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Networks of genetic similarity reveal non-neutral
processes shape strain structure in Plasmodium
falciparum
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Pathogens compete for hosts through patterns of cross-protection conferred by immune

responses to antigens. In Plasmodium falciparummalaria, the varmultigene family encoding for

the major blood-stage antigen PfEMP1 has evolved enormous genetic diversity through

ectopic recombination and mutation. With 50–60 var genes per genome, it is unclear

whether immune selection can act as a dominant force in structuring var repertoires of local

populations. The combinatorial complexity of the var system remains beyond the reach of

existing strain theory and previous evidence for non-random structure cannot demonstrate

immune selection without comparison with neutral models. We develop two neutral models

that encompass malaria epidemiology but exclude competitive interactions between para-

sites. These models, combined with networks of genetic similarity, reveal non-neutral strain

structure in both simulated systems and an extensively sampled population in Ghana. The

unique population structure we identify underlies the large transmission reservoir char-

acteristic of highly endemic regions in Africa.
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A central question in ecology and evolution regards the
extent to which non-neutral processes structure diver-
sity1–4. It remains a challenge to identify signature pat-

terns that reveal an important role of ecological interactions in
facilitating and stabilizing species coexistence in ecosystems with
high diversity, such as tropical rain forests5,6. These ecological
interactions specifically depend on trait differences between
species, so that the assembly of diversity would not simply reflect
stochastic colonization and extinction events of equivalent species
as under neutrality. Here, we address whether competitive
interactions act as a non-neutral stabilizing force that promotes
coexistence in another highly diverse system: Plasmodium falci-
parum populations as an ensemble of diverse strains in regions of
high malaria transmission.

Recurrent malaria infections in endemic regions do not gen-
erate sterilizing immunity toward subsequent infection7; this
suggests the existence of a large number of strains of the patho-
gen. A vast reservoir of P. falciparum exists in local human
populations in Africa in the form of asymptomatic infections,
hosts that carry the parasite without manifestation of the disease8.
An understanding of the antigenic diversity of the parasite in such
reservoirs, including whether and how this diversity is structured
into strains, is fundamental to understanding immunity patterns
and developing intervention strategies in the transmission
dynamics of P. falciparum malaria.

The high transmission rates of endemic regions suggest
frequency-dependent competition among parasites for hosts,
through the cross-protection conferred by the adaptive immune
system9,10. As the success of an infection depends on the
immunological memory of a host, new and rare antigenic types
have a fitness advantage in the transmission system relative to
common ones. In ecological theory, traits that confer such
frequency-dependent advantage are known to promote coex-
istence via the formation of distinct niches, and to oppose in so
doing the destabilizing effect of absolute fitness differences in
average growth rates11,12. The antigenic variation in pathogens
maps conceptually to such stabilizing trait differences in ecolo-
gical competition. Interestingly, “immune selection,” a form of
balancing selection, is already recognized as an important evo-
lutionary force promoting the diversification and persistence of
the var gene family, whose ancient origin predates the speciation
of P. falciparum13,14. The role of immune selection is much less
recognized and understood however for the faster time scales of
ecology/epidemiology and for the higher organizational levels of
either the repertoires of var genes that constitute a parasite or the
population structure of coexisting strains15.

In high transmission regions, the extensive diversity of the var
gene family16 exhibits low amino acid similarity encoded by
different var genes and a very low percentage of genes shared
between parasites, both locally and regionally (e.g., < 0.3% in
Africa15,17). Previous work, known as strain theory, has posited
that the non-random association of gene variants within genomes
results from selection against recombinants through cross-
immunity18, akin to emergent niches of limiting similarity19 or
selection toward divergent local adaptations20.

We are therefore interested in addressing whether signatures of
immune selection can be detected at the repertoire level in such a
diverse system. Existing models for strain theory18,21,22 do not
provide sufficient guidance on expected empirical patterns,
because they incorporate so far limited var gene diversity com-
pared to observed numbers for P. falciparum. This is the case for
both earlier formulations with a few distinct loci21,22 and a recent
extension for multi-copy gene families23 that have predicted the
emergence of dominant strains with minimum genetic overlap. It
is therefore unclear whether population structure can emerge at
realistic, high genetic diversity, especially under extensive

recombination rates. Existing strain theory also lacks a neutral
counterpart, a neutral hypothesis to disentangle, and statistically
test, patterns generated by the acquisition of specific immunity
from those resulting simply from the basic demography of the
transmission system. In this study, we address these limitations
by extending an individual-based stochastic model to incorporate
realistic mutation and recombination processes, and generate
levels of diversity comparable to those of the var gene family in
hyper-endemic malaria regions. In addition, two process-based
neutral models are formulated, which include the same epide-
miological and evolutionary processes of the full model, but
replace specific immunity by either: (i) no immune memory or
(ii) generalized protection acquired via the number of previous
infections. Last, we propose the application of network properties
to identify selection signatures based on comparisons of var
repertoire structures under immune selection vs. neutrality. We
demonstrate that the structure of genetic similarity networks
contains clear signatures of neutral vs. non-neutral processes, and
that immune selection plays an important role in shaping the
empirical strain structure of var gene repertoires in a local P.
falciparum population from Bongo District (BD), Ghana. This
structure differs from what is expected on the basis of either
previous strain theory23 or recent ecological theory24,25, in which
niche differentiation takes the form of clusters of strains or spe-
cies with limited overlap among them. An ensemble of network
properties rather than a given clustering metric is therefore
needed. We discuss our results in the context of other attempts to
identify niche differentiation on the basis of genomic data in
microbial ecology26 and trait differences in community
ecology24,25.

Results
Extended individual-based stochastic model of var. We exten-
ded the individual-based stochastic var model of Artzy-Randrup
et al.23 to incorporate more realistic mutation and recombination
processes, which allows us to reach levels of diversity comparable
to those of the var gene family (Fig. 1; Methods). In the model,
each parasite var genome consists of a repertoire of 60 copies of
var genes (Fig. 1a). Each var gene is considered a linear combi-
nation of two epitopes based on the empirical description of two
hypervariable regions in the var tag region of the DBLα domain27.
The transmission system is composed of a pool of these gene
variants and a local human population open to immigrant
parasites, in which we track transmission and infections. Simu-
lations start with a static pool of var genes consisting of random
combinations of the two epitopes (Fig. 1b). During transmission
events, mitotic recombination and mutation generate new var
genes, making the overall pool of epitopes effectively open to
innovation, whereas meiotic recombination shuffles the compo-
sition of var genes of two or more repertoires in co-infections
during the vector stage of transmission (Fig. 1c). The epitopes in
the genes represent components of the PfEMP1 molecule that are
recognized and remembered by the immune system of the host;
they are the ‘traits’ that effectively mediate competition for hosts
at the population level.

