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Abstract: The nonlinear optical response of common materials is limited by bandwidth and energy
consumption, which impedes practical application in all-optical signal processing, light detection,
harmonic generation, etc. Additionally, the nonlinear performance is typically sensitive to polariza-
tion. To circumvent this constraint, we propose that orthogonal nanoantennas coupled to Al-doped
zinc oxide (AZO) epsilon-near-zero (ENZ) material show a broadband (~1000 nm bandwidth) large
optical nonlinearity simultaneously for two orthogonal polarization states. The absolute maximum
value of the nonlinear refractive index n2 is 7.65 cm2·GW−1, which is 4 orders of magnitude larger
than that of the bare AZO film and 7 orders of magnitude larger than that of silica. The coupled
structure not only realizes polarization independence and strong nonlinearity, but also allows the sign
of the nonlinear response to be flexibly tailored. It provides a promising platform for the realization
of ultracompact, low-power, and highly nonlinear all-optical devices on the nanoscale.

Keywords: orthogonal nanoantennas; epsilon-near-zero material; nonlinear refractive index;
polarization-independent

1. Introduction

The nonlinear optical response of common materials is limited by a large device size,
high energy consumption, narrow bandwidth, and polarization sensitivity, which seriously
affect their applications in all-optical signal processing, harmonic generation, quantum
information processing, etc. Therefore, strong nonlinear optical materials are needed to
overcome these limitations and realize high-performance all-optical devices.

Epsilon-near-zero (ENZ) materials are a new kind of promising nonlinear optical
media. ENZ materials exhibit a vanishing real part of permittivity in certain spectral
ranges and strong localization of the field, which is a class of zero-refractive-index (NZI)
materials [1–5] with a high nonlinear coefficient [6,7] and unprecedented ultrafast nonlin-
earity in the subwavelength propagation length. Al-doped zinc oxide (AZO) is an ideal
ENZ material; it has a lower loss [8] and confines light better than indium tin oxide (ITO).
However, the ENZ material only has a large nonlinear response in a relatively narrow
spectral range and is sensitive to polarization, which limits its application.

At present, metamaterials, meta-surfaces [9–12], plasmonic structures [13,14], and com-
posite nanostructures [15–17] have been explored to enhance the optical field and the optical
nonlinear response of materials. However, the nonlinearity generated in these structures
has a balance of strength and peak position, which can be overcome by designing nanostruc-
tures on ENZ materials. Recently, Alam et al. [18] proposed nanoantennas coupled to an
epsilon-near-zero material; because of the strong nonlinearity of EZN materials and strong
coupling of nanoantenna resonances, a larger nonlinearity can be achieved. Furthermore,
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the sign and amplitude of the refractive index are well controlled by wavelength, but it is
very sensitive to polarization. Strong nonlinearity occurs only when the polarization direc-
tion of the incident light is parallel to the long axis of the antenna. Niu et al. [19] proposed
a polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-
near-zero material and realized the change of the sign of nonlinear coefficients through
polarization conversion. In addition to studying metal nanoantennas, dielectric nanoanten-
nas have also gained increasing interest due to lower loss. Davide Rocco et al. [20] proposed
a boosting second harmonic radiation from AlGaAs nanoantennas with epsilon-near-zero
materials. D. Rocco et al. [21] analyzed the impact of losses on second-order nonlinear pro-
cesses and found that the overall conversion efficiency strongly depends on the damping
of the substrate rather than the optimization of the resonator. However, these studies are
all based on ITO and CdO films, and there are few studies on the strong nonlinearity of the
coupling structure based on AZO materials. The AZO material is nontoxic, cheaper and
has a lower loss than ITO, so the study of nonlinearity based on the AZO material provides
an important reference value for choosing better strong nonlinear materials.

In this paper, we propose a center-symmetric orthogonal nanoantenna array on
an AZO film. The nanoantennas generate a strong plasmon mode, i.e., localized elec-
tric field enhancements, and overcome the impedance mismatch. It has stronger nonlinear
and polarization insensitivity at normal incidence benefiting from strong coupling. The
absolute maximum value of the nonlinear refractive index of the two polarization states
is 7.65 cm2·GW−1 at I = 150 MW·cm−2, which is 4 orders of magnitude higher than that
of the bare AZO thin film [7] and 3 orders of magnitude larger than that of the highly
nonlinear metamaterial and the bare ITO film [6,22]. The effective third-order nonlinear
susceptibility also provides a greater than 210000-fold enhancement with polarization
insensitivity, which is 9.1 times larger than the literature [19].

