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Background: Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile
strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available,
and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor
deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its
capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the
sensor was compared with the strain measured by the dynamic testing machine. The sample of skin was evaluated

Results: In this study, the soft elastomeric capacitor was able to measure strain and a correlation was made to stress
using a modified Kelvin-Voigt model for the canine skin sample. The sensor significantly increases the stiffness of
canine skin when applied which required the derivation of mechanical models for interpretation of the results.

Conclusions: Flexible sensors can be applied to canine skin to investigate the inherent biomechanical properties.
These sensors need to be lightweight and highly elastic to avoid interference with the stress across a suture line. The
sensor studied here serves as a prototype for future sensor development and has demonstrated that a lightweight
highly elastic sensor is needed to decrease the effect on the sensor/skin construct. Further studies are required for

Keywords: Soft elastomeric capacitor, Biomechanics, Canine skin, Strain measurement, Biomedical measurement,

Background
In veterinary medicine, incisional dehiscence is a known
complication of wound closures under tension or in areas
of high motion. Axial pattern flaps are one example of
these wound closures which experience at least a partial
dehiscence in 20-30% of cases [1-3]. Routine veterinary
surgical procedures have dehiscence rates of 2-3% [4]. In
humans, there is a wide range of dehiscence rates from
2% of all orthopedic surgeries [5] to 9—-10% of leg wound
closures [6].

Many surgical devices and techniques are used for the
closure and repair of skin defects in veterinary and human
medicine. These various methods are often compared to
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each other in experimental models or laboratory settings
to investigate the optimal surgical technique for wound
closure [7-11]. However, the actual loads and displace-
ments of those tissues are unknown in most species,
even humans, making experimental performance of lim-
ited value to clinical practice. With a better understanding
of the biomechanics of skin wounds, common postopera-
tive complications such as dehiscence may be avoided or
additional therapies implemented prior to occurrence.
One method for monitoring skin deformation (i.e.
strain) in vivo is digital image correlation [12, 13]. While
effective in obtaining full-field strain maps, this tech-
nique is not well suited for the continuous monitoring
of patients during recovery, or monitoring of suture lines
under bandages. The use of flexible electronics for the
measuring of biomechanical movement has seen a high
level of research interests in recent years [14—17]. These
studies focus on the development of the technology and
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less on the application of the technology in the medi-
cal field. In this work, a novel large area electronic that
has been studied for use in the monitoring of civil infras-
tructure [18-20] is investigated for use in monitoring
the high levels of strain present on the surface of skin.
This sensor, termed soft elastomeric capacitor (SEC), is
a large area electronic that is highly flexible, elastic and
easily customizable in both shape and size. The future
goal of this application is to understand the actual ten-
sile forces across skin at rest and during activity. An
altered Kelvin—Voigt material model is utilized to map
the SEC’s measured strain to an estimated stress in a skin
sample under the sensor. In this paper, we report the
findings of an ex vivo study on the information obtained
from a sensor adhered onto canine skin. We hypoth-
esize that the sensor would record strain proportional
to that introduced into the skin by the material testing
machine used.

Soft elastomeric capacitor

The SEC is a robust, elastic, inexpensive large area
electronic that is easy to fabricate and customizable in
shape and size. The SEC is a parallel plate capacitor
where the capacitor’s (sensor’s) dielectric is composed
of a styrene-ethylene-butylene-styrene (SEBS) block co-
polymer matrix filled with titania (TiO2). The titania is
added to increase both its durability and permittivity. A
dielectric mix is fabricated through the mixing and son-
ication of styrene-ethylene-butylene-styrene (SEBS) and
titania into toluene. This solution is drop cast onto a flat
glass plate to produce a dielectric. Once dry, two conduc-
tive plates are painted onto each side of the dielectric using
a conductive paint fabricated from the same SEBS matrix,
but filled with carbon black particles. Lastly, copper con-
tacts with a conductive adhesive are added to the sensor
to allow for the signal wire, and therefore data acquisi-
tion (DAQ) systems, to be connected through the use of
a soldered connection. For more details on the sensor’s
fabrication procedure, the interested reader is referred to
reference [18].

