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Abstract: There is a lack of experimental reference materials and standards for metabolomics
measurements, such as urine, plasma, and other human fluid samples. Reasons include difficulties
with supply, distribution, and dissemination of information about the materials. Additionally, there
is a long lead time because reference materials need their compositions to be fully characterized
with uncertainty, a labor-intensive process for material containing thousands of relevant compounds.
Furthermore, data analysis can be hampered by different methods using different software by different
vendors. In this work, we propose an alternative implementation of reference materials. Instead
of characterizing biological materials based on their composition, we propose using untargeted
metabolomic data such as nuclear magnetic resonance (NMR) or gas and liquid chromatography-mass
spectrometry (GC-MS and LC-MS) profiles. The profiles are then distributed with the material
accompanying the certificate, so that researchers can compare their own metabolomic measurements
with the reference profiles. To demonstrate this approach, we conducted an interlaboratory study
(ILS) in which seven National Institute of Standards and Technology (NIST) urine Standard Reference
Material®s (SRM®s) were distributed to participants, who then returned the metabolomic data to us.
We then implemented chemometric methods to analyze the data together to estimate the uncertainties
in the current measurement techniques. The participants identified similar patterns in the profiles
that distinguished the seven samples. Even when the number of spectral features is substantially
different between platforms, a collective analysis still shows significant overlap that allows reliable
comparison between participants. Our results show that a urine suite such as that used in this ILS
could be employed for testing and harmonization among different platforms. A limited quantity of
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test materials will be made available for researchers who are willing to repeat the protocols presented
here and contribute their data.

Keywords: interlaboratory study; nuclear magnetic resonance; chromatography; principal
components analysis; reproducibility

1. Introduction

A recent survey of practitioners in metabolomics research indicated an acute need for experimental
reference materials [1]. The lack of reasonably priced, widely available, complex matrix test materials
reduces the opportunity for robust quality control and interlaboratory harmonization. This lack
is a real impediment to validation of methods and large-scale application of metabolomics in
epidemiologic-scale studies.

While it is conceivable that individuals, private entities, or university laboratories could produce
such test materials, there may be significant difficulties with longevity of the supply, communication
of relevant information about the materials, and distribution of the materials. The National Institute
of Standards and Technology (NIST) is the national metrology institute (NMI) for the USA and has
historically filled the role of providing standard reference materials when entities such as trade groups,
scientific organizations, or government entities indicate an industry-wide need for such materials
(www.nist.gov/srm). To that end, we conducted an interlaboratory study (ILS) intended to address
some of the issues related to test materials in the field of metabolomics and lay the groundwork for a
stable, affordable, and accessible supply of suitable test materials, information and findings.

This work’s ILS embodies an emerging concept regarding quality control (QC) materials that
contrasts with traditional certified reference materials (CRMs; SRMs are CRMs produced by NIST)
in a few specific ways that may be beneficial in a rapidly evolving research area like metabolomics.
In contrast to CRMs, QC materials would be property-assigned, including compound identification,
through consensus of the community. This will be extremely valuable as organizations and regulatory
bodies settle on platform-specific protocols that may have different data quality requirements.
By allowing practitioners in different application areas to contribute to consensus evaluations and
protocols using QC materials as proposed here, consistency and harmonization between laboratories
can arise while providing for improved data quality in specific applications. QC materials would,
therefore, be suitable for use as reference materials within the scope they were designed for [2].

Another distinction between CRMs and QC materials would be the ‘time to market’ for replacement
or alternative materials based on community demand and inventory levels for the materials. A large
part of the long development time for CRMs is the requirement for full, multi-platform validation of
the materials with certified value assignment before they are released with a certificate of analysis
(COA) by their producers [3]. It is much easier in the QC material paradigm to perform some smaller
number of qualifying tests for a QC material and release it into the consensus-building community
compared to the strict data quality and validation requirements for producing a CRM [4].

This study envisions a quality data repository where data from QC materials analyzed within an
ILS can be deposited systematically, compared with consensus results from other laboratories, and
integrated into the consensus values that the community develops. The public availability of raw and
semi-processed data from a consistent set of samples analyzed in different labs on different instruments
may provide a valuable dataset for demonstration of developmental bioinformatics analysis tools for
inter- and intra-laboratory data quality metrics.

NIST has identified and procured an initial set of human urine matrix SRMs that could prove
useful in urine metabolomics studies as QC and method development materials. The materials include
a set of nine frozen and pooled urine samples. More information about the pooled samples can be found
in the COAs for the SRMs [5–8]. This set of samples could provide a basis for demonstrating not only
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consistent analytical results on individual samples, but also inter-sample consistency for classification
and pattern recognition [4]. Utilizing a ‘natural material’ which contains all the potential matrix-related
complications in the various metabolomics platforms is essential for producing robust, meaningful
methods of measurement and analysis that can propel the field forward. It should be noted, as stated
in our ethics statement, that the development of human-tissue SRMs is performed in accordance with
the usual standards for sampling human tissue, including standards of informed consent, and the
development or use of further QC material suites will need to follow these same standards.

2. Materials and Methods

2.1. Interlaboratory Study Design

In this ILS, a small number of NIST and non-NIST experts were identified that have expertise in
the analytical platforms most commonly used in metabolomics studies: Nuclear magnetic resonance
spectroscopy (NMR), gas chromatography mass spectrometry (GC-MS) and liquid chromatography
mass spectrometry (LC-MS). Frozen test materials were shipped overnight, along with corresponding
materials such as appropriate calibration solutions and buffers. Detailed, platform-specific protocols
were developed for analysis of the samples with standardized reporting forms. Participants were
requested to follow the procedures as closely as possible, but a mechanism for discussing and clarifying
the protocols was used to address any ambiguities that became apparent. Participants are only
identified by a code in all public reporting of the results. Analysis results and raw data were delivered
to NIST for analysis as described elsewhere in this manuscript.