In the immune selection model, individuals gain protection
against specific epitope variants, through expression of the
corresponding genes in an infection. Therefore, the rate at which
hosts clear the infections increases with a higher number of
specific epitopes seen from past infections. We then developed
two neutral models and compared the repertoire structures they
generate with those of the model with specific immunity. The first
neutral model assumes generalized immunity, in which protec-
tion is acquired as a function of the number of previous exposures
irrespective of their specific antigenic identity; the second one is a
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Fig. 1 Schematic illustration of the var gene model. a Each parasite genome (ovals) consists of a repertoire of g copies of var genes. Each var gene (depicted
by different colors within each parasite) is in turn represented as a linear combination of epitopes (depicted by different shapes), with each epitope having
many possible variants (alleles, depicted by different colors). b The local population receives var repertoires from a fixed global var gene pool through
migration. c At each transmission event, one donor and one receiver host are selected at random from the host pool. Each parasite genome in the donor
host is transmitted to the mosquito with probability of 1/(number of genomes). During the sexual stage of the parasite (within mosquitoes), different
parasite genomes can exchange var repertoires through meiotic recombination to generate novel recombinant repertoires. The receiver host can receive
either recombinant genomes or original genomes. During the asexual reproduction stage of the parasite (within the blood stage of infection), var genes
within the same genome exchange epitope alleles through mitotic (ectopic) recombination. Also, epitopes can mutate. These two processes generate new
var genes. Each var gene is expressed sequentially and the infection ends when all the var genes in the repertoires have been expressed. A new
transmission event may occur throughout the period of expression of var genes as the result of biting events. d Comparison of the three different models.
Only the immune selection model includes specific immunity, through the dependence of infection duration on the memory of previous alleles that have
been seen by a given host. For meaningful comparisons, all the models have the same mean duration of infection
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completely neutral model in which infections propagate and
recover, but hosts are blind to any history of exposure so that
repertoires do not compete for hosts (Fig. 1d). These two neutral
models include all the epidemiological processes, except for
specific immunity towards the var genes that a host has been
exposed to, and the resulting cross-protection. The epidemiolo-
gical phenotype under immune selection is the duration of naive
infection (D). The parameter, D, directly influences the basic
reproduction number (or fitness) of the parasite, R0, and thus we
match the infection period in the complete-neutrality model to
the average duration that emerges in the corresponding immune
selection model for each specific set of parameters (Fig. 1d;
Methods). Similarly, we match the distribution of infection
duration in the generalized immunity model to the emergent
distribution of the full model. Therefore, repertoires under these
neutral models do not exhibit fitness differences related to their
specific genetic composition, whereas repertoires under the
specific immunity model do differ in fitness as a result of the
aggregated history of infection of the host population

(Supplementary Fig. 1). The resulting Entomological Inoculation
Rate (EIR), a measure of the force of infection experienced by
individual human hosts measured as the number of infectious
bites per host per year, is comparable among the three models.
However, as the complete neutrality model does not include any
mechanism to generate the typical empirical age infection
distribution with higher prevalence of asymptomatic infection
in children8, prevalence in this model tends to be higher than that
in the corresponding immune selection and generalized immu-
nity models (Supplementary Fig. 2).

A network representation of var repertoire diversity. The reti-
culate evolutionary pattern of var genes, generated by frequent
mitotic and meiotic recombination within and between parasite
genomes28,29, respectively, precludes the application of traditional
population genetics tests for balancing selection (e.g., Tajima’s D).
Hence, we develop an application of network theory to study the
evolution of var repertoire structures and show that the structure
of genetic similarity networks contains clear signatures of neutral
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Fig. 2 Population structure for the three different models quantified using network properties. Shown here are repertoire similarity networks and
representative network metrics across scenarios under different diversity regimes generated from model simulations with high competition (high duration
of naive infection and high transmission rates). Upper panel, medium diversity (gene pool size of 1,200) and lower panel, high diversity (gene pool size of
24,000). a, d Comparisons of repertoire similarity networks of 150 randomly sampled parasite var repertoires from one time point under three scenarios.
Edge width is relative to the strength of genetic similarity between pairs of repertoires. Only the top 1% of edges are drawn and used in the analysis (see
Supplementary Fig. 3 for distribution of edge weights). Within the largest component of each network, the size of each repertoire is relative to its
normalized betweenness centrality. The value of maximum modularity Q is calculated using edge betweenness30 and is shown at the lower right corner of
each network. The modules obtained in these networks represent groups of highly similar repertoires (strain modules), which are conceptually similar to
geographically isolated populations with limited gene flow. We therefore calculate the pairwise FST of strain modules, to quantify how different strain
modules are from each other, providing a measure of limiting similarity that compares within-module and between-module diversity64. b, e Pairwise
module FST distributions of 100 repertoire similarity networks per scenario. c, f Distributions of the proportion of occurrences of three-node graph motifs
for the three models across 100 repertoire similarity networks. The box shows the interquartile range (IQR, from the 25th to the 75th percentile of the
distribution), and the lower and upper whiskers correspond respectively to 1.5 IQR of this lower quartile and 1.5 IQR of the upper one, with the median
indicated with a line and points displaying outliers
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vs. non-neutral processes. We analyzed the genetic structure of
the parasite population using networks in which nodes are var
repertoires, weighted edges encode the degree of overlap between
the epitopes of these repertoires, and the direction of an edge
indicates whether one repertoire can outcompete the other
(Methods). Comparisons of structure across the similarity net-
works generated under the three models reveal distinctive features
of immune selection, although the specific features that distin-
guish immune selection vary under different epidemiological
settings (described below).

As var genes exhibit different diversity levels across different
endemic regions17, we investigated the influence of var gene pool
size (i.e., the number of var genes in the global pool; Fig. 1b) on
the immune selection signatures. As the two most relevant
epidemiological parameters, transmission intensity and duration
of a naive infection, determine the intensity of competition
among var repertoires, we vary them systematically to address

their influence on signatures of immune selection. Higher
transmission and longer duration of a naive infection intensify
competition among repertoires. They also increase the rate of
meiotic recombination among repertoires in mosquitoes. It
follows that signature patterns of immune selection should be
most evident with increasing values of duration, gene pool size
and transmission, for conditions representative of high
endemicity.

