA splicing already
noted. These microtubule-binding repeats are followed by a
C-terminal extension. Tau lacks any putative signal peptides,
transmembrane helices, lipidation or glycolipidation sites that
might integrate it into cell membranes and, while it is reported
to have short amphipathic helices that might allow it to interact
with membrane lipids (31), it is typically considered to be a
“cytoplasmic” protein, albeit one that can end up in different
cytoplasmic niches or compartments that abut the cytoplasm.

Despite an incomplete understanding of the functional
implications of tau distribution among various cellular
compartments, tau may be inferred to be multifunctional
(32). The most well-studied function is the ability to regulate
microtubule assembly and axonal transport of vesicles and
organelles (33, 34). Unlike MAP2 which is another major species
of MAPs found in the neuronal bodies and dendrites, tau is
abundant in the axon (35) (Figure 1B). Tau localization to
the other types of microtubule architectures such as growth
cones (36, 37) and mitotic spindles (38) are indicative of its
dynamic nature and functional repertoire extending beyond
axonal microtubule polymerization to encompass developing or
regenerating neurites and cell division processes. In neurons, tau
has been identified in the synapses (39, 40) andmight be involved
in the regulation of morphological plasticity of dendrites (41, 42).
Provocatively, tau can be released during neuronal activity, an
effect which is inferred to involve presynaptic events (43, 44). Tau
also binds to and protects neuronal DNA under stress conditions
(e.g., oxidative and mild heat stresses) (45, 46) and participates in
RNA metabolism through direct association with RNA-binding
proteins (47, 48).

Descriptions of biochemistry and cell biology need to consider
tau species as they behave physiologically vs. unequivocal disease-
associated forms of tau (and there are also versions that
might fall into to a middle ground). These issues are apparent
from the association of different diseases with 3R- and 4R-
tau and continue when one turns to another form of covalent
variation, namely post-translational modification (PTM). Tau
PTMs are striking and important and we have attempted to touch

upon physiological and pathological versions of these. PTM’s
are described in overview in Figure 2A and are inventoried
as follows:

Phosphorylation
Tau phosphorylation is arguably one of the most well-
known and abundant PTMs targeting this protein. With
85 potential phosphorylation residues in the longest human
isoform (441 amino acids) (45 Ser, 35 Thr, and 5 Tyr
residues) (56), this protein is a notable target for several
kinases and phosphatases. In consequence, tau’s phosphorylation
state represents the sum total of dynamic processes (57)
and, in turn, regulates different capabilities of tau such as
its interaction with the microtubule network and assembly,
modulation of cell polarity, axonogenesis, and subcellular
localization. Under-phosphorylated tau with phosphorylation of
∼1–3 residues is an efficient microtubule network stabilizer
whereas hyperphosphorylated tau can have less interaction with
microtubule proteins and hence can be more prone to misfolding
and consequent aggregation (58). Noting the caveat that some
phosphorylation sites are believed to have protective effects and
inhibit tau from aggregation and formation of toxic species
(59), a broad perspective is that imbalances between tau kinase
and phosphatase activities may trigger the non-physiological
tau phosphorylation with all the consequences leading to
neurodegeneration (60, 61).

A higher amount of phosphorylation in AD brains vs. control
brains is extensively documented; normal brain tau has 2–3 mole
of phosphate per mole of protein, but AD brains contain tau with
an∼3-fold greater stoichiometry (62). So far, 45 phosphorylation
sites were detected in insoluble aggregates of tau extracted from
AD brain, herein referred to as PHF-tau, several of them being
strictly AD-specific and some being shared with tau preparations
isolated from control brains (57, 63). Moreover, some clusters
of phosphorylation (e.g., Ser210-Thr217, Thr231-Ser238) are
involved in a hierarchy of events, meaning that phosphorylation
occurs sequentially with initial phosphorylation sites priming
subsequent phosphorylation events on nearby residues (64, 65).
The phosphorylation sites in PHF-tau are predominantly
located in the proline-rich domain and the regions flanking
the microtubule-binding domain (63, 65–68), and are involved
in alterations in tau microtubule binding dynamics and
interactions with other reactive partners. Four phosphorylated
residues occurring specifically in PHF-tau have been identified in
the microtubule-binding domain region (Ser258, Ser262, Ser289,
and Ser356) and were shown to have an impact on microtubule
binding capacity (69, 70). Some of the proposed mechanisms
of toxicity for hyperphosphorylated tau species include: mis-
sorting from axons to the somato-dendritic compartment,
disruption of intracellular proteostasis network, interference
with nuclear-cytoplasmic transport and dysregulation of
physiological functions by altering the repertoire of protein
interactors (71–74).

Proteolysis
As a result of proteolytic processing, generated fragments could
behave differently compared to the full-length protein regarding
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FIGURE 2 | Post translational modifications of the tau protein. (A) Phosphorylation residues. Phosphorylated residues found in pathological conditions are represented

in red, while phosphorylated residues in blue are observed in both normal and diseased conditions. (B) Proteolysis of tau. Potential pathological signatures of tau

fragments and the proteases in charge of the cleavage are presented. Further details are described in Table 1. (C) Acetylation residues. Acetylated Lys residues in

pathological conditions are represented on the longest isoform of human tau (2N4R). This specific modification mainly targets the residues in the core region (Pro-rich

domain and repeat domains). Cas, caspase; AEP, asparagine endopeptidase; ADAM10, disintegrin and metalloproteinase domain-containing protein 10.

(i) conformation, (ii) solubility, (iii) stability and half-life, (iv)
cell localization, and (v) interacting molecules. Under normal
circumstances, when tau is no longer needed, it can be efficiently
targeted for cytoplasmic degradation pathways such as the
ubiquitin-proteasome system (UPS) and autophagy-lysosome
system as an attempt to maintain proteostasis (75). However,
in disease conditions, tau can become the target of several
endoproteases and produce fragments of different sizes that
can be found within intracellular tau inclusions and can also
be detected in cerebrospinal fluid (CSF), interstitial fluid (ISF)
and plasma of patients with different tauopathies. Proteolytic
fragments of tau have been shown to be secreted in a variety of
cell systems and animal models [reviewed in (76)]. Generation of
some of these fragments has been correlated with accumulation
of pathologic tau entities and disease progression in several
animal models, as well as in post-mortem tissue extracted from
tauopathy patients. Moreover, the process of fragmentation

is likely superimposed on the phenomenon of tau spreading
(below) to generate species with more or less spreading
capability. Figure 2B and Table 1 summarize some of these
well-characterized cleavage events, the cognate protease and
potential relevance to disease conditions. The list of identified tau
fragments is longer though, entailing several orphan fragments
with corresponding proteases yet to be identified [reviewed
in (77)].