It should be mentioned that some degree of coordination with the participants was needed in order
to properly convey and apply the experimental protocol (attached in the Supplemental Information).
This protocol was designed to ensure the data would meet the minimum reporting standards for
metabolomics data [9]. The emphasis of the study we report is on the set of materials; that is, our
aim is to demonstrate that these urine matrices show subtle yet measurable differences which can
be detected by a variety of instruments and allow us to separate and group them using statistical
techniques. This study is more limited than traditional metabolomics work; among other limitations,
there is no biological sampling because we are using pre-made reference materials, and there is only a
limited set of techniques used (e.g., only reversed-phase chromatography or 1-D proton NMR).

As part of the collection process for NIST human-tissue Standard Reference Materials, all donors
gave their informed consent. The study was conducted in accordance with United States regulations
15 CFR 27 and 45 CFR 46 and the protocol was approved by the NIST Human Subjects Protection
Office with project code MML-16-0022.

2.2. Sample Descriptions

In the development of human tissue or fluid SRMs, NIST identifies a desired population and an
outside organization is tasked with screening donors, collecting samples, and pooling the samples. The
pooled material is thus an average across the population it is supposed to represent. NIST conducts or
supervises any analysis that is to be performed.

Seven distinct materials were distributed in the ILS. One of the materials was replicated three
times for a total of nine samples. The samples were human urine pools from four SRMs and one
research-grade test material (RGTM):

• SRM 3667 [5] is a single pool of human urine collected from healthy male and female donors;
• SRM 3672 [6] is single pool of human urine collected from donors who smoked more than one

pack of cigarettes a day;
• SRM 3673 [7] is single pool of human urine collected from non-smoker donors who were not

exposed to secondhand cigarette smoke;
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• SRM 3671 [8] is composed of three different pools, each collected from donors from a different
exposure population: smokers who smoked at least one pack of cigarettes a day, nonsmokers
exposed to secondhand cigarette smoke, and nonsmokers not exposed to cigarette smoke;

• The RGTM is a version of the SRM 3673 material with an additive. The additive does not produce
a response in most analytical platforms and so this material serves as a functional replicate of
SRM 3673.

To preserve the blinded nature of the ILS, we labelled the samples A through I, and will henceforth
refer to them by these codes.

2.3. Sample Preparation Protocols

2.3.1. NMR Protocol Summarized

The experimental protocol for the NMR platform included basic and optional exercises. Three
participants completed the basic exercises and reporting. Additionally, some data for the optional
exercises was delivered. The three laboratories each measured spectra at different field strengths, one
laboratory at 600 MHz, one at 700 MHz, and the third at 800 MHz. The basic analysis included sample
preparation with a provided buffer solution (volumetric dilution with mass determinations), 1D 1H
analysis of the nine urine samples, instrument temperature calibration, and an NMR pulse experiment
(1D NOSEY sequence with presaturation of the residual water signal).

In addition to spectra of the nine samples included in the ILS, participants were directed to acquire
seven additional spectra, a blank (i.e., buffer only) and six additional replicates of Sample A, for a
total of 16 NMR basic spectra. Participants used data processing tools of their choice if the identified
analysis constraints could be applied. The basic data analysis included a standard signal-to-noise
calculation for each of the spectra. The optional components of the NMR ILS included collection of 2D
JRES spectra, corresponding analyses and an optional ‘compound ID’ challenge on one of the samples.

The amount of effort requested in the ILS was too extensive, based on the limited response to the
optional exercises and the time constraints requested in the ILS. There was not enough participation
among the labs to do any additional assessment of the optional parts of the protocol.

2.3.2. LC-MS Protocol Summarized

Like the NMR platform, the LC-MS experimental protocol included basic and optional exercises.
Five participants completed the basic exercises. The instrumentation used covers a variety of LC/MS
systems, including Waters Acquity UPLC coupled to Waters Xevo TQ-S (Waters Corporation, Milford,
MA, USA), Thermo Dionex U3000 coupled to an Orbitrap Fusion-Lumos (Thermo Fisher Scientific,
Waltham, MA, USA), Agilent HPLC 1290 coupled to either a Thermo QExactive or an Agilent
QToF 6530 (Agilent Technologies, Santa Clara, CA, USA), making this inter-laboratory comparison
representative of current LC-MS technologies in the metabolomics area. The LC-MS protocol was
adapted from previous studies [10–12] with minor modifications for optimizing performance on a
variety of LC-MS platforms.

Briefly, the sample preparation procedure consisted of four simple steps (i) urine samples were
withdrawn from −80 ◦C and left at room temperature to thaw, (ii) the samples were then treated with
methanol (1:1, v/v) and centrifuged, (iii) the supernatant was collected and subjected to evaporation in
a nitrogen current to remove methanol, and (iv) reconstituted with 200 µL of 1% acetonitrile and 0.1%
formic acid previously spiked with a labeled compound. The LC-MS analysis was performed using
reversed-phase chromatography. The experiments were blinded and randomized, and replicates were
included. Certain constraints were applied to the basic LC analysis derived from the use of a column
provided by the organizers. The gradient table, flow rate, injection volume and temperature were
optimized for this column. MS settings constraints were kept at a minimum, so optimized settings for
maximum coverage on each instrument were used. For details, see the LC-MS annex of the protocol.