To explore selection signatures in networks generated under
different intensity of competition between strains, we use a suite
of network metrics (see complete list in Supplementary Table 1
and see Supplementary Fig. 3 for the low competition scenarios).
If a process akin to limiting similarity underlies population
structure, networks are expected to be partitioned into discon-
nected clusters of highly similar repertoires that occupy separate
niches in antigenic/genetic space. One way to quantify the
partitioning of a network is by calculating maximum modularity
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Fig. 3 Importance of network features for the classification and the power of correct classification of the selection model. Results are for different levels of
duration of naïve infection, biting rate, and var gene pool size (medium diversity [1,200–2,400] in a, b and high diversity [12,000–24,000] in c, d). a, c The
shade of colored squares indicates the proportion of correct assignments of the immune selection scenario. Variance contribution of network features in
the first linear discriminant function (LD1) are displayed with color-codes corresponding to the feature groups (b, d; see Supplementary Table 1 for feature
groups). Only top features that explain at least 90% of the variance are shown. In simulations with a gene pool of medium diversity a, the proportion of
correct assignments of the selection model increases with increasing infection duration and biting rate. When the genetic pool is of high diversity, the
selection model is almost always perfectly assigned c, while neutral and generalized immunity models are harder to differentiate, even under high
transmission and long infection durations (see Supplementary Table 2). The proportions of different motifs are the most important features that
discriminate scenarios in both high and medium diversity. In the high diversity scenarios, there are a higher number of important features that equally
contribute to the classification d, as compared with the medium diversity scenarios b. The classifiers shown in this figure are built with the top 10% edge
weights of the repertoire similarity matrices
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(Q)30. Under high competition, when the local var gene pool is of
a medium size characteristic of endemic regions of Asia/Pacific
(~ 1200–2400 different var genes)31, the selection case differs
notably from those of the two neutral models: repertoires are
typically grouped into well-defined modules (expressed as high Q
and module FST values, Fig. 2a, b), whereas in networks resulting
from the two neutral models, nodes are typically connected to
form star-shaped or tree-like structures. This qualitative differ-
ence in structure resembles the prediction of non-overlapping
strains in classic strain theory, where the disconnected clusters are
analogous to niches in immune space consisting of highly similar
repertoires.

In addition, because competition at the repertoire level in the
selection case promotes matching competitiveness of two given
connected repertoires, it results in reciprocally connected directed
edges of similar weights. In contrast, in the two neutral models,
repertoires with lower number of unique genes are not removed
by selection and, when one repertoire outcompetes another, there
is only one directed edge between the pair. We use three-node
motifs to capture this variation in competitiveness. For example, a
binary in-tree motif (A- > B < -C) reflects that repertoire B is
outcompeted by A and C, whereas a complete graph motif in
which three repertoires are all reciprocally connected (A < - > B
< - > C < - > A) indicates a balanced, reciprocal competition. We
find that networks of the selection model have a high proportion

of such reciprocal motifs compared with those of the two neutral
models. Binary in-tree or out-tree motifs are instead the most
common in the neutral models, reflecting parent–offspring
evolutionary relationship, resulting from recombination where
the recombinants are not purged by immune selection (Fig. 2c, f).

Under a regime with a larger initial gene pool that matches the
diversity levels of endemic regions in Africa (~ 12,000–24,000
different var genes)15, repertoires have a lower genetic overlap
compared with medium-size gene pool (see Supplementary
Fig. 4). This pattern follows naturally from increased gene pool
diversity, because repertoires can be formed from a larger number
of gene combinations. Although such low overlap can indicate a
non-random structure15, it cannot per se distinguish selection
from the two neutral models. Accordingly, module FST is low in
all three cases and is not a good indicator of selection (Fig. 2e),
despite the selection model possessing more separate components
than neutral models (Fig. 2d). Nonetheless, networks generated
with immune selection can still be differentiated from those
generated under neutral models using motif composition (Fig. 2f),
as well as other network metrics (see Fig. 3 and Supplementary
Fig. 3). In particular, the weaker similarity between repertoires
entails a less clear network partitioning than that of lower gene
pool diversity systems. We therefore use betweenness centrality as
a property reflecting their limiting similarity: this metric measures
the importance of a repertoire in a network by calculating the
proportion of shortest paths connecting any pair of nodes that go
through it32. For the networks generated with the neutral models,
betweenness centrality varies little among repertoires, with no
highly central ones (Fig. 2d). This is because the persistence of
each repertoire is independent of the antigenic composition of
other repertoires given the lack of specific competition. By
contrast, in the selection case some repertoires are clearly more
central than others (Fig. 2d), reflecting the non-random
persistence of antigenic niches, connected through these hubs
via a series of recombination events.

Network classification at the repertoire and gene levels. To
apply the findings from network theory to empirical data, we first
asked whether networks produced with the agent-based model
can be classified into the processes that generate them—immune
selection vs. generalized immunity or complete neutrality—using
an ensemble of network properties (Supplementary Table 1). As
competition is mainly among repertoires that are highly similar,
we inspected whether the quantile of edges ranked by similarity
values that are left in the networks influences the accuracy of
classification. We found that the power of classification (mea-
sured by the proportion of correct classifications [true positives
and true negatives]; Methods) remains largely unaltered as long
as the bottom 20% in similarities of edges are removed (see
supplementary Table 2). With a medium gene pool size, there is a
positive correlation between the transmission intensity and our
ability to classify networks correctly, reflecting an increasing
divergence between the different kinds of networks (Fig. 3a).
With a high gene pool size, the classification always differentiates
the selection scenario from the two neutral ones correctly
(Fig. 3c). The proportion of different kinds of motif structures is
the most powerful metric for the classification in high and
medium diversities. Although metrics related to node degree
contribute more in classification under medium gene pool size,
metrics based on reciprocity and distance are more important for
high gene pool size. Overall, a higher number of network features
contributes evenly to the classification under the high diversity
scenario than under the medium diversity one (Fig. 3b, d).