2. Materials and Methods

The structure of the polarization-independent strong nonlinearity is a center-symmetric
orthogonal nanoantenna array on the AZO film, and there is no air gap between the nanoan-
tennas and the substrate, as shown in Figure 1. The AZO film supports the ENZ mode at
thin enough, has a large density of states and can enhance the interaction of light-matter.
The thickness of the ENZ material is generally selected to be ≤1/50 the wavelength of the
ENZ (λENZ) [23]. The size of the array on a glass substrate is 500 × 500 µm2, with a dis-
tance (600 nm) of the two adjacent orthogonal antennas. A 22.5-nm-thick AZO layer is
sandwiched between the antenna array and the glass substrate, the dimensions of the
dipole antennas is 398 nm × 80 nm × 25 nm and the antenna edges are sharp. The position
of the plasmon resonance can be adjusted by changing the length of the dipole antenna,
utilizing the Finite Different Time Domain (FDTD) method simulation software, ANSYS
Lumerical 2020, (the source shape is a plane wave, mesh type is auto nonuniform, mesh
accuracy is 8, boundary conditions are periodic in x and y directions, boundary condition
is perfectly matched layer (PML) in z direction) when the surface plasmon resonance of the
dipole antenna is close to the resonance position of the ENZ mode, strong coupling can
be achieved.

The real and imaginary parts of permittivity (ε) of the AZO film can be calculated
using the Drude model [6,24–28]:

ε = ε∞ −
ω2

p

ω2 + iγω
(1)

ω2
p =

ne2

meε0
(2)

γ =
e

µme
(3)
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thogonal nanoantennas, the distance (600 nm) of the two adjacent orthogonal antennas. 
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Figure 1. Structure (a) The structure shows—from top to bottom—gold orthogonal nanoantennas
with height 25 nm, AZO nanolayer with height 22.5 nm, glass (b) Planar structure of the gold
orthogonal nanoantennas, the distance (600 nm) of the two adjacent orthogonal antennas.

The parameters of the AZO film are derived from the literature [8], where ε∞ = 3.8
is the high-frequency permittivity, γ = 9.71 × 1015 rad·s−1 is the Drude damping rate,
ωp= 2.3765 × 1015 rad·s−1 is the plasma frequency, ω is the angular frequency of the
incident light, n is the carrier concentration, e =1.602 × 10−19 C is the electron charge, ε0 is
the permittivity of free space, µ is the electron mobility, me = 0.38m is the effective electron
mass [29] and m is the electron mass. As shown in Figure 2, it is obvious that the real Re(ε)
of the permittivity of the ENZ wavelength (λENZ = 1550 nm) vanishes and the imaginary
Im(ε) is 0.3.
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3. Results and Discussions
3.1. Linear Characteristic Analysis

Transmission spectra are calculated by the finite difference time-domain (FDTD)
method with Lumerical 2020. To determine the optimal length of the orthogonal nanoan-
tennas, the transmission spectra of the structure without the AZO film at normal incidence
are calculated, as shown in Figure 3a. The wavelength of the plasmon resonance redshifts
as the length of the orthogonal nanoantennas increases. The vertical line in Figure 3a is the
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λENZ, the wavelength of the plasmon resonance is close to the ENZ wavelength at a length
of 398 nm, and the transmission dip appears at λ = 1550 nm. Figure 3b shows the transmis-
sion spectra with the AZO film at normal incidence. The AZO film supports the eigenmode
at λENZ, exhibits a large density of states and homogeneously confines electromagnetic
radiation within the film [30–32]. The antishift between the plasmonic mode and the ENZ
mode indicates strong coupling-induced Rabi splitting. The linear transmission spectra
of the coupled structure show two distinct resonances that result from strong coupling;
the main resonance wavelength is λ = 1346 nm and the weaker resonance wavelength is
λ = 1879 nm. The wavelength separation between the two resonances (~533 nm) is larger
than the 3 dB linewidth of the orthogonal nanoantenna resonance on a glass substrate
alone [33,34], which is beneficial for realizing wide-band strong nonlinearity. The interface
plays an important role in the real fabrication of metamaterials [35,36], so the effect of
interface roughness on linear and nonlinear properties should be considered in practical
applications. We compare the transmission spectra of rough and flat AZO interfaces in
the coupled structure, and the results are shown in Figure 3c: (1) the main resonance is
redshifted, and the weak resonance is blueshifted in the rough interface. (2) The difference
between the two resonance wavelength (~447 nm) of the rough AZO interface is lower than
that of the flat AZO surface. The influence of interface roughness on the linear transmission
spectrum is relatively weak in this structure. In addition, the linear characteristics are
consistent with polarization independence for the x and y polarizations.
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3.2. Field Distributions and Enhancement