Four participants also completed the optional exercises.
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2.3.3. GC-MS Protocol Summarized

Two participants contributed raw data for gas chromatography/mass spectrometric (GC-MS)
measurements of the nine urine samples including tentative identifications from a mass spectral database
search. These labs also provided measurements of the Grob test mixture [13] and process/preparation
blanks using the method protocols described below. Prospective participants were encouraged to use
previously defined sample preparation and analysis procedures [14].

Briefly, 100 µL to 200 µL aliquots of urine were weighed and incubated with 20 µL of a urease
suspension for 1 h at 37 ◦C. Methanol (1.7 mL) was added, mixed, and centrifuged (10 min at
1047 rad/sec (10,000 rpm) at 4 ◦C) to precipitate any residual urease. The supernatant was transferred
to glass tubes, evaporated to dryness, reconstituted with 100 µL toluene (dried over anhydrous sodium
sulfate), and again taken to dryness. The sample residues were then treated with 50 µL methoxylamine
for a 2 h incubation at 60 ◦C, followed by rapid addition of 100 µL N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA) with 1% trichloromethylsiloxane (TCMS), for a 1 h incubation at 60 ◦C.
The resulting trimethylsilyl (TMS) derivatizations were allowed to cool and 100 µL aliquots transferred
to GC vials.

Lab 1 employed a 60 m × 0.25 mm (ID) ZB-5ms column (0.25 µm phase thickness, Phenomenex,
Torrance, CA) operated at a constant flow of 2 mL/min helium (average linear velocity = 37.8 cm/s)
for a 0.5 µL on-column injection. The temperature program began at 130 ◦C (1 min hold) and a
5 ◦C/min ramp to 300 ◦C and a 10 min hold at this final temperature (run time = 79.3 min). The
MS was scanned from m/z 30–600 with a source, quadrupole, and interface temperature of 200 ◦C,
150 ◦C, and 320 ◦C, respectively. Each of the triplicate preparations of the nine samples was injected
once, along with multiple injections of preparation blanks and the Grob test mixture throughout the
GC-MS sequence. Mass spectra of chromatographic peaks not attributable to the process/preparation
blanks were searched against the NIST Mass Spectral Database (ver. 2.2, June 10, 2014). This database
contains many mass spectra for TMS derivatives of polar organic compounds including sugars and
other carbohydrates.

Lab 2 precipitated protein in the urine with methanol and derivatized as described above.
For measurement of the untargeted species, the external participant used an Agilent DB5-MS+10m
Duraguard Capillary Column (30 m × 250 µm × 0.25 µm). The column temperature was maintained at
60 ◦C for 1.00 min, then increased at a rate of 10 ◦C/min to 325 ◦C and held at this temperature for
10 min. Mass spectral signals were recorded after a 4.90 min solvent delay.

2.4. Chemometric Analysis

The output of the measurements from the various platforms were analyzed for consistency
using principal components analysis (PCA) with uncertainty analysis. In keeping with the goal of
QC materials characterized by analytical profiles rather than by a defined composition, we have not
attempted to assign an identity to any of the features in the profiles and PCA is done only on the intensity
data. Ideally, we would perform consistency analysis as done in previous studies [4], but there is not
enough data from the ILS for this analysis. However, for the LC-MS analysis, putative assignments
were given for overlapping features that were found in all four labs. Our analysis is summarized below,
presented graphically in Figure 1, and is described in more detail in the mathematical Appendix A. All
analysis was performed in Python and computer codes used in this work are included in Supplemental
Information, as is the anonymized data. Software libraries used include scikit-learn [15] and the
machine learning uncertainty toolkit (pages.nist.gov/mL_uncertainty_py).

pages.nist.gov/mL_uncertainty_py


Metabolites 2019, 9, 270 6 of 21

Metabolites 2019, 9, x 6 of 21 

 

 
Figure 1. Preprocessing and pretreatment of the experimental data. (A) The matrix representation of 
the analytical chemical data. (B) The pretreatment of the raw data resulting in the processed data used 
for analysis. In the case of liquid chromatography mass spectrometry (LC-MS), the preprocessed data 
is a list of identified features. For nuclear magnetic resonance spectroscopy (NMR), the preprocessed 
data is binned spectra. For gas chromatography mass spectrometry (GC-MS), the preprocessed data 
is a total ion chromatogram (TIC). (C) A schematic of the uncertainty calculation using bootstrapping, 
described in Appendix A. The data matrix X is analyzed using principal components analysis (PCA), 
generating scores T and loadings P. Bootstrap matrices X* are sampled from X, generating bootstrap 
scores T* and loadings P*. The scores are aligned using an orthogonal Procrustes algorithm to 
estimate uncertainty in classifications. 

2.4.1. Preprocessing and Pretreatment 

The GC-MS and LC-MS raw data form a two-dimensional array. Since this array is large, it is 
often compressed either by distributing spectra as a feature list or by providing only the total ion 
chromatogram (TIC) instead of the full array. All four participants that provided LC-MS data 
provided a feature list, and one of the two GC-MS labs provided their GC-MS TIC. Since the NMR 
spectra were only 1H 1D data, which is already a single array, the spectra were binned to reduce the 
effects of feature shifting from instrument to instrument. The preprocessing steps are demonstrated 
graphically in Figure 1A and 1B. 

