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Abstract

Background

Preeclampsia (PE) is a serious hypertensive pregnancy disorder with a significant genetic

component. Numerous genetic studies, including our own, have yielded many susceptibility

genes from distinct functional groups. Additionally, transcriptome profiling of tissues at the

maternal-fetal interface has likewise yielded many differentially expressed genes. Often

there is little overlap between these two approaches, although genes identified in both ap-

proaches are significantly associated with PE. We have thus taken a novel integrative bioin-

formatics approach of analysing pathways common to the susceptibility genes and the

PE transcriptome.

Methods

Using Illumina Human Ht12v4 and Wg6v3 BeadChips, transcriptome profiling was con-

ducted on n = 65 normotensive and n = 60 PE decidua basalis tissues collected at delivery.

The R software package libraries lumi and limma were used to preprocess transcript data

for pathway analysis. Pathways were analysed and constructed using Pathway Studio. We

examined ten candidate genes, which are from these functional groups: activin/inhibin sig-

nalling—ACVR1, ACVR1C, ACVR2A, INHA, INHBB; structural components—COL4A1,
COL4A2 and M1 family aminopeptidases—ERAP1, ERAP2 and LNPEP.

Results/Conclusion

Major common regulators/targets of these susceptibility genes identified were AGT, IFNG,

IL6, INHBA, SERPINE1, TGFB1 and VEGFA. The top two categories of pathways
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associated with the susceptibility genes, which were significantly altered in the PE decidual

transcriptome, were apoptosis and cell signaling (p < 0.001). Thus, susceptibility genes

from distinct functional groups share similar downstream pathways through common regu-

lators/targets, some of which are altered in PE. This study contributes to a better under-

standing of how susceptibility genes may interact in the development of PE. With this

knowledge, more targeted functional analyses of PE susceptibility genes in these key

pathways can be performed to examine their contributions to the pathogenesis and severity

of PE.

Introduction
Preeclampsia (PE) is a common and serious pregnancy complication characterised by new-
onset hypertension and proteinuria after 20 weeks’ gestation and affects between 2–8% of all
pregnancies worldwide [1]. Although the disorder has been known since antiquity, the cause of
PE remains elusive with the only known cure being the removal of the placenta [2]. Due to the
severity of the mother’s condition, there is often an urgent need to deliver the fetus premature-
ly. PE accounts for over 40% of medically indicated pre-term births [3]. Preterm births are as-
sociated with greater neonatal morbidity and mortality in the short term, as well as high
economic, health and social costs later in life [4, 5]. A PE mother is also at increased long term
risk of developing ischemic heart disease, stroke and cardiovascular disease [6–8]. Therefore,
the consequences of PE are not merely short term but may have persistent, long term effects on
the mother and child.

PE susceptibility is influenced in part by a strong genetic component. Heritability estimates
range from 0.31 to 0.54 [9–11], and numerous candidate genes have been implicated either by
linkage or association methods. The ACVR2A [12] and STOX1 [13] genes were identified by
genetic linkage methods. Several genes (AGT, ACE, AGTR1, AGTR2, FV,MTHFR, NOS3 and
TNFα) have been the focus of candidate gene association studies [14]. Genome-wide associa-
tion scans have implicated multiple genetic loci [15], including the INHBB [16], and PSG11
loci [17]. It is widely accepted that PE does not follow a Mendelian inheritance except in a few
families [18]. Instead, PE is the result of complex interactions between the maternal and fetal
genotypes and environment factors.

Another approach used to investigate the pathogenesis of PE is a microarray study design to
identify differentially expressed genes in tissues at the maternal-fetal interface and thereby gain
an insight into possible disease mechanisms. Placental [19, 20] and decidual [21–25] tissue mi-
croarray studies have reported numerous differentially expressed genes. However, there is
often little concordance between microarray studies, likely due to factors such as insufficient
power and heterogeneity of tissue samples [20, 26]. To date, most transcriptome studies have
been conducted in the fetal-derived placenta with only a few using maternal-derived decidua
[19–25, 27]. Conversely, most genetic linkage/association studies have focused on the maternal
genotype [11–13, 16, 28–31]. Taken together, this discordance in study design strategies partly
explains the very small overlap between genetic association/linkage and expression studies.
Hence, further expression studies should focus on the maternal tissue in addition to the
fetal tissue.