Several members of the caspase family of proteases have
been identified to cleave tau (caspases-1,−3,−6,−7, and−8) at
residue 421 (49). This truncated fragment has the propensity
to assemble into aggregates faster than the full-length protein
and can be detected in fibrillar pathologies of the brain of
AD patients (49). The 34 kDa fragment generated by caspase-
2, known as 1Tau314, is another well-studied caspase-cleaved
tau fragment (51, 78). This C-terminally truncated fragment
of tau mis-localizes to dendritic spines and causes cognitive
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TABLE 1 | Proteolysis events and fragmentation of tau.

Cleavage site Identified

fragment

Protease Impacts of cleavage on disease pathogenesis References

D421-S422 1–421 (Tau-C) Cas-1, −3, −6, −7,

and −8

Faster aggregation rate compared to full-length tau. Found

associated with NFTs in AD brains and increased in AD,

FTD-tau, and PSP compared to control brain samples.

(49, 50)

D314-L315,

D421-S422 (in vitro)

1–314 (tau314) Cas-2 Lower propensity to aggregate compared to tau441. Impaired

synaptic transmission and drives hippocampal neuronal loss.

(51)

D25-Q26, R230-T231 26–230 (20–22 kDa) Cas-3 Exacerbating mitochondrial dysfunction. Caused

NMDAR-mediated cell death in rat CGCs.

(52)

N368-K369 1–368 Asparagine

endopeptidase

Reduced ability to induce microtubule polymerization,

triggered apoptosis. The C-terminal fragment has increased

propensity to aggregate into PHFs compared to tau441.

(53)

A152-T153 153–441 (Tau-A) ADAM10 Found in serum from patients with AD and inversely

correlates with cognitive test scores. Physical interaction with

tau is unclear.

(54)

R242-L243 243–441

(Tau-CTF24)

Calpain-1 Accelerates intracellular propagation of tau and has reduced

capacity for promoting microtubule assembly compared to

tau441.

(55)

The summary recaps tau fragments, proteases responsible for their generation and the impact on disease pathogenesis in animal models and human kindred.

Cas, caspase; CGCs, cerebellar granule cells; NMDAR, N-methyl-D-aspartate receptor (also known as the NMDA receptor); PHFs, paired helical filaments; ADAM10, disintegrin and

metalloproteinase domain-containing protein 10, a membrane-tethered protease.

dysfunction in an animal model of tauopathy (51). A recent
report indicates elevated levels of this fragment in cognitively
impaired human kindreds (78). A 35 kDa N-terminally truncated
tau fragment entailing the microtubule-binding repeat domains
was reported to be present in post-mortem brains of patients
diagnosed with tauopathies in which 4R isoforms predominate
(79). Minimal expression of this fragment in mice (Tau35) led
to tau neuropathology, deficits in cognitive and motor function,
muscle degeneration and impaired proteostasis (51, 80). Since
truncation of tau could facilitate subsequent conformational
changes and enhance aggregation, modulating this particular
PTM in different tauopathies could offer a new approach to
therapeutic intervention (80, 81).

Acetylation
The very first report on tau acetylation was from a study on
synthetic peptides spanning amino acids 160–182 and 264–287 of
the full-length (2N4R) tau, to generate acetylated-tau antibodies.
As a result of this study, Sirtuin 1 (SIRT1) was identified as a
deacetylase targeting tau (82). Partially akin to phosphorylation,
acetylation has a regulatory role on tau-microtubule interactions
(83). There are over 20 Lys residues that can be targeted for
acetylation, and acetylation of some appears to be of particular
pathological significance (Figure 2C) (82, 84, 85). Tau protein
can also undergo autoacetylation, by the help of catalytic Cys
residues in the microtubule binding region (86). By neutralizing
the repulsion of positively-charged Lys residues, acetylation
tends to make parallel stacking of β-strands more favorable
and hence promote tau aggregation (84, 87, 88). Physiological
investigations have revealed that acetylation of tau also affects
degradation of the protein (by inhibiting ubiquitination of
Lys residues) and hence slows the rate of protein turnover;
this is associated with attenuation of tau microtubule

binding and promotion of aggregation, especially into soluble
oligomers (89, 90).

O-glycosylation
O-glycosylation (or O-GlcNAcylation) is a dynamic process
that involves the addition of the β-d-N-acetylglucosamine
(GlcNAc) molecule to Ser or Thr residues of the target protein
via O-linkage. The two enzymes responsible for regulation
of this PTM are O-GlcNAc transferase and O-GlcNAcase
(91). It has been shown that O-GlcNAcylation can negatively
regulate tau phosphorylation in a site-specific manner in vitro
and in vivo (in cell models) (92). The balance between tau
hyperphosphorylation and O-glycosylation could also impact
the protein’s cellular localization (93). Moreover, tau tangles
isolated from AD patients are hyperphosphorylated and hypo-
O-glycosylated (92). However, it is still not fully clear whether
decreased O-GlcNAcylation of tau has any causative effect on
hyperphosphorylation or is simply a secondary effect (94). In fact,
increasing tau O-GlcNAcylation via inhibition of O-GlcNAcase
in JNPL3 tauopathy mouse model [mutant tau P301L under
the mouse PRNP promoter (95)] hindered tau aggregation
and decreased neuronal cell loss by impairing tau’s ability to
oligomerize and without affecting tau phosphorylation (96).

Other PTM’s
Beyond phosphorylation, proteolysis, acetylation and O-
glycosylation, multiple Lys residues occurring in tau molecule
(44 residues in human full-length tau variant 2N4R) may be
modified by other PTMs (ubiquitination, sumoylation, and
methylation), which can then play a role in tau assembly and
toxicity via participation in electrostatic and hydrophobic
interactions (87, 97). N-glycosylation, prolyl-isomerization,
nitration, polyamination, and oxidation are yet other PTMs
discussed in relation to the tau-mediated pathogenesis of AD.
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FIGURE 3 | Temporal evolution of conformer ensembles in the pathogenesis of a primary tauopathy. Conformers of protease-sensitive detergent-insoluble tau in

TgTauP301L mice are represented by different geometric shapes [modified from (107)]. Different coexisting combinations (i.e., ensembles) of conformers corresponding

to different CSA profiles are shown within the cloud outlines while the corresponding CSA traces of the samples are shown above these, with the y-axis representing

Fapp values and the x-axis representing increasing Gdn HCl concentrations up to 4.5M. Distinct CSA Types 2, 3, and 4 are present in the TgTauP301L mice; each curve

represents dissociation and unfolding in one individual. Fapp values are plotted as mean ± SEM (shades) for each denaturant concentration and assayed in triplicate.