2.4.2. Principal Components Analysis 

The data were analyzed and scored using PCA [16] with bootstrap uncertainty analysis [17,18]. 
In this analysis, a set of random data arrays are generated by sampling from the original data array 
with replacement. PCA is then performed on those random arrays, and the original data array is 
transformed into these bootstrap PCA spaces. Because a PCA space is unique to within reflections 
about the coordinate axes, a Procrustes algorithm is used to align the PCA spaces [19]. Uncertainty 
in the PCA is quantified by fitting the bootstrap populations for each sample (e.g., all replicates of 
Sample A) to a multivariate normal distribution. Then, each participant’s measurements are scored 
by calculating their Hotelling T2 distances within the respective populations. This uncertainty 
analysis is presented graphically in Figure 1C. For a more complete description, see Appendix A. 

2.4.3. Principal Components Analysis on Feature List Data 

Figure 1. Preprocessing and pretreatment of the experimental data. (A) The matrix representation of
the analytical chemical data. (B) The pretreatment of the raw data resulting in the processed data used
for analysis. In the case of liquid chromatography mass spectrometry (LC-MS), the preprocessed data
is a list of identified features. For nuclear magnetic resonance spectroscopy (NMR), the preprocessed
data is binned spectra. For gas chromatography mass spectrometry (GC-MS), the preprocessed data is
a total ion chromatogram (TIC). (C) A schematic of the uncertainty calculation using bootstrapping,
described in Appendix A. The data matrix X is analyzed using principal components analysis (PCA),
generating scores T and loadings P. Bootstrap matrices X* are sampled from X, generating bootstrap
scores T* and loadings P*. The scores are aligned using an orthogonal Procrustes algorithm to estimate
uncertainty in classifications.

2.4.1. Preprocessing and Pretreatment

The GC-MS and LC-MS raw data form a two-dimensional array. Since this array is large, it is
often compressed either by distributing spectra as a feature list or by providing only the total ion
chromatogram (TIC) instead of the full array. All four participants that provided LC-MS data provided
a feature list, and one of the two GC-MS labs provided their GC-MS TIC. Since the NMR spectra were
only 1H 1D data, which is already a single array, the spectra were binned to reduce the effects of feature
shifting from instrument to instrument. The preprocessing steps are demonstrated graphically in
Figure 1A,B.

2.4.2. Principal Components Analysis

The data were analyzed and scored using PCA [16] with bootstrap uncertainty analysis [17,18].
In this analysis, a set of random data arrays are generated by sampling from the original data array
with replacement. PCA is then performed on those random arrays, and the original data array is
transformed into these bootstrap PCA spaces. Because a PCA space is unique to within reflections
about the coordinate axes, a Procrustes algorithm is used to align the PCA spaces [19]. Uncertainty
in the PCA is quantified by fitting the bootstrap populations for each sample (e.g., all replicates of
Sample A) to a multivariate normal distribution. Then, each participant’s measurements are scored by
calculating their Hotelling T2 distances within the respective populations. This uncertainty analysis is
presented graphically in Figure 1C. For a more complete description, see Appendix A.
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2.4.3. Principal Components Analysis on Feature List Data

The LC-MS data were provided as feature lists, and so it is not possible to perform PCA by simply
combining all the data since each laboratory identified different numbers of features. To overcome
this issue, we first conducted PCA on each participant’s data individually. Observing that all the PCA
scores appeared visually similar to each other, to within rotations and reflections, we used a Procrustes
algorithm to align the PCA scores using one lab’s PCA space as the basis. Since the labs scores
results are similar, this choice was essentially irrelevant. We then transformed the Procrustes-aligned
scores back into the basis lab’s feature list space, thereby creating a set of virtual feature lists that are
representative of what those labs would have measured if they had been using the same instrument
(see Appendix A for details of how the virtual feature lists are constructed). Since these virtual feature
lists are now directly comparable, we performed the PCA uncertainty analysis on this whole set as
described above.

3. Results

3.1. Overview

Table 1 shows the similarities of the three labs that performed NMR analysis. Since similarity
comparisons in NMR are often based on PCA results, we define a similarity measure for PCA loadings
spaces that is based on the cosine distance. The measure dij between the loadings spaces of two labs,
i and j, is calculated as

di j =
∑

k

1
2

(
σk,i + σk, j

)(
1−

∣∣∣∣pk,i · pk, j

∣∣∣∣) (1)

where pk,i and pk,j are the kth principal component in the PCA space of the ith and jth participants
respectively and σk,i and σk,j are the explained variance ratio of the kth principal component in those
respective spaces. Note that this assumes that the PCA spaces are orthonormal, which is the case for
the PCA algorithm used here. We use the absolute value of the dot product because PCs are unique to
within factors of −1. This form results in a number that varies from 0, meaning two PCA spaces have
the same PCs, to 1 if all corresponding PCs in the two spaces are orthogonal. We apply this analysis
to the NMR data only, because the NMR bins are the same across all three participants and so the
principal components are transformations of the same spectral feature space. Because the GC-MS and
LC-MS data were reported in the form of feature lists, the spectral feature space is different for each lab.

Table 1. NMR Interlaboratory overlap.

Lab Distance from Lab

1 2 3

1 0.150 0.046
2 0.150 - 0.169
3 0.046 0.169 -

As shown in Table 1, Labs 1 and 3 are quite close to each other at a PCA similarity distance of ~0.05,
while Lab 2 is somewhat farther from these two at ~0.15. With only three data sets, it is impossible
to quantitatively state what constitutes “close” or “far” in this sense. However, for vectors of large
dimension such as the NMR spectra used, most vectors are orthogonal. Therefore, any distance less
than 1 indicates that the PCA spaces are reasonably close. Furthermore, examination of the PCA scores
indicates that all the reported data sets separate the samples similarly.