Whilst the aforementioned study designs have reported numerous PE candidate genes,
there is frustratingly little overlap in the genes identified. A recent study by Founds [32], link-
ing placental global gene expression with PE susceptibility loci, showed that 40% of genes
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altered in first trimester placental chorionic villus sampling resided in known PE susceptibility
loci. However, these account for only 13 genes, a small fraction of known PE candidate genes.
A review by Jebbink et al. [33] showed at least 178 genes associated with PE have been identi-
fied by both the candidate gene and genome-wide study approaches, with many more genes
identified since then. It is unlikely that there will be a single, universal causative gene for PE.
Given the large diversity of genes identified from genetic studies and microarray studies, we
have taken a novel integrative bioinformatics approach to bridge this gap by analysing path-
ways common between susceptibility genes identified by the genetic association approach and
the PE transcriptome. Identifying common underlying biological pathways will allow us to per-
form more specific and targeted functional analyses to address the complexities of PE.

Our earlier studies showed that maternal susceptibility genes, which are from various func-
tional groups: activin/inhibin signalling—ACVR1, ACVR1C, ACVR2A, INHA, INHBB; struc-
tural components—COL4A1, COL4A2 and M1 family aminopeptidases—ERAP1, ERAP2 and
LNPEP, were differentially expressed in tissues at the maternal-fetal interface [12, 34]. Func-
tional studies of these genes are presently limited and based on the assumptions of how PE is
thought to develop. Hence, to identify unbiased, novel functional roles of these susceptibility
genes, we performed a genome-wide transcriptome directed pathway analysis of maternal PE
susceptibility genes. By taking into account the underlying pathways of the whole genome in-
stead of focussing specifically on differentially expressed genes, we aimed to use an integrative
bioinformatics approach identify novel biological processes involved in the development of PE.

Materials and Methods

Patient Samples
Decidual basalis samples were collected from a total of n = 65 normotensive and n = 60 PE pa-
tients at Caesarean section as described previously [12]. Normotensive patients underwent
Caesarean section due to breech presentation, maternal request or previous history. PE was de-
fined according to the Australasian Society for the Study of Hypertension in Pregnancy criteria
[35, 36]. Exclusion criteria for PE patients included diabetes and systemic lupus erythematosus.
Blood pressures of normotensive patients were recorded as<140/90 mmHg. A non-treating
obstetrician independently verified patient clinical records. Tissue samples were verified as de-
cidual by hospital pathologists. Each patient gave written informed consent for samples to be
used for the study. Research and ethics approval was granted by The Royal Women’s Hospital
Research and Ethics Committees, Melbourne, Australia and the Institutional Review Board of
the University of Texas Health Science Center at San Antonio, Texas, USA.

Sample Processing
Harvested decidual tissue was placed into an appropriate volume of RNA-later (Qiagen, Hil-
den, Germany) and kept at 4°C for at least 24 hrs. Up to 250 mg of decidual tissue was then re-
moved from the RNA-later and stored at -80°C. Total RNA was extracted from decidual
samples using RNeasy Midi kits (Qiagen) with yield and quality determined as described previ-
ously [12]. Complementary RNA synthesis, amplification and purification were performed as
described previously [24].

Transcriptional Profiling
Microarray interrogation of decidual complementary RNA was performed in two batches. The
first batch of n = 23 normotensive and n = 25 PE samples were hybridised onto Illumina
HumanWG-6 v3 Expression BeadChips (Illumina Inc., San Diego, CA, USA), while the second
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batch of n = 42 normotensive and n = 35 PE samples were hybridised onto Illumina
HumanHT-12 v4 Expression BeadChips (Illumina Inc.) in accordance with Illumina’s Whole-
Genome Gene Expression Direct Hybridisation assay protocol. All samples were scanned on
the Illumina iScan System with iScan Control Software (v3.2.45). Illumina’s GenomeStudio
software (v2010.2), Gene Expression Module (v1.7.0), was used to generate a control summary
report to assess assay performance and quality control metrics. Updates in array content, from
one BeadChip version to another, often results in changes in transcript probe identifiers. We
therefore utilised PROBE_SEQUENCE information as the unique identifier to highlight tran-
script probes common to both the HumanWG-6 and HumanHT-12 BeadChips. A total of
39,426 common probes were identified for data pre-processing. To account for batch effects,
the data from each batch was analysed independently. The raw microarray data are accessible
at the Gene Expression Omnibus repository with the Accession Number GSE60438 (National
Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA).