Another way to enhance the nonlinear effect is to enhance the strong coupling of the
plasmon mode and the ENZ mode. The strong coupling, which greatly increases the electric
field strength of the ENZ film, effectively confines the light in the ENZ film and overcomes
the obstacle of impedance mismatch at normal incidence. Figure 4a,b shows the normalized
field intensity |E|2/|E0|2 distribution of the resonance at the wavelength of 1346 nm in
the x and y polarization, respectively. The field intensity distribution shows polarization
independence and is mainly distributed to both ends of the orthogonal antenna. To avoid
the hot-spot effect, we analyze the relationship between the field intensity enhancement
and the wavelength at the position of the white line in Figure 4a,b. The normalized field
intensity |E|2/|E0|2 is increased by 148 times in the AZO film as shown in Figure 4c,
which is beneficial for enhancing the optical nonlinear response.
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3.3. Nonlinear Response Enhancement Mechanism

According to the continuity of the normal component of the electric displacement
field, that is, |E⊥| ∝ ε−1|E0,⊥| [5], (where E⊥ is the normal electric field in the ENZ
medium, and E0,⊥ is the external incident electric field), ENZ materials have a strong field
enhancement due to the small magnitude of the permittivity (ε). The strong coupling of
the ENZ orthogonal nanoantenna structure provides a larger optical field enhancement
than that of the bare AZO film and reduces the intensity threshold to achieve a nonlinear
response. Owing to the strong coupling of plasmonic-ENZ, the resonance wavelength of
the structure is very sensitive to the ε of the substrate materials and structural parameters.
The refractive index change is ∆n = ∆ε/2

√
ε for lossless materials. Therefore, when the

pump light is incident, a small change (∆ε) in permittivity of the AZO film will cause the
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resonant wavelength of the structure to shift and cause a larger ∆n. In addition, due to the
change in spectral position when the pump light is incident, the sign of ∆n can be changed
by the wavelength. By choosing appropriate orthogonal nanoantenna parameters and ENZ
substrates, the sign and magnitude of the nonlinear coefficient can be well controlled to
meet actual needs [6,7].

We use a two-temperature model [37] to study the ultrafast optical nonlinear re-
sponse mechanism of AZO films. It has been successfully used to explain the ultrafast
nonlinear response of femtosecond pulsed laser radiation in metals [38–40]. The response is
described by [33]:

Ce
∂Te

∂t
= −gep(Te − Tl) +

N
2τee

(4)

Cl
∂Tl
∂t

= gep(Te − Tl) +
N

2τep
(5)

∂N
∂t

= − N
2τee
− N

2τep
+ p (6)

where Te (Tl) is the free-electron (lattice) temperature, gep = 1.4 × 1016 Wm−3·K−1 is the
electron-phonon coupling coefficient [41], Ce = 3500 Jm−3·K is the heat capacity of the
electrons [41], Cl = 2.83 × 106 Jm−3·K is the heat capacity of the lattice, N is the nonthermal
energy density stored in the excited electrons [42], τee (τep) is the electron-electron (electron-
phonon) relaxation time [43,44], and P is the time-dependent absorbed power density:

p = (1− R− T)I0αexp

[
−2
(

t
τp

)2
]

(7)

where R, T, and α are the reflectance, absorptivity, and absorption coefficient, respectively,
and τp is the laser pulse relaxation time, and I0 the is intensity of the incident light.