Table 2 shows the number of extracted ions that were extracted from the basic LC-MS experiments,
the number of extracted ions with intensity RSD less than 20% across all samples that were replicated,
and the overlap in extracted ions between participants. The mass tolerance was set to 30 ppm and
retention time tolerance to 0.3 min. There was a great disparity between the molecular feature
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coverages of the different participants, thus the creation of metabolite signatures that are transferable
across different instrumentation [11] or sample preparation protocols [10] is not a trivial matter. Even
using overlapping molecular features having approximately same m/z values and retention times the
uncertainty of such comparisons is high since most features are unidentified.

Table 2. LC-MS Interlaboratory metabolite coverage and overlap.

Lab Number of Extracted Ions
(Intensity > 5000 Counts)

Extracted Ions
(RSD < 20% in All Samples) Overlapping Extracted Ions with Lab

1 2 3 4

1 28,818 13,867 - 12,511 8159 1225
2 42,781 12,563 12,511 - 7857 1141
3 56,656 10,332 8159 7857 - 3734
4 4947 4932 1225 1141 3734 -

Table 3 briefly summarizes the findings of the two labs that performed GC-MS characterizations
on the derivatized extracts of the samples. Although the total number of peaks detected differed
significantly between the two participants, probably based on peak detection thresholds, the number
of peaks identified was quite similar and the identifications in-common represented 24% to 30% of the
total number of peaks identified by the two labs.

Table 3. GC-MS Interlaboratory metabolite coverage and overlap.

Lab Total Number of Peaks
Detected

Number of
Identified Peaks

Identifications
Overlapping

1 71 to 130 50 to 93
12 to 262 227 to 268 62 to 95

The standardization and harmonization of comparisons across participants thus demands new
strategies that address these complex issues while causing minimum disruption to the usual workflows.
The appropriate use of certified reference materials, spectral libraries [20,21], and hybrid searches [22–24]
may be a reasonable approach for these purposes.

3.2. Detailed Results

3.2.1. Nuclear Magnetic Resonance (NMR)

All the labs were found to separate the samples in a similar fashion, as evidenced by the PCA
scores shown in Figure 2. The primary difference between Lab 2 and Labs 1 and 3 is the variability in
the spectra for Sample A from that Lab 2, which is likely also what introduces the difference in the
PCA spaces shown in Table 1.
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We estimate the uncertainty in the NMR spectra and the corresponding loadings by combining all
the spectra into one data set and performing PCA on that combined set. This analysis confirms that the
participants are all finding similar features, as evidenced by the PCA scores and T2 distances shown in
Figure 3 and corresponding PC loadings shown in Figure 4. The loadings and explained variance of PC
1 also show that all the labs are identifying glucose and other sugars as the major difference among the
samples. This suggests that samples E and F contained an unusually high proportion of high glucose
contributions due to disease (such as diabetes) or uncontrolled dietary intake. The loadings of PC 2
are likely due to nicotine metabolites, as there is roughly a gradient along the PC 2 direction from
nonsmokers to smokers.
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Figure 4. NMR PCA loadings with uncertainty. The uncertainty is drawn so that, if it obscures the
NMR signal, the corresponding loading is not visible. Note that uncertainty is drawn as a symmetric
interval around 0. There may appear to be a nonzero uncertainty in the solvent suppression region
because uncertainty in the bins on either side may not be zero and there is no data in the suppression
region; this apparent uncertainty is an artifact and should be ignored.
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Because this result includes only three participants, the T2 uncertainties in Figure 3 are very large
compared to the actual scatter within the classes; the uncertainty is mostly controlled by the uncertainty
in the spectra for Sample A from Lab 2. With more participants, the scatter in the scores would likely
contribute more to the uncertainty of each sample.

Compound identifications and 2D JRES spectra were an optional portion of the ILS; only one
participant reported these results. As such, we do not report on the compound identifications from that
participant because we cannot compare it to other labs in the ILS as we can on the GC-MS and LC-MS
platforms. Compound identification using NMR is less dependent on libraries and repositories than
GC-MS and LC-MS. As such, NMR serves as a valuable tool for unknown compound identification [25].

3.2.2. Liquid Chromatography–Mass Spectrometry (LC-MS)

As reported previously for plasma samples [11], results using the same LC-MS instrumentation
and the same material are very repeatable. No more than five replicates are needed to find thousands
of molecular features with intensity peak RSDs below 2% in batch to batch (intermediate precision)
experiments. However, intensity fluctuations are more pronounced when comparing just slightly
different matrices, such as the different urine samples in this work. Thus, in label-free untargeted
experiments, the RSD threshold must be higher (~20%) for an effective comparison including a
significant number of ions.

Table 3 shows the number of molecular features (peaks) extracted from the raw data of four
participants. Feature extraction was performed using XCMS online [26,27], with the optimized settings
for each instrument suggested by the authors, except for Lab 4 that used vendor-specific software.
The number of peaks was extremely variable across participants, revealing that LC-MS data contain
many peaks with little or no relevance for the bioanalysis. These low-influence peaks include, but
are not limited to, signals from redundant in-source fragments, background ions, contaminants or
electrospray artifacts. Intensity peak fluctuations also reduce significantly the number of useful
features. The RSDs shown in Table 2 were derived from the absolute peak intensities, but even after
normalization, many low abundance components showed significant deviations. More importantly, for
interlaboratory comparisons, the only features that matter are those features found by all participants.
Table 2 shows that in this ILS the comparison is limited by the overlapping of 1141 peaks between
Lab2 and Lab4. Approximately 31% of these peaks were putatively identified using the NIST tandem
mass spectral library (http://chemdata.nist.gov/mass-spc/msms-search/), which are shown in Table S1,
Interlab_Table_SI_1.xlsx of the supporting information. Still, all participants were able to differentiate
the urine matrices based on PCA analysis. The sample clustering and the principal component
contributions were similar for all labs.