Curve analysis was performed with non-linear regression and significance determined with generalized Wilcoxon test. Average ages (days ± SD) for CSA Types 1, 2,

3, and 4 were 535 ± 32, 649 ± 56, 629 ± 57, and 682 ± 82 days, respectively and for the types of fibrillar assemblies associated with the CSA profiles, see (107).

CSA Types 2–4 are seen in mice with statistically indistinguishable average ages and hence likely represent alternative pathways of ensemble evolution (blue arrows).

The closest equivalent human disease profiles to mouse CSA Types 2 and 3 are presented to the right of the CSA plots in the boxes with solid outlines; the initial

clinical diagnoses assigned to these FTLD-MAPT-P301L cases are shown (svPPA, semantic variant of primary progressive aphasia; bvFTD, behavioral variant of FTD;

bvFTD*, a bvFTD sub-variety). CSA indicates conformational stability assay; Fapp, indicates values of apparent fractional change.
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Even though each tau PTM is formed by a distinct mechanism
utilizing different enzymes, cofactors and chemical groups,
their net effect is to impact the protein’s function, its cellular
localization, and turnover (98, 99).

In terms of taking these concepts further, a particular case in
point relates to accumulating evidence that sites of tau cleavage
may be specific to individual or subgroups of tauopathies, it
then being likely that tau fragmentation events may impact the
evolution of collections (ensembles) of co-existing alternative tau
conformational species (51). This consideration opens a window
on the more general issue of non-covalent forms of variation
in tau that may impact physiological and pathophysiological
output measures.

ASSEMBLY STATES AND
CONFORMATIONS OF TAU

Prion Effects, Conformers, and Templated
Misfolding
Although the prion concept was formulated to refer to a
specific group of proteinopathies caused by misfolding of the
cellular prion protein (PrPC), other proteins were subsequently
discovered to undergo a similar process. Unlike PrPC which
is generated in the secretory pathway, these other proteins
such as URE2 and Sup35 in yeast, are located in the
cytoplasm. Today, the prion paradigm - according to which a
fundamental cause of specific disorders is the misfolding and
seeded aggregation of specific proteins—is a useful unifying
principle to explore the different facets of pathogenesis of many
age-related neurodegenerative diseases. In prion diseases, the
processes of protein replication (accumulation of misfolded
copies), toxicity and infectivity can be uncoupled in different
experimental paradigms, removing the constraint for extending
insights from prion disease to non-transmissible neurologic
syndromes. Tauopathies came to be considered in this broader
context following pioneering works starting in 2009 (100–102).
Proteins with this behavior [i.e., tau, alpha-synuclein (α-syn)]
have been referred to as “prion-like” or “prions” (103–105). This
nomenclature has also been applied to amyloid beta (Abeta)
(106), this AD pathogenesis-associated peptide deriving from
sequential endoproteolysis of a type I transmembrane protein
and secreted into the extracellular space.

As per the covalently heterogeneous forms of tau listed
above, accumulating evidence supports presence of multiple
conformationally distinct conformers (strains) of tau (107–
111). Acknowledging the existence of widely-used conformation-
specific tau antibodies (112) and noting heterogeneity in PrP
structure in prion strains (113), a conceptual approach deriving
from prion disease is to consider (i) alternative folding outcomes
as key determinants of heterogeneity in clinical presentation
of tauopathies and (ii) propagation of tau conformers by
templating as a mechanism underpinning the spread of disease-
associated forms. In our investigations, conformation-dependent
immunoassays (CDIs) and conformational stability assays
(CSAs) were utilized to appraise abnormally-folded tau. In this
procedure tau is first exposed to the protein denaturant guanidine

hydrochloride (Gdn HCl) and then exposed to europium-labeled
antibody against epitopes that are hidden under native conditions
in the absence of Gdn HCl (107, 113). Signal intensities in the
absence and presence of Gdn HCl give ratiometric values for how
an epitope is hidden in a misfolded molecule (CDI) and stepwise
addition of Gdn HCl in a conformational stability assay (CSA)
yields a characteristic profile for gradual chemical unfolding—
differences in stability profiles have been described for prions and
Abeta, providing evidence of strains with distinct conformations
(113–115). Most importantly, CDI ratios and CSA unfolding
conformational signatures are independent of the concentrations
of the misfolded species and the procedure does not involve
pre-purification or in vitro amplification steps that can alter
the in vivo conformational repertoire and biological properties
of strain isolates (116, 117). For PrP, CSAs differentiate strains
regardless of PTMs such as glycosylation and glycolipidation
(117–120). For tau we selected a monitoring antibody for epitope
occlusion located in the R3/R4 boundary of microtubule binding
repeats, an area less decorated by PTMs (121, 122) but also
considered to be conformationally remodeled in tau strains (123).
The tau CDI assay performed against recombinant full-length
human tau (tau441) that was deliberately misfolded into fibrils
demonstrated a broad linear range for these assays. Using human
FTLD-MAPT-P301L brain material derived from frontal cortex
and mouse P301L brain materials we found related, complex
unfolding patterns indicative of multiple co-existing conformers
(107), leading to a conclusion that the collection (ensemble)
of tau conformers seen at disease endpoint evolves from a
precursor population, a complex mixture of early misfolded
forms (Figure 3).