Data Pre-processing
Background noise was subtracted from transcript data for analysis using Illumina’s GenomeS-
tudio software (v2010.2), Gene Expression Module (v1.7.0). The data from each batch were
then pre-processed independently with the open source software R version 3.0.2 available via
www.bioconductor.org. The lumi R package [37] was used to log2-transform and quantile nor-
malise the data. The limma R package [38] was then used to rank differential gene expression
with moderated t tests.

Pathway Analyses
The list of ranked genes for each microarray batch and the list of susceptibility genes were im-
ported into Pathway Studio 9.0 (Elsevier, Amsterdam, Netherlands) for pathway analysis.
Gene set enrichment analysis (GSEA) was performed on gene expression data to identify al-
tered pathways throughout the genome. To determine the pathways associated with the suscep-
tibility genes, a sub-enrichment analysis was performed on the list of susceptibility genes.
Pathways are represented by the Gene Ontology (GO) set class of biological processes. Data
files were then exported as databases in Microsoft Access 2010 (Microsoft Corp., Redmond,
WA, USA) to first determine the consistently altered pathways between the two transcriptome
profiling batches and then the concordant pathways between susceptibility genes and the PE
transcriptome.

Gene Network Construction
To determine the interactions between susceptibility genes from the different functional
groups, gene networks were constructed. The literature-based ResNet Mammalian 9.0 Data-
base in Pathway Studio 9.0 (Elsevier) was used to determine common pathway targets and reg-
ulators of the susceptibility genes. Pathways were selected using their expression relationship.
Each pathway link is supported by at least one published reference. The references for each link
were manually cross-checked to remove any erroneous links.

Statistical Analyses
Student’s t test with Welch’s Correction and 2 × 2 contingency table with Fisher’s Exact Test
were used for analysing patient characteristics where appropriate on GraphPad Prism 5
(GraphPad Software Inc., La Jolla, CA, USA). A value of p< 0.05 was considered statistically
significant for patient characteristics. Mann-Whitney U test was used for enriching significant
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pathways in the GSEA on Pathway Studio 9.0. For the pathway analyses, a semi-conservative
value of p< 0.001 was selected as the statistical cut-off to maximise the identification of novel
pathways, while minimising the number of potential false positives in multiple testing.

Results

Patient Characteristics
Gestational age, infant birth weight, birth weight percentiles, gravidity and parity between the
n = 65 normotensive and n = 60 PE patients were significantly different (Table 1). No signifi-
cant difference was observed for maternal age or infant sex. The significant differences for gra-
vidity and parity were expected given that PE is more common in first pregnancies. The lower
birth weights and gestational age at delivery for the PE patients are consistent with earlier deliv-
ery due to the severity of the disease.

Common pathways of susceptibility genes
Pathways and interactions between susceptibility genes from the various functional groups
were determined by an inbuilt literature-based database search in Pathway Studio 9.0. The
major common pathway regulators and targets of susceptibility genes, with four or more con-
nections, are AGT, IFNG, IL6, INHBA, SERPINE1, TGFB1 and VEGFA (Fig 1). A similar analy-
sis of the pathways and interactions between these major regulator and targets was then
performed to identify their downstream genes that could serve as novel PE biomarkers. In
total, 13 genes (CDH1, EDN1, ENG, FLT1, IL10, INS, KDR,MMP2,MMP9, NOS2, NOS3,
PTGS2 and TNF) downstream of these major regulators and targets were identified (Fig 2). En-
richment of the pathways associated with the susceptibility genes identified a total of 114 GO
sets in 15 pathway categories (Table 2). The top three pathway categories were in the areas of
reproduction, cell signalling and liver function. There were 10 pathway categories that were as-
sociated with at least two functional groups of susceptibility genes. All three functional groups
of susceptibility genes were present in the pathway categories of neural function, differentiation

Table 1. Summary of patient characteristics.

