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Abstract: The jugular venous pulse (JVP) is a one of the crucial parameters of efficient cardiovascular
function. Nowadays, limited data are available regarding the response of JVP to exercise because of its
complex and/or invasive assessment procedure. The aim of the present work is to test the feasibility
of a non-invasive JVP plethysmography system to monitor different submaximal exercise condition.
Twenty (20) healthy subjects (13M/7F mean age 25 ± 3, BMI 21 ± 2) underwent cervical strain-gauge
plethysmography, acquired synchronously with the electrocardiogram, while they were carrying out
different activities: stand supine, upright, and during the execution of aerobic exercise (2 km walking
test) and leg-press machine exercise (submaximal 6 RM test). Peaks a and x of the JVP waveform
were investigated since they reflect the volume of cardiac filling. To this aim, the ∆ax parameter was
introduced, representing the amplitude differences between a and x peaks. Significant differences in
the values of a, x, and ∆ax were found between static and exercise conditions (p < 0.0001, p < 0.0001,
p < 0.0001), respectively. Particularly, the ∆ax value for the leg press was approximately three times
higher than the supine, and during walking was even nine times higher. The exercise monitoring
by means of the novel JVP plethysmography system is feasible during submaximal exercise, and it
provides additional parameters on cardiac filling and cerebral venous drainage to the widely used
heartbeat rate value.

Keywords: jugular venous pulse; exercise; cardiac filling; cerebral venous drainage; wearable;
cervical plethysmography; capacitive strain-gauge

1. Introduction

The jugular venous pulse (JVP) is a key parameter of efficient cardiovascular function,
and it reflects pressure variation in the right atrium over the cardiac cycle. Consequently,
the pulsation is reflected up to internal jugular veins (IJV), providing key information
regarding cardiovascular function [1].

Although JVP has been used since the 1930s, unfortunately it can only be measured
invasively by a venous catheter providing the central venous pressure (CVP). However,
quite recently, it was assessed non-invasively by means of different devices, including
ultrasound (US), photoplethysmography, and strain-gauge plethysmography [2–6]. In
particular, the accuracy of US JVP was also confirmed versus CVP, paving the way to a
widespread use of non-invasive JVP assessment [6,7].

The JVP waveform is composed by three ascents and three descents waives, which
correspond to the pressure variation of the cardiac phases: atrial contraction (wave a)
synchronized with P peak of ECG, followed by atrial relaxation (wave x) and tricuspid
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valve closure (wave c). After the QRS complex of the ECG the ventricular systole starts
while passive atrial filling occurs followed by pressure drop (wave x’). Subsequently, after
the T peak of ECG corresponding to ventricular repolarization, the maximum atrial filling
will be obtained (wave v) before the tricuspid valve opening. This latter causes a sudden
pressure decrease coincident with ventricular filling (wave y), and the cycle will start again.

All the above-mentioned volumetric phases are synchronized with the electrical ac-
tivity of the heart measurably with the electrocardiogram (ECG). Figure 1 shows the
synchronization between the JVP and ECG signals.

Diagnostics 2022, 12, 2407 2 of 11 
 

 

particular, the accuracy of US JVP was also confirmed versus CVP, paving the way to a 
widespread use of non-invasive JVP assessment [6,7].  

The JVP waveform is composed by three ascents and three descents waives, which 
correspond to the pressure variation of the cardiac phases: atrial contraction (wave a) syn-
chronized with P peak of ECG, followed by atrial relaxation (wave x) and tricuspid valve 
closure (wave c). After the QRS complex of the ECG the ventricular systole starts while 
passive atrial filling occurs followed by pressure drop (wave x’). Subsequently, after the 
T peak of ECG corresponding to ventricular repolarization, the maximum atrial filling 
will be obtained (wave v) before the tricuspid valve opening. This latter causes a sudden 
pressure decrease coincident with ventricular filling (wave y), and the cycle will start 
again.  

All the above-mentioned volumetric phases are synchronized with the electrical ac-
tivity of the heart measurably with the electrocardiogram (ECG). Figure 1 shows the syn-
chronization between the JVP and ECG signals. 

 
Figure 1. JVP waveform synchronized with ECG. 

Based on this, non-invasive JVP assessment was also used in special environments to 
monitor the cardiovascular function and cerebral venous drainage [8]. It was demon-
strated that the reduction of cardiac output in cosmonauts during long term exposure to 
micro-G is associated with cognitive alterations and visual disturbances. Microgravity ex-
posure causes the shift of fluid to the upper part of the body, inducing an increase of in-
tracellular and interstitial fluid volume [9,10] 

Further experiments demonstrated the possibility to obtain a reliable JVP by a non-
operator dependent plethysmography sensor compared with US methodology, which 
were both synchronized with the ECG [11]. 