The maximum electron temperature at normal incidence can be calculated by solving
the two-temperature model. The plasma frequency of the AZO film at high electron
temperature can be obtained by Formula (6). Figure 5 shows the function of electron
temperature and response time:

ω2
p(Te) =

e2

3mε0π2

∫ ∞

0
dE(1 + 2CE)−1

(
2m
}2

(
E + CE2

)) 3
2
(
−∂ fFD(E, µ(Te), Te)

∂E

)
(8)

where C =0.33 eV−1 is the nonparabolicity parameter of the thin AZO film [45]. } is
the reduced Planck constant, and − ∂ fFD(E,µ(Te),Te)

∂E is a measure of the thermal broadening
intensity of the electron distribution around the Fermi level.
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3.4. Nonlinear Coefficient

The effective refractive index of the coupled structure is calculated by the S param-
eter in the FDTD simulation [46], and pulse width of 150 fs and I = 150 MW·cm−2 are
used in the simulation. The wavelength-dependent effective nonlinear index coefficient
n2 and absorption coefficient β can be calculated by n2 = Re(∆n/I) and β = 4π

λ [Im(∆n/I)],
∆n is the difference in refractive index of the coupled structure with or without pump
light intensity, and I is the pump light intensity. Figure 6a,b show the functions of
n2 and β with wavelengths in flat and rough interfaces, respectively. The structure exhibits
polarization insensitivity, and the magnitude and sign of the nonlinear coefficient can be
controlled by the wavelength. In the flat interface, n2 is negative and shows self-defocusing
in the wavelength range of 1158 nm ≤ λ ≤ 1357 nm and 1717 nm ≤ λ ≤ 1908 nm,
n2 is positive in the rest of the wavelengths and shows self-focusing, as shown in Figure 6a.
The minimum and maximum value of n2 at λ = 1328 nm and 1390 nm are related to the
main resonance, the maximum of |n2| is 7.65 cm2·GW−1. The nonlinear refractive index
at λ = 1300 nm is not only 20,000 times larger than that of the bare AZO film [7] but
also 3 orders of magnitude larger than that of the highly nonlinear metamaterials and
the bare ITO film [6,20]. Additionally, it is 7 orders of magnitude larger than the glass
and 4 orders of magnitude larger than chalcogenides in a similar spectral range [47]. The
nonlinear optical enhancement bandwidth is in the range of 1000 nm ≤ λ ≤ 2000 nm,
and |n2| ≥ 1 cm2·GW−1 accounts for 61% of the total wavelength. In the rough interface, n2
is negative in the wavelength range of 1177 nm ≤ λ ≤ 1379 nm and 1705 nm ≤ λ ≤ 1893 nm,
the minimum and maximum value of n2 at λ = 1346 nm and 1418 nm are related to the
main resonance, the maximum of |n2| is 7.42 cm2·GW−1. Although |n2| is slightly lower
than that of the flat interface, the bandwidth of nonlinear enhancement is similar to the
flat interface.
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Similarly, the magnitude and sign of the nonlinear absorption coefficient also depend
on the position of the resonance wavelength, as shown in Figure 6b. In the flat interface,
the nonlinear absorption coefficient β is a negative value in the wavelength range of
λ ≤ 1314 nm and 1500 nm ≤ λ ≤ 1831 nm and exhibits saturated absorption; β is positive
in the rest of the wavelengths and shows anti-saturated absorption, the maximum β value
is 5.88 × 105 cm·GW−1. In the rough interface, β is a negative value in the wavelength
range of λ ≤ 1332 nm and 1509 nm ≤ λ ≤ 1818 nm and the maximum β value is
5.794 × 105 cm·GW−1. Therefore, the structure we propose in this study can control the
magnitude and sign of the nonlinear coefficient by the wavelength, and realize polarization
insensitivity. The rough interface has little influence on the nonlinear coefficient.
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3.5. Enhancement of Third-Order Susceptibility

The electric field strength of the third-order polarization P(3) depends on the strength
of the incident electric field in the nonlinear response [47]:

P(3) = ε0χ(3)E3 (9)

where χ(3) is the third-order susceptibility, χ(3) = 3.5 × 10−19 m2·V−2 of the AZO film [48],
and χ(3) = 7.56 × 10−19 m2·V−2 of gold.