Oligomers
While descriptions of cryo-EM data on hallmark of tau fibrillar
assemblies present at end-stage are listed below, these assemblies
are not necessarily the neurotoxic entities leading to disease
and instead oligomers may fulfill this role (as considered in
section toxic effects of abnormal tau). Also, soluble, non-fibrillar,
oligomers are posited to be responsible for the spread of
pathology throughout the brain (124); active seeding capacity
may correlate poorly with fibrillar deposits seen by light
microscopy and high molecular weight soluble forms of tau
derived from size exclusion chromatography may be most
adept in in vitro seeding reactions (108–110, 125, 126). A
rare species of high molecular weight, soluble, phosphorylated
tau oligomers present in brain of transgenic tau mice, as well
as AD patient cortices are believed to be the endogenous
form of tau involved in propagation (127). In accordance
with this observation, tau seeding strongly correlates with the
amount of oligomeric and phosphorylated tau in post-mortem
brains of AD patients, strongly suggesting that oligomeric
hyperphosphorylated tau species act as seeds (128). Interestingly,
these soluble assemblies demonstrate substantial patient-to-
patient heterogeneity, perhaps because they include a larger
variety of PTMs in comparison to large, non-soluble fibrils. In
turn, these heterogeneities could relate to differences in clinical
measures such as rate of clinical decline amongst AD patients
(107, 128).
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For the foregoing discussions of oligomers, there is a
caveat concerning a range of definitions, terminology, and
methodologies used for these tau assemblies: dimers (disulfide
bond-dependent or -independent), multimers (trimer, tetramer,
etc.), granular aggregates or small filamentous protofibrils
[defined based on observations made in EM or atomic force
microscopy (AFM)] have all been considered within this
umbrella term.

Liquid-Liquid Phase Separation (LLPS) of
Tau
Disruptions of membraneless organelles (MLOs) can induce
neurodegenerative processes (129–133). MLOs, unlike canonical
membrane-bound cellular organelles such as secretory vesicles,
the endoplasmic reticulum and mitochondria, do not have an
enclosing membrane yet compartmentalize like oil droplets in
water (134). Intrinsically disordered proteins containing low
complexity domains and RNA molecules can bind to each other
and form liquid droplets, a phenomenon known as LLPS that
has been known to regulate reversible dynamics of MLOs in cell
milieu (134–136).

Alterations in the biophysical properties of MLOs became
evident in the context of amyotrophic lateral sclerosis
(ALS)/FTD. Pathogenic mutations in TDP-43, hnRNPA1
and FUS perturb disassembly of MLOs (e.g., stress granules)
and predispose to aggregate into amyloid-like fibrils (130–
133). Similarly, toxic dipeptide repeat proteins produced from
hexanucleotide repeat expansion in chromosome 9 open reading
frame 72 (C9ORF72) bind to low sequence complexity domains
in RNA-binding proteins; these binding events subsequently
interfere with physiological functions carried out by multiple
MLOs and in this way contribute to pathogenesis (129). More
recently, several lines of evidence suggest that intrinsically
disordered structure, inhomogeneous charge distribution,
hyperphosphorylation, and/or aggregation-prone mutations
allow tau to undergo LLPS under conditions of molecular
crowding (137–143). While the in vivo parameters and co-
factors involved in the LLPS of tau are not fully understood,
sustained conditions can coerce droplets to more solid-like
forms; for example, conversion to irreversible hydrogels and
amyloid-like fibrils in the presence of multivalent polymers (e.g.,
RNAs) or pathogenic mutations (137, 142). Presumably, the
liquid-solid phase transitions would, in turn, trigger regulated
cell death starting within the preclinical stage of tauopathies in a
similar way to ALS/FTD (129, 130). The molecular mechanism
underlying LLPS of tau remains challenging to assess in vivo, due
to the metastable and reversible property of liquid condensates.
Nonetheless, these findings indicate that the demixed state of tau
droplets can act as a possible toxic intermediator which occurs
in a transitional state between internalization and intracellular
tau propagation.

Tau Structures Deduced by Cryo-EM
Recent examples of a variety of atomic-level resolution structures
for tau fibrils obtained by cryo-EM examination of brain material
(87, 123, 144–146) represent milestones in the field as they
provide molecular coordinates for designed ligands and capture

in still-life variations in what some might term tau strains.
Knowledge at the structural level of tau fibrils before the cryo-
EM era was insufficient; although solid-state nuclear magnetic
resonance (NMR) and electron paramagnetic resonance (EPR)
were able to assign strands to certain peptides in synthetic
fibers, no atomic model was available (147). Cryo-EM studies of
tau fibrils obtained from brain of human patients with distinct
tauopathies [AD, PiD and chronic traumatic encephalopathy
(CTE)] have revealed that each tauopathy has characteristic
filament folds, which are conserved among individuals with
the same disease, yet different from structures obtained from
in vitro aggregation of recombinant tau (148–150). The first
report on cryo-EM structure of pathological tau (with 3.4-3.5
Å resolution) is based on atomic models of PHFs and straight
filaments (SFs) obtained from an individual AD patient. This
structure shows that the core of both tau filaments is made of
identical protofilaments (residues Val306-Phe378) which adopt
a combined cross-β/β-helix structure, and the two types of
filaments are ultrastructural polymorphs with differences in
their inter-protofilament packing (145). The ultrastructure of
tau filaments obtained from PiD and CTE came along next
(with resolution of 3.2 Å and 2.3 Å, respectively) (144, 146).
While the filament core in PiD (a 3R tauopathy) consists of
residues Lys254–Phe378 of 3R tau, the filaments in CTE entail
residues Lys274–Arg379 of 3R and Ser305–Arg379 of 4R tau
isoforms (144, 146). Nonetheless, this current repertoire of
folds is superficially narrower than for other types of analyses.
Besides technical considerations relating to sampling, there
may be intrinsic reasons for this disparity. It could be that
soluble tau oligomers exist in multiple conformations, but
only a subset of these conformations is represented by the
structures present in long-lived fibrils. Alternatively, despite a
few common ultrastructures, PTM patterns could add another
level of conformational diversity (107, 128). As an example,
ubiquitination of tau within the fibril forming core region
(Lys369–Glu380) can mediate fibril diversity (87).