Most endemic regions have seasonal transmission of malaria.
Therefore, we repeated the classification analysis using networks
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generated with the agent-based model that includes a seasonal
transmission pattern with a high gene pool size (Methods). Here
again, we found that classification power remains largely
unaltered as long as the bottom 20% of links are removed.
Unlike in non-seasonal networks, the classification can also
differentiate generalized immunity from complete neutrality
scenarios (Supplementary Table 2), due to the differences in the
distribution of duration of infections (see Supplementary Fig. 1).
Specifically, in the scenario of generalized immunity, early
infections in naïve hosts persist long enough to overcome the
bottleneck in transmission during the dry season and are
therefore carried on into the wet season. In contrast, infections
under complete neutrality have relatively short durations that
limit persistence through the dry season. Therefore, strain
composition has a faster turnover rate under complete neutrality
than under generalized immunity. These different dynamics leave
different signatures in the networks, including motif composi-
tions (Supplementary Fig. 5).

In addition to the effects of immune selection at the repertoire
level, frequency-dependent competition also works at the level of
var genes in the population. Specifically, frequency-dependent
competition will limit the abundance of genes that are similar to
many others in their epitope composition—and are thus readily
recognized by the immune system—while favoring the abundance
of genes with a unique composition of epitope alleles. We can test
this prediction using a network in which nodes are genes and
edges encode similarity in allelic composition (Fig. 4a). In the
immune selection case, we find a characteristic negative
correlation between node degree (number of genes similar to a
focal gene) and the frequency of genes in the host population,
because only genes that occupy a different niche can reach high
frequencies. This effect is absent in the neutral models
(Fig. 4b–d).

Comparison with empirical data. Deep genetic sampling of local
populations in BD, Ghana allows application of these theoretical

findings to examine the role of immune selection in nature. Gene
similarity networks were built from var DBLα domain tags
sequenced from 1248 P. falciparum isolates in Ghana (Methods).
An isolate refers to a complete sample of parasites from a host,
which may contain multiple infections (i.e., multiplicity of
infection, or MOI > 1). We restrict our analyses to the upsB/upsC
group of the DBLα domain, because this subset is known to
exhibit frequent ectopic recombination within itself relative to the
more conserved upsA group29. This subset is therefore less prone
to generate the above negative correlation spuriously out of dif-
ferences in recombination rates, and it provides a more appro-
priate counterpart to our theory, which does not consider
functional differences between var gene variants. The resulting
gene similarity network exhibits a strong negative correlation
between var DBLα-type frequency and number of similar
neighbors, providing evidence for frequency-dependent compe-
tition (Fig. 5a).

We then examine the similarity network at the level of
repertoires, by calculating shared DBLα types between different
repertoires in a subsample of 161 isolates whose MOI is equal to
one (i.e., whose var genes most likely compose a single repertoire;
Methods; Supplementary Fig. 5). We applied our network
classification method to ask whether immune selection had an
important role in shaping empirical population structure. We
generated a library of simulated networks under parameter ranges
representative of the sampling area. In order to represent
seasonality in the empirical data correctly, we ran the simulations
using a seasonal biting rate that is characteristic to the local area
based on Appawu et al.33 (Methods). The resulting values of EIR
[~ 25–170] encompass empirical observations for the region33.
We sampled 94 and 67 parasites every October and the next June,
respectively, to construct the similarity networks that represent
the empirical sampling (Methods). Classification of the empirical
network obtained with the top 10% of edges in similarities, and
therefore the potentially strongly interacting repertoires, indicate
its resemblance to networks generated with the immune selection
scenario based on discriminant functions (Fig. 5b). This
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Fig. 5 Empirical investigation of the Ghana data shows resemblance to the immune selection scenario. a Negative correlation between DBLα type
frequencies and their number of similar genes for the upsB/upsC var genes in the parasite population (r=− 0.040, p < 2.2e – 16). The number of similar
genes is calculated as the degree (k) of a focal gene in the gene similarity network, for amino acid similarities above 0.6. Histograms on the top and right of
the plot show the distributions of k and DBLα-type frequencies, respectively. b Classification of networks generated with the agent-based model using
Discriminant Analyses of Principle Components66 onto a 2-D space formed by the two linear discriminant (LD) functions using the top 10% edge weights.
The empirical network is more likely to be generated under an immune selection regime (posterior probability [PP]= 1), as opposed to neutrality (PP=
3.57E – 8) or generalized immunity (PP= 2.15E – 9). The classification relies on comparisons of 34 network properties (see Supplementary Table 1) trained
with 7000 simulated networks and verified on test sets of 800 networks (i.e., 100 combinations of different parameter settings for each of the scenarios
were run; infected hosts were sampled in October and the next June each year, as for the empirical sampling, at the stationary stage of the simulations (i.e.,
the last 26 years in the simulations); similarity networks were then built for randomly sampled parasites from the sampled hosts). Accuracy of network
classifications is above 0.99 for each scenario (see Supplementary Table 2 for comparisons of accuracy and the classifications of the empirical network
using different percentage of top edges in the network, and Supplementary Fig. 5 for motif properties of the empirical network compared with simulated
ones)
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classification result is robust up to a similarity strength cutoff
value of the top 25% of the edges. Beyond this point, when weaker
edges are considered, results assign the classification to general-
ized immunity (Supplementary Fig. 6). The lower 75% edge
weights in the empirical networks represent, however, the sharing
of at most one gene between pairs of repertoires, which provides
little information on strongly interacting repertoires. This is
discussed below.

Discussion
The findings provide clear evidence for the role of frequency-
dependent competition as a result of immune selection in
structuring antigen composition in a natural population of P.
falciparum. Network patterns of repertoire similarity differed
significantly from those obtained by the demography of trans-
mission alone. The importance of immune selection at the var
gene level has been recognized before, based on the ancient
origin13,14 and sequence diversity of the gene family itself16. An
agglutination experiment by Bull et al.34 also showed that chil-
dren who have broader protection against PfEMP1 variants tend
to be infected by only rare variants. Our results provide an
additional piece of evidence of selection at the gene level, in that
common var gene variants can only persist if they are genetically
distinct. That immune selection operates at the level of the genes
does not necessarily imply an effect at the higher level of orga-
nization of repertoires or strains, especially given large gene pools
and high recombination rates. We have shown that under
extreme genetic diversity and intense recombination, immune
selection profoundly structures repertoire diversity, and that this
structure can be detected and characterized using network
metrics.