It is well known how physical exercise induces favorable cardiovascular adaptation. 
In particular, aerobic exercise training leads to an improvement in maximal cardiac output 
which is the result of an enlargement in cardiac dimension, improved contractility, and 
increase in blood volume, allowing for greater filling of the ventricles and a consequent 
larger stroke volume. In addition, endurance training may also induce alterations in the 
vasodilator capacity, although such adaptations are more pronounced in individuals with 
reduced vascular function [12].  

As regarding the effect of exercise on brain circulation most of the studies is related 
on the cerebral inflow and metabolism, [13] to the contrary the impact of exercise on the 
cerebral venous drainage is still not enough investigated. 

Moreover, the scientific literature clearly shows that dynamic supine exercise modi-
fies the cerebral venous outflow, in relation with arterial inflow changes in both anterior 
and posterior cerebral circulation [14].  

There are limited data regarding the response of JVP to exercise because of its com-
plex and/or invasive assessment. Recently, Kasai et al. simplified the JVP evaluation 

Figure 1. JVP waveform synchronized with ECG.

Based on this, non-invasive JVP assessment was also used in special environments to
monitor the cardiovascular function and cerebral venous drainage [8]. It was demonstrated
that the reduction of cardiac output in cosmonauts during long term exposure to micro-G
is associated with cognitive alterations and visual disturbances. Microgravity exposure
causes the shift of fluid to the upper part of the body, inducing an increase of intracellular
and interstitial fluid volume [9,10]

Further experiments demonstrated the possibility to obtain a reliable JVP by a non-
operator dependent plethysmography sensor compared with US methodology, which were
both synchronized with the ECG [11].

It is well known how physical exercise induces favorable cardiovascular adaptation.
In particular, aerobic exercise training leads to an improvement in maximal cardiac output
which is the result of an enlargement in cardiac dimension, improved contractility, and
increase in blood volume, allowing for greater filling of the ventricles and a consequent
larger stroke volume. In addition, endurance training may also induce alterations in the
vasodilator capacity, although such adaptations are more pronounced in individuals with
reduced vascular function [12].

As regarding the effect of exercise on brain circulation most of the studies is related
on the cerebral inflow and metabolism, [13] to the contrary the impact of exercise on the
cerebral venous drainage is still not enough investigated.

Moreover, the scientific literature clearly shows that dynamic supine exercise modifies
the cerebral venous outflow, in relation with arterial inflow changes in both anterior and
posterior cerebral circulation [14].

There are limited data regarding the response of JVP to exercise because of its complex
and/or invasive assessment. Recently, Kasai et al. simplified the JVP evaluation visually
considering as high JVP the internal jugular venous pulsation on the right side above the
right clavicle in the sitting position. In conclusion, higher JVP was associated with exercise
intolerance and poor prognosis [15].

In this work, we hypothesized that the new wearable plethysmograph could be a use-
ful tool to monitor exercise protocols in addition to the beat per minute (BPM) information.
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To this aim, the present study has been designed to test the feasibility of plethysmograph
JVP to monitor different acute exercise condition.

2. Materials and Methods

Twenty (20) healthy volunteers among students and residents (13M-7F, mean age
25 ± 3 years, BMI: 21 ± 2 kg m−2) were consecutively included in the study.

All the subjects were defined physically active since they performed regular physical
activity at least 4–5 times per week but not sport professional. All the subjects underwent
cerebral venous and arterial US evaluation to exclude supra-aortic vessels impairments.
Inclusion and exclusion criteria for the proposed study are listed below.

Inclusion criteria were:

• Age from 18 to 30 years.
• BMI < 28 kg·m−2.
• Good health condition.

Exclusion criteria were:

• Use of supplement affecting venous volume.
• Postural defects.
• Sport professionalism.

2.1. Experimental Activity

All the subjects underwent cervical strain-gauge plethysmography while performing
randomly the following activities separated by a one-week period.

1. Supine for 2 min: laying down on a bed, breathing normally.
2. Standing still for 2 min: standing distributing the body load equally on the 2 feet,

breathing normally.
3. Leg-press 6-repetition maximum (6-RM): the 6-RM test techniques was performed

according to the recommendation from the American College of Sports Medicine
(ACMS) guidelines for exercise testing and prescription [16–18]. The subject warmed
up, completing a number of submaximal repetitions. The 6-RM load was determined
selecting an initial weight that is within the ~50–70% individual perceived capacity.
Load is progressively increased by 5–10% until the subject was able to complete the
6th repetition but not over. Once the ideal load was identified, the subject was invited
to perform 3 sets of 6-RM with and interval of 30 s in between the series.