CELL LINEAGES HARBORING ABNORMAL
FORMS OF TAU

Analyses of cell-free systems or purified protein from autopsy
material cannot encompass dynamic relationships applying to
genesis and turnover of tau conformers in living cells, nor
to the important situation in the sub-clinical phase of disease
where therapeutic interventions might best be applied before
irrevocable neuronal loss. In prion disease, strains made of
different conformers of the pathogenic infectious prion protein
(PrPSc) are often considered to have differing abilities to infect
cells; this effect has been studied by using endpoint-titrated
samples obtained by serial dilution (i.e., biologically cloned)
to infect susceptible animals, which are then in turn scored
for different neuropathological patterns of protein accumulation
(151). In a seemingly parallel set of observations to protein
structural assays, different tauopathies are known to be associated
with different cell populations. Thus, (i) 3R tauopathies include
PiD with 3R tau in neuronal cytoplasmic inclusions called
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Pick Bodies (11); (ii) 4R tauopathies such as CBD include
glial cells of the cortex and white matter as well as neuronal
accumulation; similarly, in the case of PSP, there are tau tangles
in glia and neurons (152). Both CBD and PSP may also include
oligodendroglial tau inclusions (11); (iii) 3R+4R tauopathies also
exist and are most commonly represented by AD, with tau in
neuronal cell bodies as NFTs and within dystrophic neurites
lying nearby mature plaques. Noting these points and, because it
is known that experimentally-tractable FTLD-MAPT tauopathy
manifests in different cell populations sharing the same MAPT
genotype (108, 153, 154), it is likely that aspects of the cell biology
of tau remain to be discovered. It has been reported that synthetic
tau-preformed fibrils and pathological tau derived from brains
of AD patient are capable of causing tau aggregation in both
cultured cells and wild type mice (155, 156), and that the cell-
to-cell spread pattern of the seed-competent tau conformers in
the central nervous system (CNS) was determined by synaptic
connectivity (e.g., afferent and efferent connections) rather than
spatial proximity (156–159). Moreover, similar to prion strains,
tau conformers derived from distinct tauopathies including
AD, PSP, and CBD recapitulated their phenotype characteristics
of tau pathology; time-, dose-, and injection site-dependent
patterns of spreading and cell type-specific aggregation (159,
160) [also reviewed in (161)]. In prion diseases, a popular
idea is that different prion strains perpetuated by experimental
inoculation prefer to infect different cells (a concept commonly
called tropism) (151) but primary tauopathies derive from
germline mutations and contributions of exogenous infection
to this process may not exist or may be secondary events.
Nonetheless, for malformed tau emerging spontaneously within
the CNS, uptake by different cell lineages could play an active
role in selective propagation of tau strains, this arising as a
consequence of fundamental differences in endogenous processes
that distinguish neurons, oligodendrocytes and astrocytes. This
latter concept might begin to explain why conformer mixtures
can often be encountered within the same brain (107).

Tissue Tropism of Tau Conformers (Glial
Tauopathies)
Tau expression is predominantly present in neurons, with lower
expression levels or signals below assay threshold applying to
oligodendrocytes and astrocytes (160, 162). In the secondary
tauopathy AD, tau aggregates are only found in neurons as
NFTs and neuropil threads, which are composed of both 3R
and 4R tau (163). On the other hand, abundant glial tau
deposits are found along with neuronal pathology in primary
tauopathies and in other subtypes of FTD/FTLD including
PiD, CBD, PSP, GGT, and AGD (1). The majority of glial tau
pathologies are observed in oligodendrocytes and astrocytes and,
in some instances, tau inclusions are also found inmicroglia (164,
165). Interestingly, in a neuronal tau knockdown mouse model
(TauKDncre;fl/fl), oligodendrocytic tauopathy spread through
adjacent brain regions, whereas astrocytic inclusions remained
confined to the injection site (160). The various deposition
morphologies of glial tau (1, 166) (described below) may have

functional correlates and could be drivers underlying the diverse
manifestations of neurodegenerative tauopathies.

Ramified inclusions are astrocytic tau fibrils found in PiD.
Thick processes and eccentric nuclei are accompanied with
ramified inclusions (167, 168).

Tufted tau inclusions are densely packed fibrils found in the
proximal processes surrounding astrocytic nuclei and are the
pathological signature of PSP. Morphologically, star-like tufts of
dense fibers emanate from the cell body (169, 170).

Coiled bodies are intracytoplasmic tau inclusions surrounding
the nucleus of oligodendrocytes that form coil-like or comma-
like inclusions. They are also common in many FTLD-subtypes
such as PSP, CBD, AGD, and FTLD-MAPT-P301L (169, 171,
172).

Astrocytic plaques are hallmarks of CBD and take the
forms of densely tau-immunoreactive stubby dilatations in distal
processes of astrocytes (173). The inclusions are comprised of
twisted and straight tubules with diameters of 15–20 nm (174).

Argyrophilic threads are tau-positive thread-like structures
in the processes of astrocytes and oligodendrocytes and are
prominent in CBD (11, 175).

Thorn-shaped inclusions are juxtanuclear assemblies with
tau-immunoreactivity and extension into the proximal processes
of astrocytic endfeet at the pial surface and around blood vessels
(173). These appear as argyrophilic masses with flame or thorn-
like shapes in both PSP and aging-related tau astrogliopathy
(ARTAG) (173, 176).

Globular oligodendrocytic and astrocytic inclusions comprise
insoluble globules and granular tau deposits emanating from the
cell body that are unique characteristics of GGT (11, 177, 178).

Pick-bodies are neuronal tau inclusions found in PiD and are
round in shape but to a lesser extent, Pick body-like inclusions

are also evident in both astrocytes and oligodendroglia in PiD
(167, 168).

Different manifestations of astroglial tau are recently reviewed
and summarized by Kovacs (166), along with a consideration
of potential precursor forms. These data point to a non-trivial
role for astroglial tau in pathogenesis of diverse diseases. On the
other hand, there seems to be a molecular conundrum regarding
the origins of the tau conformers fueling these diverse glial tau
pathologies, noting that glial expression of tau mRNA in human
tissue is much lower than in neurons and (16, 18) that tau
transgenic mice using the PRNP promoter (generally considered
to drive pan-neuronal expression) nonetheless accumulate
hyperphosphorylated and argyrophilic tau in astrocytes (154,
179).

Glial cells constitute roughly half of the cells of the human
CNS (180). In healthy conditions, they considerably influence
nervous system development, from neuronal birth, migration,
axon specification, and growth through circuit assembly and
synaptogenesis (181), while in CNS injury, they are responsible
for phagocytosis and elimination of microbes, dead cells, and
protein aggregates, as well as other particulate and soluble
antigens that may endanger the CNS (182, 183). The glial
pathologies could be contributed by a cell-to-cell transfer
initiated by exocytosis, budding from plasma membrane
and synaptic secretion of cellular and pathogenic tau to

Frontiers in Neurology | www.frontiersin.org 10 November 2020 | Volume 11 | Article 590199

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kang et al. Cellular Pathobiology of Tau Conformers

the extracellular space, these mechanisms having long been
considered as common mechanisms for disease progression in
most neurodegenerative diseases (184). A simple extrapolation
is that glial tau inclusions are derived from a neuronal
source by the active cellular process of efferocytosis; this is
a defense mechanism during the resolution of pathological
events that involves engulfment and clearance of dead and
dying cells by the professional phagocyte (e.g., microglia)
and non-professional phagocytes (e.g., oligodendrocytes,
astrocytes, neuronal progenitor cells) in the CNS (185).
This simple idea starts to address the conundrum presented
by most tau expression deriving from neurons, but is not
a comprehensive explanation; thus the syndrome called
ARTAG (166, 173) has astrocytic tau without neuronal tau
accumulation and oligodendroglial tau can be detected in young
to middle-aged TgTauP301L mice in the apparent absence of
neuronal tau inclusions, which may not appear until many
months later (108).