As discussed above, in the case of LC-MS, several labs provided feature lists, all of which are
slightly different and depend on the threshold used for feature selection. This motivated our PCA
on the virtual peak lists. We present the results of the PCA in Figure 5. In this case, much of the
uncertainty is controlled by the E and F measurements. Due to the low number of features compared
to the other participants, data from Lab 4 is excluded from the virtual peak list analysis. However,
this participant was also able to differentiate the samples.

http://chemdata.nist.gov/mass-spc/msms-search/
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As expected, major contributions (loading intensities) come from compounds that ionize well in
electrospray conditions, such as creatine, amino acids, multiple carnitine derivatives, and others, as
shown in Figure 7. As mentioned before, a full list of identified compounds that are common to all labs
is attached with the Supplemental Information (Interlab_Table_SI_1_mod.xlsx). These are considered
putative identifications and are determined by the results of the high-resolution instruments and, if
possible, confirmed by masses, retention times and fragmentation for the other labs. For example,
one participant used a low-resolution instrument and did not perform MS2 experiments. Another
participant used a different kind of fragmentation instead of MS2 experiments.

Even following a strict experimental protocol, results indicate significant differences among labs.
In general, major fluctuations were found in the number of peaks and peak intensities reported from
different labs. The lack of reproducibility mostly originated from low-abundance components that,
depending on the ionization efficiency, can (or cannot) be detected consistently in a particular instrument.
This illustrates how researchers should be cautious when using global untargeted experiments to
suggest metabolite signatures for diseases or for monitoring metabolic changes. However, the fact that
all labs were able to distinguish all samples and a substantial number of peaks were detected in all
instruments shows that such inter-comparisons are possible if a method for peak identity conformation
is available. There is no need for authentic identifications in these comparisons, only a putative ID,
preferably based on the fragmentation spectrum, to connect samples in an unequivocal manner [11,20].

3.2.3. Gas chromatography/Mass Spectrometry (GC-MS)

One of the labs reported a significant number of species attributable to the process/preparation
blank; the most prominent peaks were tentatively identified as TMS derivatives of sugars, eluting
between 47 min and 50 min. For this lab, samples B and I-2 did not yield derivatized extracts that were
comparable to the other replicate preparations for these same samples in this ILS so their results were
considered as outliers and were not included in the data analysis portion of the work.

In general terms, both participants that returned GC-MS data reported dozens of TMS derivatives
of sugars, sugar alcohols, amino acids and metabolites of nutritive species (e.g., fatty acids) present in
the extracts of the urines; identifications are shown in Tables S2–S8, Interlab_Table_SI_2.docx in the
supporting information. One significant difference among the analyte peak profiles of the samples
were the high levels of glucose TMS derivatives tentatively identified in samples A, E, and H. In
the TIC shown in Figure 8, six peaks tentatively identified as glucose TMS derivatives in these three
samples showed obvious signs of overloading the GC column. The other participant did not submit a
chromatogram, but the reported level of glucose-related species was similar, suggesting that they also
experienced overload. The usual procedure with overload is to dilute the samples by a large factor;
however, this would have required restarting this portion of the ILS. Furthermore, the semi-quantitative
approach employed here for compound identification remains valid despite the overloading. Previous
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work by Pasikanti and co-workers [28] describe urinary metabolite profiling using GC × GC with
time-of-flight MS and a method similar to that described in this work. Struck-Lewicka et al. [29]
performed both GC-MS and LC-MS urine metabolite characterizations as part of a prostate cancer
study, and observed a similar suite of compounds.

Similarly for the NMR data, we can conduct the uncertainty analysis on the GC-MS data. However,
unlike the NMR data, it is not conventional to share raw GC-MS spectra, and so Figure 9 presents
the results of an analysis using the data provided by the participant that shared the raw profiles.
Since there is only one participant it is more difficult to draw conclusions. For instance, there is only
one measurement for each of samples A and C, which therefore lie very close to the center of their
respective bootstrap distributions, and so the corresponding T2 scores for those measurements are
very close to 1. However, this participant obtained enough replicates to allow the determination of
some estimates of the uncertainty in the GC-MS measurements.
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The loadings for the first four PCs are shown in Figure 10. The major loadings for the first
principle component are attributable to glucose derivatives, two unknowns (retention times of 27.8
min and 30.0 min) and a methylxanthine possibly from purine degradation. For the second principle
component, histidine, galactose and mannitol derivatives provide the most significant loadings.
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As it is difficult to draw conclusions from the data obtained from a single lab, we also performed
the same virtual-peak analysis on the GC-MS data as on the LC-MS data, the results of which are
shown in Figure 11. Unlike the LC-MS case, where the reconstructed spectra fell cleanly into distinct
groups, in this analysis we see the samples split into one group consisting of samples E and F and
another consisting of all other samples. We believe this is partly due to chemical differences between
these two groups overwhelming any differences within the groups in the PCA. Even so, both labs still
show the stark differences between these two groups, just as was observed for the other platforms.
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3.2.4. Data Dissemination