4. 2 km walking test: the test followed the description made by Oja et al. [19]. Initially, a
5-min warm-up was performed, with the aim to achieve the maximum comfortable
speed on treadmill that the participants were able to maintain for 2 km, by rating
of perceived exertion 13–14 (Borg 0–20) [20]. The duration of the test varied from a
minimum of 17 to a maximum of 21.5 min. Two experienced exercise physiologists
supervised all the exercise tests and sessions.

The focus of our analysis was on a and x peaks of the JVP curve since they reflect
the volume of cardiac filling. To this aim we introduced the parameter (∆ax), which is the
amplitude difference between a and x peaks.

All the tests were performed in the same room with a temperature set between
23–25 ◦C, between 9 and 11 A.M. During the different exercises, the subjects were re-
quested to wear sport clothes, tennis shoes, and to maintain a good level of hydration
drinking 500 mL of water 30 min before starting the tests [21].

2.2. Wearable Cervical Plethysmography System

The wearable cervical plethysmography system (Figure 2) includes a necklace-shaped
strain gauge sensor, electrodes for conventional 3-lead ECG analysis and a portable elec-
tronic unit (PEU). Strain gauge sensors can be made with resistive or capacitive elements
and are capable of measuring both deformation and forces [22,23].
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The sensing element of the plethysmography system for monitoring the JVP waveform
is the capacitive strain gauge sensor developed by LEAP technology ApS, Aabenraa,
Denmark. It is a dielectric elastomer, which comprises an insulating film sandwiched
between two deformable electrodes, thus forming a stretchable capacitor. Being capacitive
makes the sensor extremely accurate, so when a minimal deformation occurs, the change
in capacitance value is measured. Its high elasticity and mechanical robustness make the
sensor ideal for a wearable solution because it can be placed on the skin surface without
affecting the way people move. As is clearly visible in Figure 2a, the capacitive strain gauge
sensor is formed by a stretchable sensitive zone, and two non-stretchable areas at its ends,
covered with Velcro, to wear the sensor around the neck. The stretchable zone is 200 mm
length. The strain gauge sensor was placed in anterior part of the neck at the level of the
IJV, adherent to the skin. To avoid eventual detection errors, the sensor was placed in the
lower part of the neck, closest to the right atrium, allowing properly the JVP waveform
detection and excluding as much as possible artifacts.

The placement of electrodes for the 3-lead ECG is shown in Figure 2b. Particularly, the
RA electrode is placed under right clavicle near right shoulder within the rib cage frame,
the LA electrode is placed under left clavicle near left shoulder within the rib cage, and the
LL electrode is placed on the left side below pectoral muscles lower edge of left rib cage.

For the characterization of both strain gauge and ECG sensor, please refer to [11].
About the PEU, which is shown in Figure 2c, it contains the circuitry to synchronously

acquire both the JVP and ECG signals at a sampling rate of approximately 66 Hz. All the
data are saved to text files for post-processing purposes. In addition, the PEU enables
real-time data display on a PC through a Bluetooth wireless communication interface.

To assess the reproducibility of the signal acquired with the cervical plethysmography
system for all subjects, a visual check of the JVP waveform on the PC screen was performed
for a period of about 5 min before starting the tests. No changes were found in the offset
and shape of the JVP, except for physiological variation in the signal related to swallowing.

2.3. Data Processing

Analysis of acquired data was carried out with MATLAB® software version R2022b.
Both JVP and ECG signals were filtered to remove the noise in order to highlight the cardiac
oscillation. The DC component on signals, as well as the breathing contribution were
eliminated through a high-pass filter with cut-off frequency of 0.5 Hz for both the JVP and
ECG signals. Then, to eliminate the high-frequency components of noise, a low-pass filter
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with cut-off frequency of 4.5 Hz was used for the JVP signal, while a low-pass filter with
cut-off frequency of 15 Hz was used for the ECG [11].

To compare the JVP signals acquired while carrying out the different exercise, it was
decided to make a normalization between data. Considering the JVP signal acquired
when users were in supine position as a reference, it was calculated the maximum a value
(aM,sup) for each subject, and then all the JVP waveform were normalized with respect to
the calculated aM,sup value. This procedure was repeated for each individual subject. Once
we got the normalized JVP signals, an automatic algorithm was developed to find the a
and x values, as well as to calculate the difference ∆ax for each cardiac cycle on all the JVP
waveforms. The algorithm was also designed to calculate the BPM on the ECG signals.