Patient characteristicsa Normotensive (n = 65) Pre-eclamptic (n = 60) p-valueb

Maternal age (years) 32.3±0.5 31.2±0.8 0.24

Gestational age (weeks) 39.1±0.1 32.3±0.5 <0.001

Infant sexc 33F, 32M 27F, 34M 0.48

Infant birth weight (g) 3369.2±54.4 1738. 1±125.3 <0.001

Infant weight percentiles (%)d 25–50 10–25 <0.001

Gravidity 29 primi-, 36 multi- 40 primi-, 20 multi- <0.001

Parity 32 primi-, 33 multi- 51 primi-, 9 multi- <0.001

Systolic blood pressure (mmHg) <140 172.2±1.9 NA

Diastolic blood pressure (mmHg) <90 105.6±1.1 NA

Antihypertensive treatment(s) Not given 48 NA

MgSO4 treatment Not given 37 NA

NA, not applicable.
a Shown is the mean ± SEM unless stated otherwise.
b Student’s t test with Welch’s Correction for parametric data and 2 × 2 contingency table with Fisher’s Exact Test for categorical data were used.
c One PE patient had a twin pregnancy.
d Data shown as median.

doi:10.1371/journal.pone.0128230.t001
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and angiogenesis. Further details of these GO sets are presented as supplementary information
in S1 Table.

Major altered PE pathways
GSEA of the PE decidual transcriptome yielded 42 GO sets that were consistently altered be-
tween the two transcriptome profiling batches. The 13 pathway categories of these 42 differen-
tially expressed GO sets (p<0.001) are presented in Table 3. The top three altered pathway
categories were in the areas of immunity/inflammation, cell signalling and apoptosis, which
represent 28 GO sets. Detailed information of the GO sets is available in S2 Table.

Overlap of PE transcriptome and PE susceptibility genes
The pathway categories of the GO sets that are concordant between the PE decidual transcrip-
tome and the susceptibility genes are presented in Table 4. There were a total of 8 common GO
sets that were grouped into five pathway categories. The top two pathway categories were apo-
ptosis and cell signalling, which represent five GO sets. Details of the individual GO sets are
available in S3 Table.

Fig 1. Common regulators and targets of maternal PE susceptibility genes. A gene network showing the interactions between the maternal PE
susceptibility genes was generated with Pathway Studio 9.0. Each link is supported by at least one published reference. Maternal PE susceptibility genes
investigated are coloured in green, connecting genes in yellow and major regulator/target genes in red.

doi:10.1371/journal.pone.0128230.g001
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Fig 2. Downstream genes of identified regulators and targets of maternal PE susceptibility genes. A gene network of downstream targets of identified
regulators/targets of maternal PE susceptibility genes was generated with Pathway Studio 9.0. Each link is supported by at least one published reference.
Connecting genes are coloured in yellow, regulator/target genes of maternal PE susceptibility genes in red and major downstream targets of these genes
in purple.

doi:10.1371/journal.pone.0128230.g002

Table 2. Categories of pathways associated with PE susceptibility genes.

Pathway categories Genes involved Number of GO
sets

Reproduction ACVR1, ACVR1C, ACVR2A, INHA, INHBB, LNPEP 31

Cell signalling ACVR1, ACVR1C, ACVR2A, INHA, INHBB, ERAP1,
LNPEP

21

Liver function ACVR1, ACVR1C, INHA, INHBB, LNPEP 11

Immunity/Inflammation ACVR1, INHA, INHBB, ERAP1, ERAP2 9

Neural function ACVR1C, INHA, COL4A1, COL4A2, LNPEP 7

Protein modification ACVR1, ACVR1C, ACVR2A, INHA, LNPEP 6

Apoptosis ACVR1, ACVR1C, INHA, INHBB 5

Differentiation ACVR1, ACVR1C, INHA, INHBB, COL4A1, ERAP1 5

Proliferation ACVR1, INHA 5

Angiogenesis ACVR1, COL4A1, COL4A2, ERAP1 4

Bone function ACVR1, ACVR2A 3

Tissue remodelling COL4A2, ERAP1, ERAP2, LNPEP 3

Blood pressure
regulation

ACVR2A, ERAP1, ERAP2 2

Cardiovascular function ACVR1 1

Transcription ACVR1 1

doi:10.1371/journal.pone.0128230.t002
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Differentially expressed genes
From the ranking of the genes using the limma R package, none of the genes reached statistical
significance when the stringent Bonferroni’s Correction (p< 1.26 X 106) for multiple testing
was applied. However, by using the semi-conservative statistical cut-off of p<0.001, a total of 8
differentially expressed genes were identified as concordant between the two datasets (Table 5).
Downregulated genes were CD72, DBP, DPP7, HS3ST2, PER3, SLC2A6 and TNFRSF14. PDK4
was the only upregulated gene. The entire list of genes with concordant differential expression
between the two datasets is available in S4 Table.