The network signatures we have identified present conceptual
similarity to traditional tests of balancing selection developed in
population genetics or community ecology (as summarized in
Supplementary Table 3), thus filling the gap of available tests for
highly recombinant gene families. Specifically, a higher number of
components/communities with even sizes is observed under the
immune selection scenario, in analogy to evenness measures in
ecology or Tajima’s D in population genetics. Another key pattern
is limiting similarity. It is akin to high linkage disequilibrium (i.e.,
non-random association) among genes under balancing selection,
such as in HLA genes35. In ecology, early competition models
such as the standard Lotka–Volterra equations showed that stable
coexistence requires a given degree of niche divergence19. The
limit of coexistence is now understood to depend on both sta-
bilizing (frequency-dependent) niche differences and destabiliz-
ing (fixed) fitness differences in average growth rates11. Moreover,
more recent theory on niche differentiation has described the
emergence of clusters of similar species in trait space, where the
limited overlap is now between these groups and not individual
species24. This pattern is a long-lived transient state, which can be
stabilized when immigration25 or evolution24 are introduced
explicitly. It is the basis for the gap statistics method to distin-
guish simulated communities under niche differentiation from
null models based on two clustering measures, k-means disper-
sion36 and Ripley’s K function37. Clustering on the basis of
genomic data was also applied to this end in microbiome com-
munities26, although limitations of the null model confound the
results38. The coexistence pattern of highly similar and divergent
species is analogous to the population structure we find in our
model under a low to medium diversity of the gene pool, con-
sistent with previous studies23, as well as the genetic patterns
resulting from balancing selection in evolutionary genetics
(Supplementary Table 3). In that regime, here too, competition-
driven clustering is identified by our network metrics. In

particular, modularity detects communities that are more highly
linked within than between; module FST, introduced here,
quantifies linkage based on genetic distinctiveness of a focal group
weighted by its genetic diversity.

Importantly, clustering is no longer a characteristic property in
our system at high diversity of the gene pool, comparable to that
observed in endemic regions. Thus, cluster measures alone are
unable to differentiate immune selection from neutral processes
and we suspect the same will be the case in ecological systems if
trait spaces underlying interactions are high-dimensional39.
Existing models in community ecology have considered so far
only a low number of dimensions.

For the var system, we have therefore relied on an ensemble of
network properties. Motif compositions provide a detailed profile
of similarity patterns among triplets, which were found to explain
the largest proportion of the variance between the selection and
neutral models (Fig. 3). In addition, reciprocity in the network
captures a unique signature of balancing selection in multi-copy
gene families, which does not have a counterpart in ecology or
population genetics measures. This is because the fitness of
repertoires depends on the number of unique genes under
immune selection, given functional equivalence between indivi-
dual genes. Competition among genomes not only selects for
those with diverse genes, but also for the ones with more genes.
Accordingly, genomes in West Africa, where competition is
intense, maintain more than 50 unique var genes, whereas those
in South America, where transmission and therefore competition
is low, are 10 var genes shorter40. More generally, these network
properties can be applied to other multicopy gene repertoires for
antigenic variation, such as vsg genes in Trypanosoma brucei or
msg genes in Pneumocystis carinii41.

Detecting signatures of selection requires a comparison to
dynamic neutral models. The observation of high modularity or
low pairwise similarity among repertoires does not guarantee the
importance of immune selection, as low gene pool size or low
transmission can also produce similar patterns under neutral
models (see network structures in Supplementary Fig. 3). It is
likely that generalized immunity, neutrality, and immune selec-
tion are all at work, either together or at different stages or genes.
We have classified networks to these three scenarios separately to
investigate whether a distinct population structure exists for var
repertoires that reflects an important role of immune selection. In
other pathogen systems, the role of neutral vs. non-neutral forces
were also investigated, which revealed unforeseen patterns. For
example, Nicoli et al.42 found that strain replacement is more
likely under generalized immunity than strain-specific immunity
when vaccination is applied in Pertussis. Cobey and Lipsitch43

demonstrated that weak specific immunity together with gen-
eralized immunity permit the coexistence of strains with weak
competence in Streptococcus pneumoniae.

Another interesting feature of the var repertoire dynamics is
the positive feedback between increasing competition and the
generation of inferior competitors. In endemic regions with
higher rates of transmission, hosts exhibit higher average MOI44.
The rate of generation of recombinant genomes is positively
correlated with MOI, because mosquitoes are more likely to pick
up multiple var repertoires from the host. As unfit repertoires are
generated at a higher rate under higher transmission, immune
selection leaves stronger signatures in high transmission regimes,
compared with lower transmission (Figs. 2, 3). Conversely,
ectopic recombination can create new antigenic variants, con-
ferring a fitness advantage to strains with rare variants. Therefore,
in areas of high transmission, there is a high generation of allelic
diversity, which is maintained by selection. These two forms of
recombination, caused by different molecular mechanisms, result
in different directions of selection.
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We have explored parameter space broadly in terms of trans-
mission intensity and gene pool size, and have also considered
seasonal and non-seasonal transmission. Additional variations of
model structure will be addressed in future work. In particular,
the rules that represent within-host dynamics and regulate the
expression of multiple infections and their interactions with host
immune responses can be examined in more detail. The genetic
multiplicity of P. falciparum was found to potentially prolong
asexual infections45,46, probably due to cross-reactive immune
responses47,48. Although for our main results, we did not consider
a cost associated with higher MOI, the introduction of a more
prolonged infection within multiply infected hosts and across a
range of parameters, indicated the robustness of the described
network structures.

Another extension of the model should relax the functional
equivalence of all var genes9,49–51. In the empirical network
analysis, when edges are included that represent the lower part of
the similarity distribution (the 75% weakest edge weights, cor-
responding to links between repertoire pairs that only share one
gene), the empirical pattern resembles that obtained under gen-
eralized immunity (Supplementary Fig. 6). As the majority of the
one-gene sharing edges involves the most common var types, the
pattern could arise from these genes having more critical func-
tions than other var types, violating model assumptions of
functional equivalence. The pattern could also arise from differ-
ential selection pressure on the genes. Although our model
assumes that parasites express all var genes in the repertoire
during the infection, ensuring equal selection pressure on all the
genes, empirical experiments have shown evidence of a structured
switching pattern, in which slow switching var genes express
more prominently than fast switching ones, preventing exhaus-
tion of the repertoire in one infection52–55. Thus, the activation
hierarchy could bias var genes toward differential strength of
immune selection. Other open areas for further investigation of
var evolution include phenotypic mapping of sequence diversity
to immunity, population structure over time, and its influence on
responses of the malaria system to interventions.