SPREAD OF TAU AT THE CELLULAR AND
TISSUE LEVEL

In early stages of most protein misfolding diseases, the
pathological changes, including aggregated protein accumulation
and neurological dysfunctions are restricted to confined regions
of the nervous system. However, as the disease progresses such
alterations spread throughout the CNS, suggesting the presence
of a cell biological spreading mechanisms for misfolded protein
species (186), with these not necessarily being synonymous with
conformational templating mechanisms, some of which may
take place inside cells. These general thoughts have become
embodied in the specific idea that neuropathological staging of
tauopathies originally mapped with phospho-specific antibodies
and conformation-dependent antibodies (187–190) reflects the
sequential spread of misfolded tau species, following patterns
of neuroanatomical connectivity rather than simple physical or
spatial proximity (191–193).

Generalized Transfer Processes Between
Homologous Cells
Intracellular depositions of abnormally folded proteins act
as dangerous molecular signals (DAMPs, damage associated
molecular patterns) causing stress conditions and provoking
diverse responses which can address burdens such as
accumulation of misfolded tau, α-syn, Abeta, TDP-43, and
PrPSc by upregulating proteolysis and/or secretion pathways
(184). Depending on the secretion pathways (e.g., membrane
fusion, ectosomes and exosomes), secreted tau can be found
as a free protein and/or within vesicles. However, secretion
is not the end of the story and nor is it necessarily a good
outcome for the tissue; once bound to the plasma membrane
of neighboring cells, tau conformers may yet be internalized
by endocytosis, pinocytosis or phagocytosis (regardless of the
type of the adjacent cell) (Figure 4) (184, 194). To complete this
process, extracellular tau conformers may be required to interact
with phosphatidylinositol 4,5 phosphate (PI(4,5)P2), cholesterol,

sphingolipids and/or heparan sulfate proteoglycans located at
the extracellular leaflet of the plasma membrane (195–197).
Secreted tau in a vesicular form (e.g., ectosomes and exosomes)
can fuse to the plasmamembrane or get endocytosed by recipient
cells. Exosomes are released on the exocytosis of multivesicular
bodies following inward budding of the outer endosomal
membrane. Ectosomes are formed by outward budding of the
plasma membrane and can deliver larger cargos (194, 198).
Heparan sulfate proteoglycan-mediated macropinocytosis is
another type of endocytosis that is the preferred entry for
tau monomers and oligomers (197, 199). Pathogenic tau
conformers can also travel directly between cells via tunneling
nanotubes, these being actin-rich membranous protrusions
that allow for intercellular transport of various cargos not
only between neurons but also astrocytes (200). However,
it remains unclear how the internalized tau conformers in
recipient cells escape from endosomal (or lysosomal) processing
and in turn encounter endogenous substrates for templated
fibrillization (161).

Heterologous Transfers
In terms of different lineage origins for donor and recipient
cells, there is an emerging stream of literature from seeding
paradigms illustrating different pairwise combinations. Indeed,
one might imagine six permutations of heterologous one-way
transfer of abnormal tau between neurons, astrocytes and
oligodendrocytes. While the issue of MAPT gene expression
crops up again here, i.e., the ability of all three lineages in the
human brain or transgenic mouse models to express different
spliced tau mRNAs (given native tau substrate is required
for propagation by templated misfolding), some permutations
are already established. In one experimental configuration, the
source of malformed tau can derive from a clinical syndrome
with multiple affected lineages, hence a heterogeneous tau
source, which then allows for the detection of responses in
different recipient lineages. Using source material from tau
transgenic mice with extensive pathology or from human
disease tissue, induced tau pathologies after seeding into
indicator mice are not restricted to neurons but also include
astrocytic and oligodendrocytic inclusions. Seeding experiments
using stereotaxic injections into different neuroanatomical
areas (for example, into the corpus callosum, to examine
oligodendrocyte responses) allow insight into lineage tropism
effects, the contribution of neuroanatomical pathways and
trans-synaptic spread and comparisons with staging schemes
derived solely from examination of human brain material
(100, 158, 159, 169, 187, 188, 201–203).

Tissue Level Effects; Role of the
Glymphatic System
Emerging evidence suggests the existence of a mechanism
underlying solute clearance from the brain’s extracellular space,
this being termed the glymphatic pathway. Unlike traditional
degradation processes including autophagy and UPS, this
pathway conveys protein aggregates from the parenchyma to
the CSF as a highly organized fluid transport and clearance
system (204–206). This pathway facilitates the flow of CSF
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FIGURE 4 | Spread of pathogenic tau conformers and glial tauopathy. Under disease conditions, tau is dissociated from axonal microtubule structure, aggregated (or

condensed) and relocalized in somato-dendritic compartments. The pathogenic tau conformers enhance cytoplasmic proteostasis pathways and promote secretion

machinery, such as ectosomes (A) and exosomes (B), which aim to get rid of the cellular burdens. Oligodendrocytes transmit tau pathology through their own

processes near the formation of the myelin sheath (C). Tau conformers also spread to neighboring neurons and astrocytes via post-synaptic clefts and astrocytic

processes, respectively (D). Intracellular tau aggregates are sensed by pattern recognition receptors (e.g., NLRP3) and primed microglia (E). The reactive microglia

amplify innate immune responses by releasing pro-inflammatory effector molecules (e.g., tau-NLRP3-inflammasomes, cogwheel shapes in yellow) (F) and

subsequently induce pyroptosis which is an inflammatory form of regulated cell death (G). Extracellular tau conformers transferred to astrocytes through both

ingestion and phagocytosis (H), appearing as diverse tau pathologies. Tau immunoreactivities are also found in perivascular astrocyte end-feet, indicating that

astrocytic tau inclusions could be drained through glymphatic system which is a fluid-clearance pathway in the brain tissue (I). Tau conformers are shown as black

dots in various sizes. Solid line arrows indicate experimentally proven pathways (published), while dotted line arrows indicate pathways as yet unidentified.