The SEC transduces a change in its geometry (ie.,
strain), into a measurable change in capacitance. Assum-
ing a sampling rate of less than 1 kHz, the SEC can be
modeled as a non-lossy capacitor by

C= eoer (1)

where C is the capacitance of the sensor, ey = 8.854 pF/m
is the vacuum permittivity, e, is the polymer relative per-
mittivity, A = d -  is the sensor area of width d and length
I, and & is the thickness of the dielectric as annotated
in Fig. 1.
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Fig. 1 Soft elastomeric capacitor (SEC) sensor with axes and key
components annotated

Experimental testing

The experimental configuration was designed to inves-
tigate the capability of the SEC to monitor the forces
present in the canine skin. A 1-2 year old, euhydrated
frozen (-20 C) beagle skin sample from the dorso-lateral
thorax, euthanized for reasons unrelated to this study, was
allowed to thaw overnight at room temperature before
being utilized in this study. While the skin sample was
tested at room temperature and no cold spots were felt
in the sample, the effects of the freeze-thaw cycle on
the skin’s mechanical properties are unknown. Readers
are cautioned in utilizing our measurements to represent
in vivo biomechanics of skin due to the limitations of
the current study, specifically the ex vivo nature of the
experiment, sample preservation prior to investigation,
and the altered skin response due to the SEC. Previ-
ous studies noted that freezing skin at -20 C preserves
the normal elasticity of the specimen [21]. However, it
is also noted that any method of conservation of sam-
ples will change the biomechanics of the tissues [22—
24]. In most cases, the behavior of a preserved speci-
men will be similar yet increased or decreased from the
normal mechanical behavior of fresh samples. An SEC
sensor was attached to the canine skin sample and placed
in a dynamic testing machine as shown in Fig. 2a. The
canine skin, not including the skin material under the
connections, measured approximately 76 x 87 x 2 mm?.
The SEC was adhered onto the canine skin using a com-
mercial two-part epoxy (JB-Weld). The epoxy applied
under the top and bottom contacts to prevent the con-
tacts from moving during testing (Additional file 2). This
two-part epoxy adds a lateral stiffness to the sensors
after curing, helping to ensure that the sensor extends
and deforms in the same manner as the sensor used for
calibration. The canine skin was gripped between two
barbed clamping fixtures (hand rasps cut in half) and
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dynamic testing machine

(a)

Fig. 2 Experimental test configuration of the canine skin with the SEC showing the: a canine skin with an attached SEC sensor in the dynamic
testing machine; and b a close up of the SEC sensor adhered onto the canine skin

(b)

mounted onto the dynamic testing machine. Once the
skin was mounted in the dynamic testing machine, a sup-
port was added to the wires to ensure that their self-weight
did not interfere with the measurements, as denoted in
Fig. 2b. In addition to testing the canine skin with the SEC,
(Additional file 1) the same canine skin sample was also
tested without the SEC to obtain its material properties.
In this case, the canine skin was mounted similarly to that
shown in Fig. 2, however, without the SEC skin attached.

The skin was mechanically excited with a displacement
controlled 0.1 Hz harmonic load with 4.1 mm amplitude.
As before, the gauge length of the SEC was set to 10
mm. The skin was not pretensioned in the dynamic test-
ing machine before testing. This allowed the skin to go to
slack during the lower portions of the displacement load-
ing and also allowed the introduction of an out-of-plane
deformation into the skin. To account for this out-of-plane
deformation, only the part of the loading cycle where
the skin is fully tensioned is considered during modeling,
presented later in this work. A custom made DAQ was
attached to the SEC. This DAQ consists of a capacitance
measurement device and shield driver for eliminating the
parasitic capacitance found in the signal wire. SEC capac-
itance data (Additional file 3) was sampled at 20 samples
per second (S/s) and recorded on a laptop.

Mechanical system modeling

To map the measured strain in the SEC (converted from
the SEC’s capacitance using Eq. 14) to forces in the canine
skin, a modified Kelvin-Voigt material is adopted where
the stress for a material is defined as a typical Kelvin-Voigt
material:

o(t) =Ee@®) + n% (2)

where o (¢) is the stress in the material, as a function of
time, and E and 7 are the materials modulus of elastic-
ity and viscosity, respectively. Equation 2 is diagrammed
in Fig. 3 as a spring and dashpot in parallel. This work
assumes that stress values calculated here are constant
under the SEC sensor, a modeling approach considered in
other ex-vivo material properties of skin [25]. To account
for nonlinearities in the canine skin, E and n are consid-
ered to be functions of the current level of strain (¢) in the
material. Here, we defined E and 5 such that