Early motivation for strain theory was the recognition that
organization of PfEMP1 variants (and their underlying genes)
into persistent largely non-overlapping sets can deeply alter our
understanding of epidemiology and control, e.g., by viewing P.
falciparum’s apparent large reproductive number (R0) as resulting
from a large ensemble of strains with much lower reproductive
numbers21. With the sheer number of existing and ever-changing
variants and repertoires, previous definitions of strains as long-
lived entities do not apply at high endemicity. The resulting
population structure nevertheless exhibits limited similarity, in
the form of sparse small clusters and/or isolated individual
repertoires interspersed into voids in antigenic/genetic space,
instead of well-defined niches. This emergent structure provides
an image of competition at the “limit” of limiting similarity
because of immense diversity. The resulting coexistence and
diversity at the different hierarchical levels of genes and reper-
toires would enable the large reservoir of asymptomatic infections
that makes malaria so resilient to elimination in high transmis-
sion regions. As such, monitoring var gene diversity and structure
in responses to control efforts becomes central to understanding
malaria epidemiology and to creating a theory of control
grounded in the reality of the complexity of the system.

Methods
The extended var evolution model. Model parameters and symbols are sum-
marized in Supplementary Table 4. The diversity of var genes is represented at
three organizational levels corresponding respectively to alleles (epitopes), genes,
and repertoires. Specifically, each parasite genome consists of g var genes (in the
main text, g= 60). The specific combination of the var genes is referred to as a var

repertoire throughout the paper. Each var gene is in turn a linear combination of l
loci (in the main text, l= 2) encoding epitopes that are connected linearly and each
epitope can be viewed as a multi-allele locus with n possible alleles. Immune
selection in the model is a result of specific immunity to epitope variants (alleles),
which represent components of the PfEMP1 molecule that are recognized and
remembered by the immune system of the host56. In effect, these epitopes serve as
traits that mediate competition for hosts at the population level, as individuals gain
protection against specific alleles expressed by the parasite during an infection
(Fig. 1a).

Initiation of the simulation: To initiate the var gene pool G, a random allele for
each epitope is chosen from the n alleles to form each gene (Supplementary
Table 4). In the simplest case, if there are two epitopes in a var, then a particular
var gi= {Li1, Li2}, where Li1, Li2 are random numbers from U(1, n). With ni possible
alleles at each epitope, the total number of possible genes is ∏ni. However, we chose
G at least five times smaller than ∏ni so that not all combinations of alleles
constituting a gene would be available. This choice is based on the fact that not all
combinations of alleles form viable proteins. In the beginning of the simulation
run, 20 hosts were selected and infected with distinctive parasite genomes that
consist of sets of g var genes randomly selected from the pool G. The size of the
host population, H, is kept at a constant size (i.e., when a host dies, a new host is
born). For the age structure in the simulations, we fitted an exponential
distribution to the reported Bongo population demography and estimated an
average life span of 30 years. Therefore, each host has a death rate of d= 1/30 per
year.

Repertoire transmission: Vectors (mosquitoes) are not explicitly modeled.
Instead, we set a biting rate b so that the average waiting time to the next biting
event is equal to 1/(b×H). The force of infection is kept the same across host age in
the model. When a biting event occurs, two hosts are randomly selected, one donor
and one recipient. If the donor has infectious parasite repertoires and the receiver is
infected with a probability of p (i.e., transmission probability). If the donor is
infected with multiple strains in the blood stage, then the transmission probability
of each strain is p divided by the number of infectious repertoires. A delay is
applied between a transmission event and a repertoire becoming infectious to
account for stages of the life cycle in the vector and in the human host that are not
modeled explicitly (see below).

Meiotic recombination: Meiotic recombination occurs between strains in the
sexual stage of the parasite’s life cycle. When multiple strains are transmitted to the
donor, these strains have a (1 – Pr) probability to remain as the original strain and a
Pr probability to become a recombinant strain, with Pr calculated as follows,

Pr ¼ 1� 1=Ns ð1Þ

where Ns is the number of strains transmitted to the donor. Although the
association of physical locations and major groups of var genes is established,
orthologous gene pairs between two strains are often unknown. Therefore, we
implement recombination between strains as a process in which g genes are
randomly selected out of all the original genes from the two strains pooled together.
As physical locations of var genes can be mobile, this assumption is a reasonable
simplification of the meiotic recombination process.

Ectopic recombination within the strain in the asexual blood stage: Var genes
often change their physical locations through ectopic recombination and gene
conversions. These processes occur at both sexual and asexual stages. However,
ectopic recombination is observed more often in the asexual stage, where the
parasites spend most of their life cycle6. Therefore, we only model ectopic
recombination among genes within the same genome during the asexual stage.
Two genes are first selected from the repertoire. Then, the location of the
recombination breakpoint is randomly chosen, so that loci to the right of the
breakpoint are either swapped (recombination) or copied (gene conversion). In the
current implementation, we assume all breakpoints result into recombination
rather than gene conversion. Finally, newly recombined genes have a probability Pf
to be functional (i.e., viable) defined by the similarity of the parental genes:

Pf xð Þ ¼ τ
xðδ�xÞ
δ�1 ð2Þ

(Eq. 3 in Drummond et al.57), where x is the number of mutations between the
recombined gene and one of the parental genes, δ is the genetic difference between
the two parental genes, and τ is the recombinational tolerance. If the recombined
gene is selected to be non-functional, then the parental gene will be kept.
Otherwise, the recombined gene will substitute the parental gene so that a
repertoire with a new gene is formed.

Mutation: Mutations occur at the level of epitopes. While infecting a host, each
epitope has a rate of mutation, μ, to mutate to a new allele so that n increases by
one. New mutations can die from lack of new transmissions, proliferate through
new transmissions of the repertoire within which they mutated, incorporate into
other genes through ectopic recombination, or be transferred to a different
repertoire through meiotic recombination.