to arterial perivascular space and subsequently into the
brain interstitium which contains pathogenic tau conformers
released from neurons and glia. The flow then migrates
toward the venous perivascular spaces, clearing solutes from
the neuropil into meningeal and cervical lymphatic drainage
vessels. The astrocytic aquaporin-4 (AQP4) water channels
localized in astrocytic end feet play an important role in
CSF-ISF exchanges in both periarterial and perivenous spaces
(207). Animals lacking AQP4 gene expression exhibit a ∼70%
reduction in interstitial solute clearance compared to wild-
type control mice (205). Depletion of AQP4 also exacerbated
neuropathology by increasing levels of phosphorylated tau and
reactive gliosis in a mouse model of traumatic brain injury
(TBI) (204). Pharmacological inhibition of AQP4 using TGN-
020 (N-1,3,4-thiadiazol-2-yl-3-pyridinecarboxamide) impaired
glymphatic CSF-ISF exchange and tau protein clearance in
rTg4510 tau transgenic mouse model (208). Given that thorn-
shaped tau inclusions at astrocytic end-feet are hallmarks in both
PSP and ARTAG (166, 173), these data may suggest an intriguing
connection (or competition) between pathologic spread of toxic
tau conformers vs. inactivation of proteinaceous pathological

tau seeds (Figure 4) (184, 207). Further studies are needed
to substantiate the dual and opposing roles of glial cells in
tauopathies, being both beneficial and detrimental.

TOXIC EFFECTS OF ABNORMAL TAU

Although results obtained from numerous studies indicate that
misfolded protein aggregates are toxic to neurons in vitro
and in vivo, the molecular mechanism(s) through which they
induce their toxicity is not always well-established. This is
partially due to the heterogeneity of aggregated and misfolded
proteins species. Since misfolded proteins can co-exist in several
distinct forms with different features and characteristics, they
might each induce neurotoxicity in their own idiosyncratic
ways. These general considerations about neurodegenerative
disease very much apply to tau, a protein with impressive
diversity of covalent forms and conformers and an ability to
assemble into supramolecular structures in neuronal, astrocytic
and oligodendroglial lineages.
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It is known that the neuronal loss in AD patients exceed
the number of NFTs (89), and neurons containing NFTs are
functionally intact in vivo (209, 210). Moreover, some studies
in animal models have shown that overexpression of tau can
lead to cell death and synaptic dysfunction in the absence of tau
filaments (211). In fact, reducing tau overexpression in mutant
tau transgenicmice (rTg4510) decreases neuronal cell loss despite
progressive formation of tau tangles (212). At the same time,
the onset of clinical symptoms in AD and PSP brains correlate
with elevated levels of multimeric, soluble assemblies, known
as tau oligomers. Empirically, one way to test for toxicity is
by direct injection of purified material and here it is noted
that injection of oligomers into the brain of wild-type mice,
rather than monomers or fibrils cause cognitive, synaptic, and
mitochondrial abnormalities (126, 213). Collectively, these points
suggest that formation of tau tangles (or tangle-like structures) is
not essential for neuronal loss and that tau-induced neurotoxicity
is in fact dependent upon the formation of non-filamentous,
aggregate intermediates known as tau oligomers (89, 214).

Inflammation and Gliosis
Since brain tissue is immune-privileged with the restricted access
of immune cells through blood-brain barrier, resident microglia,
monocyte and astrocytes are the major effector cells of the
innate immune defense against microbial infection, brain injury
and neurodegenerative disorders (215). Neuroinflammation in
various proteinopathies, where protein aggregates are causing
cell damage, is induced by CNS-resident and/or potentially
blood-derived innate immune cells. On the other hand, adaptive
immune cells such as B and T lymphocytes drive the pathological
processes (216) in microbial infections and autoimmune disease
(e.g., encephalitides and multiple sclerosis, MS).

The components of the innate immune system have their
own inherent protective and defensive functions against various
danger signals (DAMPs) as well as pathogens (pathogen-
associated molecular patterns, PAMPs), while excessive or non-
resolving immune responses have the opposite effect and may
damage the host (217, 218). Pathogenic protein conformers
in various neurodegenerative diseases have been reported to
activate chronic neuroinflammation through pattern recognition
receptors which are important sensors of innate immunity
found in most CNS cells. For example, oligomeric forms of
Abeta and α-syn induce NF-κB-dependent pro-inflammatory
gene expression by binding to cell surface receptors such as
receptor for advanced glycation end products (RAGE), toll-like
receptor (TLR)-2 and TLR-4 (219–222). Extracellular soluble
forms of Abeta are internalized into microglia by binding to
a protein, triggering receptor expressed on myeloid cells 2
(TREM2), which is capable of promoting phagocytic activity
via regulation of C/EBPα and CD36 expression (223). It is
known that aggregation-prone proteins including Abeta, α-syn,
TDP-43, and superoxide dismutase 1 (SOD1) along with other
DAMPs, such as ATP and lysophosphatidylcholine can activate
intracellular inflammasomes following interleukin 1 beta (IL-1β)
release (224–229).

Concerning tauopathies, there is increasing evidence that
inflammasome-mediated gliosis and innate immune responses

are recurrent features (230, 231). One may speculate that
pathogenic tau conformers taken up into glial cells could
act as endogenous DAMPs and be recognized by cytoplasmic
pattern recognition receptors such as inflammasomes (232,
233), molecular assemblies which are expressed and activated
in different types of CNS-resident cells (231, 234). There is
a critical role for the inflammasome-mediated innate immune
responses in tau pathogenesis, given that exogenously and non-
exogenously seeded tau could activate inflammasomes (232,
233). Upon activation, inflammasome components referred to as
PYD and CARD form protein filaments. These polymerization
steps are conserved signaling cascades in innate immunity
and inflammation (233, 235) and are somewhat “prion-like”
as assembly of the ASC specks can transfer to neighboring
cells (Figure 4) (236, 237). In transgenic mice expressing
human MAPT-P301S tau (MAPTP301SPS19), the ablation of
senescent astrocytes and microglia prevents gliosis, deposition of
tangle-like structures, degeneration of cortical and hippocampal
neurons, indicating the role of dysregulated glial cells that could
initiate and exacerbate tau pathology (238).