Discussion
In this study, we performed a novel genome-wide transcriptome directed pathway analysis of
maternal PE susceptibility genes in a large set of 125 decidual samples. The transcriptome pro-
filing yielded a total of only 8 differentially expressed genes. Two genes have reported associa-
tions with PE. DBP, an albumin promoter binding protein, was previously reported by Løset

Table 3. Significantly altered pathway categories in PE decidual transcriptome (p < 0.001).

Pathway categories Number of GO sets p-value (Pathway Studio 9.0) a

HT12 WG6

Immunity/inflammation 17 1.17 X 10−20–8.03 X 10−4 2.77 X 10−12–9.76 X 10−4

Cell signalling 7 3.71 X 10−11–4.22 X 10−4 4.55 X 10−10–6.30 X 10−4

Apoptosis 4 7.91 X 10−10–4.55 X 10−4 1.47 X 10−8–1.90 X 10−5

Adhesion 2 1.52 X 10−6–8.44 X 10−4 9.84 X 10−8–6.12 X 10−6

Cytoskeleton 2 3.53 X 10−10–5.48 X 10−5 7.50 X 10−6–2.59 X 10−5

Platelet function 2 8.00 X 10−10–6.10 X 10−6 6.06 X 10−13–2.91 X 10−8

Proliferation 2 6.10 X 10−6–8.56 X 10−4 6.07 X 10−7–2.53 X 10−6

Angiogenesis 1 1. 70 X 10−8 1.97 X 10−8

Liver function 1 9.44 X 10−6 3.62 X 10−8

Migration 1 5.96 X 10−6 1.77 X 10−6

Oxidative stress 1 1.06 X 10−6 1.11 X 10−7

Protein modification 1 5.09 X 10−4 5.13 X 10−4

Tissue remodelling 1 8.25 X 10−4 3.41 X 10−5

a Presented as range where appropriate to reflect the spread of individual p-values of each Gene Ontology

(GO) set from each transcriptome profiling batch.

doi:10.1371/journal.pone.0128230.t003

Table 4. Categories of pathways associated with PE susceptibility genes that are significantly altered in PE decidua (p < 0.001).

Pathway categories Number of GO sets p-value (Pathway Studio 9.0) a

HT12 WG6

Apoptosis 3 7.91 X 10−10–4.55 X 10−4 1. 47 X 10−8–1.35 X 10−5

Cell signalling 2 7.35 X 10−8–1.73 X 10−7 4.55 X 10−10–2.23 X 10−5

Angiogenesis 1 1. 70 X 10−8 1.97 X 10−8

Liver function 1 9.44 X 10−6 3. 62 X 10−8

Tissue remodelling 1 8.25 X 10−4 3.41 X 10−5

a Presented as range where appropriate to reflect the spread of individual p-values of each Gene Ontology (GO) set from each transcriptome

profiling batch.

doi:10.1371/journal.pone.0128230.t004
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et al. [24] to be decreased in PE decidua and our results support this. In an earlier study of the
fetal placenta, the other gene SLC2A6, which codes for a glucose transporter, was significantly
increased in PE [39] and contrasts with our results where we found a decrease in PE maternal
decidua. This may be reflective of the tissue being sampled from different parts of the mater-
nal-fetal interface. The remaining genes have no known association with PE. However, this
process of identifying differentially expressed genes that satisfy a statistically significant thresh-
old may overlook other genes of equal or greater biological relevance; for example, smaller fold
changes in the gene expression levels of several genes (an additive effect) in a common pathway
may have a greater downstream impact compared with a large fold change in expression levels
from a single gene [26]. By taking into account the decidual transcriptome, instead of focussing
specifically on individual differentially expressed genes, there is increased power of detecting
altered pathways in PE. Hence, by using our novel approach, we identified common altered
pathways shared between microarray data and susceptibility genes.