Within-host dynamics: Each strain is individually tracked through its entire life
cycle, encompassing the liver stage, asexual blood stage, and the transmission and
sexual stages. As we do not explicitly model mosquitoes, we delay the expression of
each strain in the receiver host by 14 days to account for the time required for the
sexual stage in the mosquito and the liver stage. Specifically, the infection of the
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host is delayed 7 days to account for the time required for gametocytes to develop
into sporozoites within mosquitoes. When a host is infected, the parasite remains
in the liver stage for an additional 7 days58 before being released as merozoites into
the bloodstream, invading red blood cells and starting the expression of the var
repertoire. The expression of genes in the repertoire is sequential and the infection
ends when the whole repertoire is depleted. During the expression of the repertoire,
the host is considered infectious with the active strain. The expression order of the
repertoire is randomized for each infection, whereas the deactivation rates of the
genes are controlled by host immunity. When one gene is actively expressed, host
immunity “checks” whether it has seen any epitopes in the infection history. In the
immune selection model, the deactivation rate changes so that the duration of the
active period of a gene is proportional to the number of unseen epitopes. Duration
of infection is not varied a priori as a function of age but is instead determined by
whether a given host has seen the particular strain in the past. Therefore, the
duration of infection of a particular repertoire in a particular host is,

Total duration ¼ D
g
´
Xg

j¼1

ðNo: new epitopesÞ=l ð3Þ

After the gene is deactivated, the host adds the deactivated gene alleles to their
immunity memory. A new gene from the repertoire then becomes immediately
active and the strain is cleared from the host when the whole repertoire of var
genes is depleted. The immunity toward a certain epitope wanes at a rate w= 1/100
per day59. In the current implementation, we assume no cost associated with MOI,
i.e., the duration of infection is not correlated with the number of genomes a host is
infected with (blue line). We also explored another version of within-host
dynamics, in which the duration of infection increases as a function of MOI. The
two scenarios of within-host dynamics produce qualitatively similar network
structures (see Supplementary Fig. 7).

Implementation of the simulation: The simulation is an individual-based,
discrete-event, continuous-time stochastic model in which all known possible
future events are stored in a single event queue along with their putative times,
which may be at fixed times or drawn from a probability distribution. When an
event is triggered, it may trigger the addition or removal of future events on the
queue, or the modification of their rates, thus causing a recalculation of their
putative time. This approach is adapted from the next-reaction method60, which
optimizes the Gillespie first-reaction method61 by storing all events on an indexed
binary heap. This data structure is simple to implement and sufficiently fast and
compact to store all events in the system, down to individual state transitions for
each infection course within each host. Specifically, modifying the putative time for
an event on the queue is O(log N) and heap storage is O(N), where N is the number
of events.

Statistical analyses. Selection vs. neutral models: In order to disentangle sig-
natures of immune selection from those of transmission per se in parasite popu-
lation structures, we designed neutral models in which hosts do not build specific
immunity towards alleles or genes, in addition to the selection model described
above. In the complete neutrality model (Fig. 1d), when hosts are infected, the
duration of infection is determined by the deactivation rate of each gene, which
follows a Poisson distribution of a constant rate; thus, hosts do not build immunity
after an infection. The rate of deactivation is calculated to match the average
duration of infection of the corresponding selection model, while maintaining the
rest of the parameters (e.g., G, b) (Supplementary Fig. 1). In the generalized
immunity model, the duration of infection decreases as the number of past
infections increases, similar to the selection model. However, the identity of the
alleles does not have a role. We therefore match the average curve of duration of
infection vs. number of past infections to that of the corresponding selection
scenario (See Fig. 1).

Diversity metrics, as well as epidemiological parameters, are calculated after
each run to compare between scenarios (see Supplementary Note 1 and
Supplementary Fig. 8). Diversity is quantified using common measures from
ecology, including Shannon diversity62 (H ¼ �PS

i¼1p lnðpiÞ), Simpson’s diversity
and evenness63 (Dsimpson ¼ 1PS

i¼1
p2i
, E ¼ S=

PS
i¼1p

2
i ), β-diversity (i.e., turnover in

composition of var genes or repertoires among parasite samples in time
PS

i xij � xik

���
���=
PS

i xij þ xik

���
���), as well as within-repertoire diversity at the allelic and

genetic levels. Within-repertoire diversity is calculated as the number of unique
alleles or genes divided by the potential maximum number of unique alleles or
genes (e.g., 60 genes and 120 alleles if the genome size is 60 and the number of
epitopes is 2). EIR, prevalence, and MOI are also compared among model runs
under different parameter settings and scenarios.

Building of similarity networks: In addition to diversity, similarity networks
based on allelic composition at the gene or repertoire levels are built to investigate
parasite population structure. For this purpose, 150 parasites are sampled at 120-
day intervals in the hosts, to subsample the simulations in a way that is meaningful
for later empirical application of network analyses. Directional similarity networks
for var genes or parasite genomes (i.e., var repertoires) are built with edges

encoding the proportion of shared unique alleles. Specifically,

Sij ¼
a
Ui

; Sji ¼
a
Uj

where a is the shared number of unique alleles (or genes) between repertoires i and
j, and Ui and Uj are the total number of unique alleles (or genes) in repertoires i
and j, respectively. This directional index of genetic similarity is designed to
represent the relative asymmetric competition between two repertoires, as
explained in Supplementary Fig. 9.

Calculation of network properties: For the inspection of network structures
from repertoires that have strong similarities, we retained edges with the top 1% of
edge weights. Thirty-four network properties are calculated to detect selection
signatures and to distinguish these from patterns generated by pure transmission
dynamics or generalized immunity. These properties include metrics of transitivity,
degree distributions, component sizes, diameters, reciprocity, and proportion of
three-node graph motifs (see Supplementary Table 1 for a complete list of
properties and definitions). For inspection of modular structures, an additional
metric is introduced and named “module FST”. This metric quantifies to what
extent the strain modules inferred from repertoire similarity networks are
genetically different from each other, by comparing the genetic diversity within and
between modules64,65.

Simulations and machine learning algorithms for classification: For each
combination of parameters (i.e., initial gene pool size G, biting rate b, and duration
of naive infection D), 100 simulations were run to calculate the distribution of the
network properties under the scenarios of immune selection, complete neutrality,
and generalized immunity. We investigated the accuracy of network classification
under different quantiles of retained edges ranked by similarities. We explored the
range of retained links from 80% to 10%. The properties are then transformed into
non-correlated principle components. Discriminant analyses66 are performed on
the retained principle components that explain more than 90% of the variance, to
design functions that maximize the differences among networks generated under
different scenarios while minimizing the within-scenario variance. The accuracy of
the discriminant functions is assessed by the proportion of correct classifications
(i.e., power). Here we use the lower two posterior probabilities of classification
assignment among the three scenarios as the false positive rates. A similar approach
is followed to build a classifier for empirical networks. Details are given below.