Disruption of Cellular/Axonal Transport
Growing evidence suggests that defective neuronal and axonal
transport due to early axonal dysfunction could play a
contributory role in several neurodegenerative diseases. Standing
somewhat in contrast to the lack of deficits in tau knock-out mice
(26, 27, 239, 240), there are reports to this effect for tauopathies
at their early disease stages (214, 241, 242). In fact, several
studies have demonstrated that the most common tauopathies
are characterized by several features that point to a significant
role for axonal dysfunction that may originate from deficits
in fast axonal transport (243–246). One report has proposed
that tau oligomers disrupt microtubule stability and trafficking,
thus affecting organelle distribution, and inducing toxicity (247).
Oligomers can also cause dramatic displacement of endogenous
axonal tau into the somato-dendritic compartments, and, in turn
dysregulation of microtubule-based fast axonal transport (248).

Disruption of Nuclear Cytoplasmic
Transport
Declines in the structural integrity of nuclear pore complex
(NPC) and the efficiency of nuclear-cytoplasmic transport (NCT)
have been reported in neurodegenerative disorders including
FTD, ALS, Huntington’s disease and tauopathies (71, 74, 249–
254). The constant flow of protein and RNA species is critical
for transcriptional regulation, signal transduction, cell growth,
and cell cycle (255, 256); these molecular transportation events
occur through the NPCs, which are one of the largest embedded
macromolecular assemblies of the nuclear envelope and form a
channel by fusing the outer and inner nuclear envelope leaflets
(256–258). NCT through these pores is mediated by around 30
different nucleoporins (NUPs), which are protein building blocks
of NPCs and have remarkably long-lifespans (259).

Nuclear localization of tau species and their interaction with
DNA have suggested a protective role in genome surveillance
for normal cells. Conversely, in disease conditions such as
AD, an alteration of these functions might enhance genomic
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vulnerability and neurodegeneration (32). More recently,
impairment of NCT has been reported in transgenic mice
expressing P301L tau and in AD brains, wherein mislocalization
of NUPs is observed with aggregated tau. Concomitant decreases
in the levels of NUPs, especially NUPs rich in phenylalanine-
glycine repeats (e.g., NUP-98), suggest deterioration of NPC
function (71). Others have shown that pathogenic mutations
in MAPT caused mislocalization of tau into the somato-
dendritic compartment and deformation of nuclear membrane
as appraised by lamin B staining of nuclear lamina, consequently
interfering with NCT (74). P301S and P301L mutant forms
of tau may induce mitotic spindle defects during cell division
and produce aneuploid cells prone to apoptosis, with these
inferences being supported by analyses of brain cell suspensions
derived from corresponding transgenic mice (260). Since the
aneuploidy-mediated regulated cell death requires cell division,
this type of pathogenic event may be more relevant to glial
tau pathologies.

DISCUSSION

An emerging area of consensus is the remarkable level of
diversity of tau, with implications for the lab, for the clinic
and for pharmaceutical companies. In the human context—
as briefly inventoried here—there are different tauopathies,
but as noted above, heterogeneity can also be evident within
a given disease entity having the exact same MAPT protein
coding sequence, as noted above and recently illustrated for
FTLD-MAPT-P301L cases (107). An analogous effect is now
documented for AD with wild-type human tau isoforms (128).
This effect/challenge being accepted, therapeutic approaches
using small molecule compounds might nonetheless need to
pass the checkpoint of validation in animal models. Perhaps
surprisingly, close inspection of mouse models of tauopathy can
reveal heterogeneity too.

One general way to explain heterogeneity in biological
systems is via the action of modifier genes. Allelic forms of
the apolipoprotein E (ApoE) gene are potent modifiers for
both genetic and sporadic forms of AD, but in the context
of FTLD, citations for their impact are sparse. Also, for use
of animal models of tauopathy, there are no high frequency
polymorphisms in mice equivalent to the human ApoE e2, e3,
and e4 forms affecting residues 112 and 158. While a mouse
variant in residue 163 has been described that may originate from
the DBA/2 background (261), in our own studies phenotypic
heterogeneity was observed in TgTauP301L mice inbred to three
backgrounds other than DBA/2 (108). For these transgenic mice,
we considered whether a somatic mutation of the MAPT-P301L
transgene might offer an explanation for heterogeneity in the
CNS phenotypes but a PCR assay for genome rearrangements
(262) failed to yield evidence for re-integrated transgene copies
in brain genomic DNA—this assay had a detection limit for
altered transgenes 1,300x below the level of an endogenous
single-copy gene (107). We concluded that variations in the
nuclear genome are unlikely causes of disease heterogeneity.
While another type of genome, the microbiome, might ultimately

have a bearing upon phenotypic heterogeneity, its association
with FTD and FTLD has been less explored than in the
context of Parkinson’s disease (PD) and accumulation of α-
syn (263, 264). One might then conclude that heterogeneity
of tau species observed in the lab recapitulates an intrinsic
biological effect and not a distortion arising in the course of
animal modeling.

A widespread assumption when using models has been
that animals of the same age and genotype are phenotypically
identical; indeed, one might not embark upon testing a
therapy in a model if not subscribing to this unwritten
assumption. However, while this view may have originated from
an earlier era with extensive use of over-expresser transgenic
mouse lines with a compressed timescale for pathogenesis
and hence lower husbandry costs, it may be inadequate
and need reconsideration (265, 266). Instead, deviations from
homogeneity in slow pathogenesis models might be telling us that
processes are nuanced enough in these animals to capture the
very same biological mechanisms that are driving heterogeneity
in human tauopathies. In terms of the molecular mechanisms
driving heterogeneity, there is no shortage of possibilities. As
inventoried in the section on tau physiology, spliced forms
and posttranslational covalent variations, there is a thicket of
PTMs for tau (phosphorylation, acetylation, O-glycosylation,
ubiquitination, etc.), quite beside the protein having six different
primary structures due to alternative RNA splicing. Additional
layers of complexity might be imparted as tau transits between
cell lineages and neuroanatomical areas, across synapses, across
areas of the extracellular matrix with different surveilling cells
(Sections cell lineages harboring abnormal forms of tau, spread
of tau at the cellular and tissue level, and toxic effects of abnormal
tau), all or any of which might impose different spectra of
PTM enzymes and proteostatic environments. Nonetheless, as
tauopathies (a) can be devastating and are a considerable burden
on the healthcare system and (b) can occur in the context of
comorbidities, means must be sought to stratify these variations
to deal with the most important entities. In practical terms, the
complex landscape of tau biology can be approached by placing
a focus on a foreground species, e.g., ones that are thought to be
particularly toxic. Thus, although heterogeneity in the here and
now is an “inconvenient truth,” embracing this effect, defining its
origins and then adjusting approachesmay pave the way for more
sophisticated testing and more realistic interventions.
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