GC and LC/MS data obtained from the ILS will be distributed using NIST’s Visual Mass-Spec Share
(vMS-Share) website (vmsshare.nist.gov) [30]. vMS-Share is a mass spectrometry (MS) data mining
and repository web site hosted by the NIST’s Chemical Sciences Division. The purpose of the web site
is to effectively visualize raw MS data, display corresponding metadata and share experimental results.
A screenshot of the web site, being used to investigate a chromatogram from the experimental data set,
is shown in Figure 12 [30].
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Figure 12. vMS-Share screenshot. This screenshot shows the program in use to analyze an LC-MS
chromatogram in the vMS-Share experimental database. The figure on the top left shows the base
peak chromatogram (or total ion chromatogram), with identified features flagged with red dots. To the
right of the base peak chromatogram is the list of substances associated with each identified feature. In
this use case, the user has hovered the pointer over one of the identification flags, which results in a
pop-up with the species associated with that feature. Clicking on the flag has brought up the mass
spectrum from the raw file for the identified chemical species at the bottom of the figure. There are two
substances at this retention time, and the user can pick between the two.

vMS-share currently serves as a repository for proteomic and metabolomic MS data that has
been published in scientific journals. Plans are also being made to add petroleomic and SRM data in
the future. The web site has the capability for performing study-based and experiment-based data
mining/analysis search. Each search begins by first selecting a single study for data mining.

Experiment-based search is performed by picking a dataset of interest and selecting an experiment
to view. An interactive graphical interpretation of the Base Peak Chromatogram with peaks containing
identifications labeled on the chromatogram represents the selected experiment. A searchable list of
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identifications is also displayed along with the chromatogram for access to identified spectra. Identified
and unidentified MS1 and/or MS2 visual representation of spectra can also be interactively accessed
from the chromatogram viewer. Metadata associated with a spectrum from the raw file is displayed
alongside the spectrum as well as any experimental identification metadata where available.

Study-based search is performed by searching for identifications within a selected dataset using
a variety of easily accessible search filters such as CAS and protein accession numbers. Interactive
spectrum display, raw metadata, and experiment metadata can be viewed by selecting a specific
identification. Each identification is linked to the experiment that it belongs to and the entire experiment
data associated with the selected identification can then be viewed.

4. Discussion

4.1. Test Materials as A Reference Suite

We have proposed a new approach for using test materials as quality control in -omics measurements.
In our approach, we have compiled a suite of urine materials that can be used across multiple platforms;
here, we studied nuclear magnetic resonance (NMR) spectroscopy and liquid and gas chromatography
with mass spectroscopy (LC-MS and GC-MS). The materials were chosen to have subtle compositional
differences that we believed would be detectable using these platforms, and we found that all platforms
were able to distinguish among the test materials, even the lower-resolution platforms. The differences
were generally consistent across different facilities employing the same technique, and sufficiently
consistent across techniques to enable comparison between them. This shows that a suite of materials,
suitably chosen, can be used for quality control purposes applied to omics studies. Furthermore,
our study shows the value of having a suite of stable reference materials designated for this purpose,
maintained in a central repository such as a national metrology institute.

4.2. Comparison between Platforms

Each platform has its advantages and disadvantages, and it is useful to identify whether these
strengths are shared among the platforms or whether they complement each other. We found that
all platforms were able to identify the differences between the various samples. Two of the samples
were the same except that one had been intentionally spiked with a chemical marker that was not
visible to these three platforms, and all three platforms grouped these samples together. Additionally,
all platforms clearly identified that samples E and F contained some unusual metabolite concentrations.
In NMR and GC-MS, these metabolites clearly include sugars such as glucose, as evidenced by the
PCA loadings in Figures 4 and 10. It is possible, therefore, that the urine pools for these samples
contain an abnormally high fraction of donors with diabetes or some other dietary intake abnormality.
In reversed-phase LC-MS, small sugars such as glucose elute very early with highly soluble compounds,
and all sugars suffer from in-source fragmentation which makes them difficult to detect using this
method. In spite of this issue, the LC-MS results show separation between samples E and F and the
other urine samples. This may be due to other potential biomarkers associated with diabetes or sample
matrix effects. Since all three platforms find the same difference, but for different reasons, they provide
complementary information.

Furthermore, samples A through G are from populations not exposed to nicotine, while samples
H and I are from populations exposed to nicotine from various sources. LC-MS identifies this trend,
making PC 1 essentially a nicotine-exposure axis. NMR and GC-MS do not pick up this same trend,
since for both platforms non-exposed sample G is mixed with exposed sample I (and GC-MS further
mixed non-exposed D into this group). In this case, NMR and GC-MS are less useful than LC-MS
for detecting this effect. The nicotine is an exogenous compound and not really in the same class as
the endogenous metabolites normally of interest in metabolomics. However, in a properly controlled
study, these platforms should be able to detect the exposure through biochemical effects related to
the exposure without needing to observe the toxicant. This is the principle behind environmental
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metabolomics studies where the interest is in the mode of action of a toxicant, not the toxicant dose
(which is known or estimated a priori).

As this study was underway, another interlaboratory study was published [31]. The authors
conducted two tests, one analyzing human urine either spiked or not with 32 metabolite standards
and another comparing plasma of rats either supplemented or not with vitamin D. Both studies were
conducted using NMR and MS techniques. They concluded that the overall results from different
platforms share high similarity and therefore that untargeted analysis across participants using different
instrumentation is possible. The authors also pointed out that the analysis of individual components
should be explored further.