Comparisons with empirical data. Data sampling: The empirical data analyzed
here was collected from a study performed across two catchment areas in BD,
Ghana located in the Upper East Region near the Burkina Faso border. Malaria in
BD is hyperendemic and is characterized by marked seasonal transmission of P.
falciparum during the wet season between June and October. This age-stratified
serial cross-sectional study was conducted over two sequential seasons. The first
survey was completed at the end of the wet season in October 2012, followed by a
second survey at the end of the dry season between mid-May and June 2013.
Details on the study population, data collection procedures and epidemiology have
been published elsewhere8. Briefly, after obtaining informed consent, finger prick
blood samples were collected for parasitological assessment for P. falciparum by
blood smears and dried blood spots for molecular genotyping8. Sequencing was
conducted for all isolates that are microscopically positive but asymptomatic, with
no strong bias in sequencing parasite genomes across host ages. The study was
reviewed and approved by the ethics committees at the Navrongo Health Research
Center, Ghana; the Noguchi Memorial Institute for Medical Research, Ghana; New
York University, USA; the University of Melbourne, Australia; and the University
of Chicago, USA.

PCR amplification and var DBLα sequence analysis: The DBLα domain of P.
falciparum var genes were amplified from genomic DNA using universal
degenerate primers, as previously described67. Amplicons were pooled and
barcoded libraries were sequenced on an Illumina MiSeq sequencer using the 2 ×
300 paired-end cycle protocol, MiSeq Reagent kit v3 chemistry (NYUGTC, New
York USA; AGRF, Melbourne, Australia). A custom pipeline was developed to de-
multiplex and remove PCR and sequencing artefacts from the DBLα sequence tags.
Reads were demultiplexed into individual fastq files for each isolate using flexbar
v2.568 and paired based on valid combinations of molecular identifier (MID) tags
in the forward and reverse reads. A minimum read length of 100nt and a
maximum uncalled bases threshold of 15 were used. The resulting paired fastq files
were then merged using PEAR v.0.9.1069, to ensure the resulting merged fastq files
had appropriate base quality scores allowing for filtering of low quality reads. The
minimum assembly length was set to 100nt and the minimum overlap required
between a read pair was set to 20nt. Low-quality reads were filtered if they had
more than one expected error using the fastq_filter option of Usearch v8.1.183270.
Next, chimeras were filtered using Uchime denovo and then the filtered reads were
clustered using the cluster_fast function of Usearch after the removal of singletons
to reduce the impact of errors. A threshold of 96% identity15 was used to cluster the
reads. To increase the overall quality of the sequences, the resulting clusters were
removed if they contained < 15 reads to remove low support reads. The
representative read from each cluster was kept for the remaining stages of the
pipeline. Next, any non-DBLα sequences were filtered out with a domain score
threshold of 80. Finally, as a quality check the remaining reads were aligned to the
reference var DBLα sequences of the 3D7, Dd2, and HB3 laboratory clones from
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experimental sequence data. To subsequently determine DBLα types shared
between isolates, the cleaned DBLα reads were clustered using a pipeline based on
the USEARCH software suite version 8.1.183170. Initially, duplicate reads were
removed and the remaining reads were sorted by how many duplicates were
present using the derep_prefix command. The remaining reads were then clustered
at 96% pairwise identity using the usearch cluster_fast command. Finally, the
original unfiltered reads were aligned back to the centroids of the clusters and an
operational taxonomic unit table was generated using the usearch_global command
before a binary version of the table was generated.

Building of empirical networks and model prediction: Empirical networks are
built from var DBLα types sequenced and processed from 1284 P. falciparum
isolates from individuals residing in BD, Ghana. Following a previously published
analysis framework, the DBLα types are translated into all six reading frames and
classified into either upsA or upsB/upsC (i.e., non-upsA) groups67. Gene networks
are built based on pairwise similarities of unique upsB/upsC DBLα types that are
above 0.6. The choice of the threshold is based on the average within-class
sequence similarity of the 24 DBLα subclasses (see %ID in Figure 2 of Rask et al.16).
As infections by multiple parasite genomes (MOI > 1) are very common in malaria
endemic regions, we selected isolates with a total number of upsB/upsC DBLα types
ranging from 40 to 55 copies, to maximize the probability of selecting hosts with
single-clone infections, which reduced the number of isolates to 161 (see main text
for rationale of focusing on upsB/upsC DBLα types; Supplementary Data 1).
Because of the need to consider as many repertoires as possible in our network
analyses, we considered all isolates regardless of their age. The repertoire similarity
network is built among these isolates (Supplementary Fig. 5).

In order to build a classifier for the empirical network, a library of simulated
networks was generated for parameter ranges representative of Ghana: global var
gene pools from 10,000 to 20,000 (according to the sampling counts), duration of
naive infection equal to 1 year, and mean biting rates ranging from 0.1 to 0.5
person per day. This selection of parameters results in EIR values similar to those
reported for Upper East Region of Ghana in Appawu et al.33 (see Supplementary
Fig. 2). We generated a vector of monthly seasonal biting amplitudes relative to the
mean biting rate, which resembles the local mosquito population of lowland in
Appawu et al.33. The simulated networks are then constructed by sampling 161
random isolates from two periods 7 months apart from each other (the end of
October and the beginning of June), resembling the sampling regime of the
empirical data. The trained discriminant functions from simulated networks66 are
then applied to empirical networks to predict whether they are generated under a
dominant role of immune selection versus that of neutrality. The Bayesian
posterior probability of classification is calculated by assuming Gaussian densities
of prior distributions of each class.

Data availability. The original C++ code for the var evolution model is available
on Github (https://github.com/pascualgroup/VarModel). The python code for the
sequence cleaning pipeline is available on GitHub at https://github.com/UniMelb-
Day-Lab/DBLaCleaner. The python code to determine DBLα types is available on
GitHub at https://github.com/UniMelb-Day-Lab/clusterDBLalpha. This Targeted
Locus Study project has been deposited at DDBJ/ENA/GenBank under the Bio-
Project Number: PRJNA 396962.
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