The χ(3) of the coupled structure also shows broadband enhancement and is
polarization-independent. It can be measured by the third harmonic generation (THG),
under the same conditions (normal incidence of the x and y polarization) and an excita-
tion wavelength of 1400 nm, the simulated THG nonlinear transmission spectrum in the
coupled structure and the structure without the AZO film are shown in Figure 7. The
THG signal peak is observed at 466.67 nm in the coupled structure, but there is no obvious
transmission peak on the structure without the AZO film, which illustrates that the THG
signal is mainly generated from the AZO film, and the orthogonal nanoantennas mainly
enhance the electric field strength by strong coupling. In addition, Figure 7 also shows the
THG transmission spectrum of the rough interface, which is slightly lower than that of the
flat interface.
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In the simulation, Pω = IωSunit, I = 1
2 Re(E× H∗), Iω is the peak intensity of

the pump light, Sunit is the area of the structural unit cell, E is the pump electric field,
and H∗ is the conjugation of the magnetic field. The polarization intensity can be changed
by changing the pump intensity. Figure 8 is a function of pump power and THG power in
the flat and rough interfaces, and the x and y coordinates are taken logarithmically. The
slope of the pump power and the THG power is 2.9 for both the flat and rough interfaces,
which is close to the theoretical value of 3. This illustrates that the signal is truly generated
by the THG conversion, which is dominated by χ(3) of the nonlinear response.

To analyze the broadband enhancement of χ(3) in the structure, the THG signal in the
excitation wavelength range of 1300–1600 nm in the coupled structure is analyzed. The
orthogonal nanoantennas structure has realized strong coupling, overcomes the obstacles
of incident angle and impedance mismatch, and reduces the demand for intensity [49].
Figure 9 shows the function of the fundamental wave and the THG signal in the flat and
rough interfaces. In the flat interface, the THG signal is the largest at a wavelength of
1390 nm, and the maximum enhancement factor compared with the bare AZO film is
210,000, which is 9.1 times larger than that in the literature [19]. In the rough interface,
the THG signal is the largest at a wavelength of 1440 nm and is redshifted compared to the
flat interface, the maximum enhancement factor is similar to the flat interface. In addition,
in the flat interface, the intensity of the THG signal caused by strong coupling can be
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enhanced three orders of magnitude in the bandwidth of 300 nm (1300–1600 nm). The
intensity of the THG signal is proportional to χ(3), which indicates that χ(3) can be increased
by three orders of magnitude in the broadband range by comparing the enhancement of
the THG intensity of the coupled structure and bare AZO film.
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In addition, we have also achieved polarization insensitivity in a symmetrical structure,
as shown in Figure 10. The THG signal can be achieved in the range of polarization angles of
0–360◦, and the maximum of THG is on the x and y-polarizations. In summary, the coupled
structure achieves polarization insensitivity, a wide band, and strong nonlinearity and
solves the limitations of large device size, high energy consumption, narrow bandwidth,
and polarization sensitivity in all-optical signal processing and on-chip integrated devices.
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4. Conclusions

We propose a strongly coupled structure composed of orthogonal nanoantennas on
an AZO film to achieve a strong optical nonlinear polarization-independent response.
The absolute maximum value of the nonlinear refractive index n2 is 7.65 cm2·GW−1 with
two polarization at normal incidence, and the nonlinear coefficient is enhanced by 4 orders
of magnitude compared with the bare AZO film and 7 orders of magnitude compared with
silica. The nonlinear refractive index can be enhanced over the entire bandwidth of 1000 nm.
In addition, the transition from self-focusing to self-defocusing and saturated absorption
to anti-saturated absorption can be realized by controlling the wavelength. The χ(3) of
the two polarization states is also enhanced three orders of magnitude in the broadband
range. Therefore, this coupled structure realizes a broadband, polarization-insensitive
strong nonlinear response, and the magnitude and sign of the nonlinear coefficient can be
controlled by reasonable selection of nanoantennas parameters. This structure overcomes
the obstacle of the weak nonlinear response of common materials and provides a promising
platform to design nanocompact and on-chip integrated, polarization-independent strong
nonlinear optical devices.
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