2.4. Statistical Analysis

The statistical analysis was performed using Prism 8, vers.8.2.1, 2019 (GraphPad
Software Inc., San Diego, CA, USA). The data were expressed as mean and standard
deviation values. Kolmogorov-Smirnov test was used to assess the data distribution.
Non-parametric Friedman test was used to calculate the differences among a, x, and ∆ax
values and heartbeat rate, measured during the supine, standing, and acute aerobic or
strength exercise.

The significance level was set at p-value < 0.05.

3. Results

For each subject, JVP and ECG signals were acquired for the diverse activities: lying
supine, standing, leg press and walking. Totally, 80 files were saved in .txt format and,
for each file, appropriate filtering and detection of a and x peaks on the normalized JVP
waveform were carried out. Moreover, the calculation of the BPM values was obtained for
all the ECG acquired signals.

Figure 3 shows an example of data acquisition for a subject lying on a bed.
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Figure 3. Synchronized acquisition of JVP and ECG signals. A subject lying on a bed (a); real-time
data visualization (b); post-processed JVP and ECG signals (c).

In Figure 3a, the subject is visible wearing the plethysmography system. The PEU
collects the signals and send them wirelessly to a PC for real-time data visualization,
Figure 3b. The synchronized, filtered JVP and ECG signals are then shown in Figure 3c,
where the peaks of interest on the JVP waveform are highlighted in red.

To display the distribution of results on the exercises carried out by the recruited
subjects, Figure 4 shows the boxplots grouping the calculated values for the ∆ax parameter
normalized with respect to the aM,sup value, as shown in Figure 4a, and the heartbeat rate
in BPM, in Figure 4b.
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Table 1 summarizes the results shown in Figure 4. Mean and standard deviation (σ)
values, as well as the results of the statistical analysis are listed in Table 1.

Table 1. The dimensionless normalized values obtained for a, x and ∆ax parameter, as well as
the heartbeat rate calculated during static (supine and standing) and dynamic (leg press and
walking) exercises.

JVP Parameter Supine:
Mean ± σ

Standing:
Mean ± σ

Leg Press:
Mean ± σ

Walking:
Mean ± σ

p-Value:

a :
(

a
aM,sup

)
0.5 ± 0.1 0.3 ± 0.1 1.3 ± 1.2 4.7 ± 2.8 0.0001

x :
(

x
aM,sup

)
−0.6 ± 0.2 −0.3±0.1 −1.6 ± 1.5 −4.3 ± 2.3 0.0001

∆ax :
(

∆ax
aM,sup

)
1.1 ± 0.3 0.6± 0.2 2.9 ± 2.6 9.1 ± 5.1 0.0001

heartbeat rate
(BPM) 63 ± 9 74 ± 10 99 ± 12 116 ± 10 0.0001

p level was calculated by means of non-parametric Friedman Test.

Furthermore, an analysis of the distribution of the ∆ax parameter over the time was
carried out for all the activities to assess if the amplitude of this parameter changes during
the exercise. To this purpose, a time window of few seconds was selected and, on each
interval, the mean value of the normalized ∆ax parameter was calculated. Then, a linear
regression using the least squares method was applied to find the line of best fit for the
obtained data over the time (t). Among the four considered activities, only during walking
we found a correlation between the normalized ∆ax and t. In particular, focusing our
analysis on the central part of the exercise, we noticed the aforementioned correlation in
the 45% of the subjects and, even if rather wide oscillation around the best regression line
were present, a general increasing trend of ∆ax over the time was observed in these cases.
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To reduce the oscillation amplitude, we selected a time window of 10 s. The choice of a
simple linear regression was due to avoid overfitting of the data. Furthermore, a liner
function was sufficient to catch the trend we are interested in. The range of R2 and of the
slope of the regression line turned out to be wide, with the mean value ± the standard
deviation of these parameters being 0.45 ± 0.18 and 0.006 ± 0.005 s−1, respectively. In
Figure 5, the variation of the normalized ∆ax with time the is depicted for one the subjects
who showed correlation among these variables during walking. The regression equation
and the determination coefficient are reported in the caption of the figure.
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Figure 5. Example of correlation between the normalized ∆ax parameter and time for an individual
subject during walking. The regression equation is ∆ax/aM,sup = 4.379 + 0.006 t, for t in the range
(50, 950) s, and the determination coefficient is R2 = 0.70.

4. Discussion

In this study, a wireless, non-invasive, wearable cervical system has been used to
synchronously acquire the JVP and ECG signals while carrying out diverse exercises. The
use of the proposed system can represent an innovation because such measurements are
usually carried out with an ultrasound machine. However, an ultrasound examination
requires the presence of a healthcare operator, whereas using the wearable system the user
can independently monitor his or her own health thanks to the device’s ease of use [3,24].