E=a+b-¢° and n=x+y ¢ (3)

Fig. 3 Kelvin-Voigt model for a viscoelastic material where Eis a
modulus of elasticity and n is the viscosity
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therefore, Eq. 2 can be expressed as

de(t)
dt

where a, b, ¢, %, y, and z, are solved for using a parti-
cle swarm algorithm [26]. These parameters are solved
for both the canine skin without the SEC sensor and the
canine skin with the SEC sensor. Once solved, the strain-
dependent Kelvin-Voigt material models are defined by
the parameters Egin-datas Nskin—datar Eskin-SEC-data» and
Nskin—SEC—data Where the subscript indicates that they are
the values associated with the data set for either the canine
skin or the canine skin with an SEC attached.

Spring and dashpot representations for the “canine skin
system’, and “canine skin and SEC system” can be con-
structed using a system of Kelvin-Voigt material models
as shown in Fig. 4. Here, Fig. 4a is a representation of the
canine skin and Fig. 4b is a representation of the canine
skin with the SEC added in parallel to only the center por-
tion of the skin. From the Kelvin-Voigt material models in
Fig. 4a, the material stiffnesses can be added such that

o()=(a+b-e)e®)+ (x+y-€e) (4)

1
Eskin-data = 1 1 1 (5)
Eskin Eskin Eskin
or:
Eskin = 3 - Eskin-data (6)

and the material viscosity parameters are combined such
that:

1
Tskin-data = 7 1 1 (7)
+ +

TNskin Tskin Tskin
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or:

Nskin = 3 * Nskin—data (8)

A similar approach can be taken with the models in
Fig. 4b. Given that the SEC sensor and the canine skin in
the center section will experience the same level of strain
(8sEC = &skin)» We can define Egiin-SEC-data as:

1

Eskin—SEC-data = 1 1 1 (9)
Eskin + Eskin+Esec + Eskin
therefore:
—(3 - Eskin—SEC—data — Eskin)Eskin
Esec = (10)

2- Eskin»SEC»data - Eskin
We can solve for nsec, again taking esgc = &skin for the
center section:

1
Tlskin-SEC-data = —7 1 1 (1 1)
NSEC Nskin+7SEC Tskin
therefore:
—(3 - Nskin-SEC-data — Tskin)Mskin
NSEC = (12)

nEskin

Equations 6, 8, 10, and 12 can be used with Eq. 2 to solve
for the stress in either the SEC or a subset of the canine
skin. Or these parameters can be combined to solve for
the total stress in the system. Knowing that the stress (o)
must be equal at each section of the model, it can be noted
that the total stress in the skin is equal to the summation
of the stress in the SEC (osgc) and the stress in the skin
directly under the SEC (ogkin). Therefore, the stress in the
section of interest is defined as:

2 - Nskin-SEC-data —

Eskin Nskin
Eskin "skin Eskin
Eskin Tskin

(a)

Fig. 4 Mechanical models used for the: a canine skin without the SEC sensor; and b and the canine skin with the SEC sensor

Eskin TTskin

1skin
NSEC
ESEC

Eskin Nskin

(b)
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Oskin-SEC = OSEC + Oskin (13)
Once all the material properties have been solved for, the
stress in the canine skin under the SEC can be computed
using Eq. 2 and the strain data measured through the SEC.

Results

Figure 5 reports the time series test data captured dur-
ing testing. The SEC is shown to track the strain in the
canine skin, here reported in terms of the force mea-
sured by the dynamic testing machine. The flat portion
between each peak is due to the out-of-plane deforma-
tion (i.e. slack) in the canine skin that is present during
this portion of the loading cycle. The SEC being attached
to the canine skin can deform with the skin and is, there-
fore, able to capture the out-of-plane deformation of the
canine skin. This deformation manifests itself as a measur-
able force in the dynamic testing machine, a force that the
SEC is shown capable of tracking. A notable stress relax-
ation can be seen in the stress data of the canine skin with
the SEC attached. This stress relaxation does not appear
to be present in the canine skin stress data and could
potentially be attributed to the SEC. This stress relaxation
is a well-documented property in polymers [27, 28] and
its effect can be removed if the material is excited for a
sufficient number of cycles [29]. For this reason, and the
before mentioned out-of-plane deformation present dur-
ing the lower portion of the cyclic loading, only the data
inside the dashed-red box in Fig. 5 was extracted for post-
processing. The addition of the SEC to the canine skin was
found to add considerable stiffness to the system. This can
be quantified by looking at Fig. 5 where the force required
to displace the canine skin and SEC sensor is six times that
required to displace only the canine skin.