To determine the interactions between the susceptibility genes from the various functional
groups, we first constructed gene network pathways to identify common regulators and targets.
There are many complex interactions between the genes. Some of these identified genes are
both a regulator and target of the susceptibility genes. For example, one target of ERAP1 is
AGT and AGT in turn is a regulator of ACVR2A. ERAP1 and ACVR2A are from different
functional groups; however, we demonstrate an interactive link between these two genes via
AGT, a finding that is not apparent from the traditional study approaches. These major regula-
tors and targets are also implicated in previous PE studies. AGT is a major component of the
renin-angiotensin-system, which regulates blood pressure and body-fluid volume, and has
been widely investigated as a PE candidate gene [18]. Many studies have shown the remaining
genes, which encode various cytokines, growth factors and protease inhibitors, are measurable
in the maternal circulation and are significantly altered in PE. Activin A and inhibin A dimers
derived from INHBA, IFNγ, IL6, plasminogen activator inhibitor-1, SERPINE1 and TGFβ1are

Table 5. List of differentially expressed genes in PE decidua (p < 0.001).

Symbol Illumina
Probe_ID

Definition Weighted fold
change a

p-value b

HT12 WG6

HS3ST2 ILMN_1712475 Heparan sulfate (glucosamine) 3-O-sulfotransferase 2 -1.39 2.08 X
10−5

1. 83 X
10−4

TNFRSF14 ILMN_1697409 Tumor necrosis factor receptor superfamily, member 14 -1.35 1.74 X
10−4

8.93 X 10−4

SLC2A6 ILMN_1778321 Solute carrier family 2 (facilitated glucose transporter), member
6

-1.32 4.03 X
10−4

4.64 X 10−4

DPP7 ILMN_2252309 Dipeptidyl-peptidase 7 -1.22 1.36 X
10−4

2.32 X 10−4

CD72 ILMN_1723004 CD72 molecule -1.21 7.09 X
10−4

1.41 X 10−4

PER3 ILMN_1660986 Period circadian clock 3 -1.20 4.85 X
10−4

1.37 X 10−7

DBP ILMN_1715555 D site of albumin promoter (albumin D-box) binding protein -1.20 3.82 X
10−5

9.65 X 10−6

PDK4 ILMN_1684982 Pyruvate dehydrogenase kinase, isozyme 4 1.72 3.29 X
10−6

1.23 X 10−4

a Weighted to account for effect of the different sample sizes between each transcriptome profiling batch, values above below 0 indicate underexpression

in PE relative to control, while values above 0 indicate overexpression in PE relative to control.
b Presented as individual p-values from each transcriptome profiling batch.

doi:10.1371/journal.pone.0128230.t005
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all significantly increased in the maternal circulation in PE-affected women [40–45]. In con-
trast, VEGFA, an angiogenic factor, is significantly reduced in the circulation of women with
PE [46].

Further analysis of downstream genes of the common regulators and targets was undertaken
to identify potential PE biomarkers. With no selection bias, this analysis identified the anti-an-
giogenic factors, soluble FLT1 (sFLT) and endoglin (ENG), which are currently widely ex-
plored as predictive PE biomarkers and were first identified through microarray studies [47–
49]. The other downstream genes also have recognised roles in PE. MMP2, MMP9 and CDH
have altered expression in PE, with functional roles in the invasion of trophoblast cells into the
maternal decidua [50–54]. KDR codes for a VEGF receptor that is significantly decreased in PE
and may contribute to the endothelial dysfunction observed in PE [55]. Endothelin, which is
coded by EDN1, is a vasoconstrictor that is significantly increased in the circulation of PE
women [56]. Endothelin (EDN1), endothelial nitric oxide synthase (NOS3), inducible nitric
oxide synthase (NOS2) and prostaglandin-endoperoxide synthase 2 (PTGS2) are well known
for their involvement in maintaining blood pressure [57]. An IL10 null rodent model of PE
was developed, highlighting a possible role for IL10 in PE [58]. Thus, these may be possible tar-
gets through which these PE susceptibility genes act to influence the development of PE and
more targeted functional analyses can be performed with this knowledge. Therefore, a better
understanding of how these different proteins interact may enable the development of a rigor-
ous panel of PE biomarkers.