As shown above, we agree that untargeted metabolite profiles from different instrumentation and
techniques show similar results and, in our case, allowed us to distinguish between seven different
urine matrices. However, substantial differences were found when analyzing individual components.
For example, the LC-MS analysis showed significant differences in ionization efficiencies for the top
100 most intense ions. Most participants differ not only in the magnitude of the ionization, but also
two out of four participants deviate more than 20% regarding the identity of the 100 most intense
ions. A complicating factor is the existence of multiple ions for each component, each one probably
having a different ionization efficiency in a different ion source. However, the differences remain even
considering the different contributions from all ions, and the best agreement is found only when all
overlapping features are used in the analysis. This shows that the fusion of interlaboratory data is
feasible, but the data analysis should be done under a concerted protocol. This may not be applicable
to data analysis restricted to some specific chemical family that shares the same ionizing group(s).
For example, Fiehn and collaborators [32] found that results from the analysis of fatty acids using nine
different LC-MS platforms were highly comparable.

4.3. Prospects and Availability of Test Materials

This ILS has demonstrated cross-platform suitability for this set of urine samples for metabolomics
quality control materials. The next step in production and public release of these materials into a final
QC material would normally include a large-scale ILS integrating the lessons learned from the study.
Since the paradigm for this type of QC material is so different from past SRM development schemes,
NIST has decided to take an alternative approach to making these materials available to the public.
Therefore, a limited number of sample sets will be made available to laboratories that will pledge to
analyze them according to the established protocol and deliver data to NIST within a specific time
frame. Any material left over from these measurements will be available to the laboratory for other
uses, including alternative protocols.

The response to this offer will be key to gauging interest in QC materials, which leads to
marketability assessments for this class of materials. With adequate responses from the community,
including full analyses and suggestions for additional protocols, NIST will be able to make responsible
decisions about the future production of QC materials.

4.4. Contact

More information about the data sets collected and access to the limited number of sample sets
can be obtained by contacting the corresponding author.

5. Conclusions

In this work, we proposed and investigated a new approach to the use of test materials in -omics
research. We compiled a suite of test materials taken from the Nationals Institute of Standards and
Technology Standard Reference Material inventory and conducted an interlaboratory study in which
participants obtained untargeted analytical profiles for these materials using a variety of common
metabolomics platforms. Our goal was to determine whether the various platforms could detect
the subtle differences between the materials, whether the information obtained was the same across
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platforms, and whether the participants in the study detected the same compositional differences. We
found that all platforms were able to detect these differences and that the study participants were
generally consistent with each other, although the different platforms did differentiate among the test
materials for different reasons. We have shown, therefore, the value of using a suitably designed suite
of stable reference materials to be used for measurement harmonization.
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Appendix A Uncertainty Analysis

Appendix A.1 Principal Components Analysis with Bootstrap Uncertainty (PCA-Boot)

Principal components analysis can be described briefly through Equation (A1),

X = TPT + E (A1)

where X is the array of spectral data with each row representing the spectrum from one sample, T is
the projection of the spectral data (i.e., scores) onto the PCA space with basis P (i.e., loadings), and E is
the array of residuals. Uncertainty is conducted using bootstrap with replacement. For each bootstrap
sample, a random data matrix X* is generated, of the same size as X and whose rows are samples
with replacement from the rows of X. A PCA model is generated for the X* array which results in a
corresponding T* and P*. The bootstrap scores array Tboot is calculated as

Tboot = XP∗ (A2)

Because PCA loadings are equivalent to within a sign change, an orthogonal Procrustes algorithm
is used to align Tboot with T. Once all of the Tboot arrays are calculated, they are concatenated into
a single array where each row represents one bootstrap representation of one sample. The class
population sizes are then determined by fitting a Hoteling T2 distribution to the members of each class.

http://www.mdpi.com/2218-1989/9/11/270/s1
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Appendix A.2 PCA-Boot on LC-MS Peak List Data

Because the LC-MS data is provided only as a peak list, rather than a full spectrum, it is more
complicated to calculate the uncertainty. In this case, PCA is used on the peak list from each facility,
that is,

Xi = TiPT
i + Ei (A3)

where the subscript i refers to the data from each facility, Xi is the array of intensity data with feature
retention times as columns and sample runs as rows, Ti is the scores for this data in PCA space with
basis Pi, and Ei is the array of residuals. To generate a set of data that can be easily compared with
each other, we choose one laboratory as the “basis” laboratory and then use a Procrustes algorithm to
align all of the Ti arrays with the base array. Then we use the base facility’s loadings array to map the
aligned scores Ti,aligned into a set of virtual peak lists Xi,virtual according to

Xi,virtual = Ti,alignedPT
j (A4)

where the subscript j refers to the facility selected as the base facility, Pj is the PCA basis for facility j
(from Equation (A3)), and Ti,aligned is the scores array for facility i after alignment with the Tj array (the
scores array for facility j from Equation (A3)). The virtual peak lists are concatenated into an Xvirtual

array and PCA with bootstrapping, as described above, is then conducted on this new array.

Appendix A.3 PCA-Boot Detailed Procedure

• Sample randomly with replacement from the binned, normalized spectra in X (generate X*)
• Fit a Pareto scaler to the bootstrap sample X* (NMR only)
• Conduct PCA on the scaled X* (generate T* and P*)
• Scale X using the Pareto scaler (NMR only)
• Transform the scaled X into the X* PCA space (generate Tboot)
• Align Tboot with T

Appendix A.4 PCA-Boot on Peak Lists Detailed Procedure

• Conduct PCA on each facility’s peak list (calculate Ti and Pi)
• Choose a lab to use as the base lab (choose j)
• Align all Ti arrays with Tj (generate Ti,aligned)
• Map aligned scores into virtual peak lists (generate Xi,virtual)
• Conduct PCA and bootstrapping on concatenated virtual peak lists.
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