Results for the modified Kelvin-Voigt model as pre-
sented in Eq. 4, using the parameters listed in Table 1,
are presented in Fig. 6. Figure 6a reports the experimen-
tal data and model results for both systems, the canine
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skin and the canine skin and SEC, in terms of stress and
strain while Fig. 6b reports the same data, but in terms
of stress and time. The model results are shown to fit the
experimental data well.

Lastly, using the model data presented in Fig. 6 along
with Eq. 13, the change in stress in the canine skin under
the SEC (oskin) can be estimated. The stress is in relative
terms (i.e., change in stress) because it is calculated from
the SEC’s measured strain that was zeroed. The zeroing
of the SEC capacitance, and by extension strain, signal
is necessary when applying the gauge factor of 0.61. As
reported in Fig. 7, the majority of the stress in the canine
skin and SEC sensor system is taken by the SEC with only
a small amount of stress being taken by the canine skin.
This is to be expected as the SEC was shown to add con-
siderable stiffness to the system and is, therefore, much
stiffer than the canine skin. In addition to reporting the
stress in the canine skin, Fig. 7 reports stress present in
the SEC sensors and the stress in the “canine skin and
SEC sensor system”. The “canine skin and SEC sensor sys-
tem” stress is presented for both the experimental data
(0data) and model (oskin-sec), exhibiting a high level of
agreement.

Discussion

In this study, we presented the feasibility of estimating
strain and stress in a canine skin sample with a highly
elastic sensor termed soft elastomeric capacitor (SEC)
sensor. This non-destructive method requires the use of
models to obtain parameters about the skin because the
sensor alters the response of the skin due to the direct-
contact nature of the method. This method could be use-
ful in tracking biomechanical properties that are unknown
for most soft tissues in most species. While the mod-
ulus of elasticity is likely variable between species and
even breeds, the integration of nondestructive methods to
compute a range of possible values would enable further
characterizations of such biomechanical properties for
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Fig. 5 Force and capacitance results for the canine skin (force only) and the canine skin with the SEC sensor attached (force and capacitance)
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Table 1 Parameters used for the nonlinear Kelvin-Voigt model,
as expressed in Eq. 4

Parameter

a b c X y z
Canine skin 128 28 27 0 8301 9
Canine skin & SEC sensor 410 144 19 5900 3194 31

canine skin. Monitoring soft tissues over time and during
various activities would allow a more evidence-based rec-
ommendation to activity restrictions, suture patterns, and
tension-relieving techniques.

Our approach is achieved through testing of a canine
skin sample both with and without an SEC sensor
attached. Once the canine skin has been characterized,
the strain in the skin is measured through the SEC sensor.
Next, an estimated stress value can be obtained through
the assumption of a modified Kelvin-Voigt model, whose
material parameters were obtained in prior testing. These
calculations assume that a simple Kelvin-Voigt model is
sufficient to capture the complex biomechanics of canine
skin, assuming the skin does not undergo any out-of-plane
deformations during modeling and that the attachment
of the SEC to the canine skin does not affect the gauge
factor of the SEC. This novel approach to measuring the
strain experienced in the skin may be applied with further
refinement to a live patient. Variables such as age, breed,
and hydration that have been noted to affect the elasticity
of skin will pose difficulty in exactly mapping the biome-
chanics of skin [30]. However, a range of reference values
would be useful for designing future surgical implants and
performance of ex vivo testing. This information would
quantify and further validate Karl Langer’s long accepted
skin tension lines map in humans and those adapted for
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veterinary patients [31, 32]. However, limitations to this
proposed method include the measurement and moni-
toring of out-of-plane motion, challenges with adhering
the sensor to a live patient and the interference between
bandages and the sensor. Further research is needed on
the effects of various adhesives to the skin to deter-
mine optimal bonding with minimal effect on stiffening of
the skin.