Additionally, the pathways associated with the susceptibility genes were determined and
categorised. The majority of these pathway categories were associated with at least two func-
tional groups of genes from the activin/inhibin signalling, structural components and M1
family aminopeptidases functional groups. The pathway categories of neural function, differen-
tiation and angiogenesis had all three functional groups involved. This provides evidence that
genes from distinct functional groups interact with each other and are involved in multiple
pathways. Most, if not all of these pathway categories are thought to be important for a healthy,
uncomplicated pregnancy. Therefore defects in multiple genes affecting several important
pathways may promote PE susceptibility, providing additional weight behind the complex,
multi-factorial nature of this serious disorder of obstetric medicine.

The top three altered PE pathway categories in the decidual transcriptome were immunity/
inflammation, cell signalling and apoptosis, representing 28 altered gene sets, which were con-
sistently altered between both transcriptome profiling batches. These pathway categories are
consistent with the published literature [24, 59]. The top pathway category of immunity/in-
flammation supports the growing evidence of a highly dysregulated immune and inflammatory
response at the PE maternal-fetal interface [60]. PE is hypothesised to be partly due to immune
maladaptation to paternal antigens carried by the fetus, which leads to an exacerbated inflam-
matory response [61]. The disruption of cell signalling cascades that modulate many processes
during pregnancy such as trophoblast invasion and spiral arteriole remodelling is hypothesised
to lead to the shallow trophoblast invasion and poor spiral arteriole remodelling observed in
PE pregnancies [62, 63]. Abnormal apoptosis regulation is also commonly observed in PE with
alterations in multiple pathways such as the p53 pathway [64]. The concordant pathway cate-
gories between the susceptibility genes and the PE decidual transcriptome represent the altered
pathways associated with the susceptibility genes. The top two concordant pathway categories
of apoptosis and cell signalling, were also among the top three categories altered in the PE tran-
scriptome. Therefore, the susceptibility genes may contribute to the development of PE
through these particular pathways and focussing our functional analyses of the susceptibility
genes in these areas will be of importance.
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This integrative bioinformatics approach allows us to identify novel interactions and unbi-
ased functional roles of the susceptibility genes. For example, the effect of altered collagen ex-
pression on blood pressure regulation through vasoactive factor production could be
examined. Based on the gene networks, COL4A1 regulates VEGFA, which in turn regulates
many vasoactive factor genes such as NOS3, NOS2, PTGS2 and FLT1. This novel function is
not apparent from the known structural role of collagen. Interestingly, recent studies show that
cleavage products derived from the non-collagenous domain of both COL4A1 and COL4A2,
have significant anti-angiogenic effects on endothelial cells including increased apoptosis and
decreased proliferation, and are being explored as novel cancer therapeutics [65–67]. Hence,
this may be a plausible pathway through which collagen affects blood pressure regulation. The
pathway category of blood pressure regulation was nominally altered (p< 0.05) in the PE de-
cidual transcriptome. Therefore, undertaking this pathway-directed approach allows us to ra-
tionalise various studies that appear disparate, as the results from this study show that the
genes identified through the different approaches interact with each other.

Given the complex genetics of PE, it is likely that the genes from other previously identified
susceptibility loci, not present in our gene networks, may be part of a further extension of the
current networks of gene interactions. Of the genes represented in the gene networks of this
study, two genes SHH and NOS3 reside at the 7q36 locus [28, 30]. The other loci identified thus
far are at chromosomes 2p13, 2p25, 2q22, 9p13 and 10q22 [13, 29, 31, 68]. Further pathway
analysis of these previously identified loci is warranted to extend the current knowledge.

In summary, we found that maternal PE susceptibility genes from distinct functional groups
share similar downstream pathways through common regulators and targets. Downstream
pathways associated with the susceptibility genes are altered in PE. Common pathways are the
link between genes identified through the multiple approaches. An integrative bioinformatics
approach allows us to identify novel interactions and unbiased functional roles of the suscepti-
bility genes. Therefore, with this knowledge more targeted functional analyses of PE suscepti-
bility genes in these key altered pathways can be performed to examine their contributions to
the pathogenesis and severity of PE.
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