Due to the ex vivo nature of the study, readers are
cautioned to utilizing our measurements to represent
in vivo biomechanics of skin. Specifically, the sample
preservation prior to investigation always affects the
mechanical behavior of skin samples. Previous studies
noted that freezing skin at -20 C preserves the normal
elasticity of the specimen [21]. However, it is also noted
that any method of conservation of samples will change
the biomechanics of the tissues [22—24]. In most cases,
the behavior of a preserved specimen will be similar, yet
exaggerated or dampened from the normal mechanical
behavior of fresh samples.

With the assumption of the appropriate biomechanic
models, these strain measurements can then be related to
the stress present in the tissue. With stress representing
force per area, this study provides evidence that a sen-
sor may be capable of monitoring stress in skin in vivo.
Knowing the actual force in live canine skin under nor-
mal conditions is necessary for proper interpretation of
the ex vivo studies evaluating suture materials and pat-
terns in skin. At this moment, ex vivo study results are
limited to comparing sample groups only to each other
instead of in vivo data [7-11]. If canine skin can be
biomechanically characterized, reference values of ten-
sile forces may be utilized in evaluation of currently
used suture materials and techniques in laboratory
settings.
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Fig. 6 Kelvin-Voigt model fitting results for both the canine skin and the canine skin with the SEC sensor attached expressed in term of: a stress and
strain; and b stress and time
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Fig. 7 Results showing the stress calculated using the measured load from the dynamic testing machine, the stresses calculated using the

Conclusion

This study documents the use of an SEC sensor for mea-
surement of strain in canine skin. The values in this
study are not intended to be utilized as actual values of
canine skin as the sample was not fresh and the effects
of the freeze-thaw cycle on skin is unknown. Further
investigation of flexible sensors is needed for characteri-
zation of canine skin on the live patient.

Methodology

This section introduces the methodology used for esti-
mating the forces present in a canine skin sample. First,
the calibration procedure for the SEC sensor is described.

Second, the experimental setup involving the canine skin
is introduced. Lastly, the mechanical models used for
estimating the forces in the canine skin are presented.

Sensor calibration

A free-standing calibration of the SEC was performed
through attaching an SEC to a fiberglass substrate (1.58
mm thick) as shown in Fig. 8. The SEC was adhered
onto the substrate using a commercial off the shelf epoxy
(JB-Weld). As this study is primarily focused on estima-
tion of the stress in skin measured with an SEC, the proper
adhesive (likely a skin acrylate) will need to be investigated
in future research. To help ensure a constant connection

ground wire

e
,

Y

| signal wire

Fig. 8 Test configuration used for calibrating the SEC sensor

fiberglass plate
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Fig. 9 Computed input strain and SEC-estimated strain data for the calibration test presented: a as a time series; and b as esgc/€measured

between the copper contacts and the conductive plate of
the SEC, the contacts were also adhered onto the fiber-
glass substrate. The gauge length, defined as the distance
between the fiberglass plates, was set to 10 mm. The SEC
sensor was mechanically excited by a harmonic load of
0.1 Hz with a 4.1 mm amplitude. The sensors’ unidirec-
tional strain (g), assuming plain stress and no out-of-plane
deformations [19], for the freestanding configuration can
be

AC

C re (14)

where X represents the gauge factor of the sensor and AC
denotes a change in capacitance. Here, the gauge factor
was found experimentally to be 0.61 for the free-standing
configuration shown in Fig. 8. The time series strain values
computed from the dynamic testing machine measure-
ments (&measured) and the strain measured by the SEC
(esec) using Eq. 14 are presented in Fig. 9a. Additionally,
the linearity between the strain measured by the dynamic
testing machine (applied) and that measured by the SEC
are shown in Fig. 9b. Results demonstrate the SEC, using
a gauge factor of 0.61, can be used to measure high levels
of strain (here 40%) repeatably.

Additional files

Additional file 1: Load frame data for test without SEC attached to
sample. The raw, unfiltered, experimental data collected from the load
frame during testing. This data includes time, applied displacement, and
measured force. (TXT 67 kb)

Additional file 2: Load frame data for test with SEC attached to sample.
The raw, unfiltered, experimental data collected from the load frame
during testing. This data includes time, applied displacement, and
measured force. (TXT 67 kb)

Additional file 3: Capacitance data from the SEC for the experiment test.
The raw, unfiltered, experimental data collected from the SEC DAQ. (TXT
152 kb)
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