Another useful technique for acquiring information about blood flow is the photo-
plethysmography, which is sensitive to the pulsation component of blood, usually arte-
rial [25,26], but which has also recently been used to describe venous pulsation at the
jugular level [6].

The feasibility of JVP monitoring in the proposed postural and exercise condition
was particularly encouraging because it paves the way to further application in order to
extract non-invasively and on the field important cardiovascular information. Moreover,
we evaluated the consistency of the obtained measurements.

Looking at Figure 3, the JVP and ECG traces appear not synchronous with respect to the
physiologic correspondence between the JVP and ECG waveforms [27–29], which considers
the point for the JVP measurement directly in the right atrium. In the present study, the
acquisition of the JVP waveform was carried out by using the cervical plethysmography
system at the level of the neck, at an anatomical point spatially located cranially respect to
the right atrium. For this reason, a time interval exists between the maximum value of the
JVP waveform, (i.e., a peak) when acquired in two different anatomical positions. Since
the jugular is more cranial with respect to the right atrium, the a peak measured with the
cervical plethysmography system will be located later on the temporal axis than the same
value for the a peak measured with the central venous catheter [30].

Figure 4a shows us that cardiac filling, expressed by differences between peak a and
x, decreases when the subjects change the posture from supine to standing. This simple
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variation means that our device is able to detect the redistribution of blood below the
diaphragmatic line occurring standing position [31,32].

In addition, physiology tells us that the jugular cross-sectional area (CSA) in upright
is significantly reduced. In upright, the jugular intravenous pressure becomes negative
due to the vein location above the heart. Consequently, blood is shunted into the vertebral
venous plexus as an alternative venous pathway [33].

Thus, it is reasonable to conclude that the data herein presented are consistent with
human physiology.

The more innovative and interesting part of our research protocol is, of course, linked
to the monitoring of JVP under exercise condition. By comparing our findings during
the leg press exercise and walking exercises, the calculated value of the ∆ax significantly
increases respect to static conditions. The ∆ax value for the leg press was approximately
three times higher, while it was nine times higher during walking.

Regarding the analysis on the distribution of the ∆ax parameter over the time, the
resulting linear regression equations show that the distribution of the ∆ax parameter for
the subject in supine and standing position, as well as while doing the leg press is almost
constant over the time. Conversely, during walking, there is an increase of the value of
the ∆ax parameter over the time (Figure 5). Therefore, both the exercise load and duration
seem to impact on the ∆ax parameter.

In addition to cardiovascular function, the ∆ax parameter could be also useful for the
assessment of cerebral drainage. Indeed, in challenging condition such as spaceflight, ∆ax
showed a microG time-exposure relation, decreasing during flight permanence, followed by
a normalization at return to the Earth [8–10]. Therefore, the use of this parameter becomes
useful for monitoring the influence of exercise on cerebral venous drainage.

Regarding the technological advancement, the current wearables include energy
harvesting solutions to increase their operating time, and machine learning models that
can automatically detect and predict diseases, from cardiovascular to neurodegenera-
tive [34–37]. A further practical aspect can result from the use of wearables for monitoring
exercise programs and personalized care at distance, contributing to the spreading of
telemedicine [38–41].

In the present work, the wearable cervical plethysmography system allows to wire-
lessly transmit data on a PC for real-time visualization, and the developed algorithm is able
to filter the noise and to detect the peak of interest on the JVP waveforms automatically.

Here, in the proposed work, a novel system able to measure the JVP waveform is
presented but the obtained information refer to the elongation of the strain-gauge sensor.
Our future perspective regards the validation of the cervical plethysmography system in
the clinical practice to obtain precise CVP values.

Some limitations need to be discussed regarding the measurement obtained by the
novel device. The modification of the neck volume can be also determined by voluntary
muscular contrition, especially dynamic condition. For this reason, we strongly recom-
mended to the subject under investigation should not contract the neck muscles during the
experimental session. Furthermore, we also recommended during the walking to hold the
treadmill hands support in order to avoid undesirable arm oscillation. These are, of course,
important limitations in the development of future use of the novel plethysmography
system aimed to assess the JVP under exercise condition. If from one side our investigation
seems to support a future implication in this field, a technological improvement will be
necessary on the other. In addition, the limited number of included subjects is necessarily
to be reported among the study shortcomings. However, the purpose of this study was to
verify the feasibility of the JVP plethysmographic assessment during dynamic conditions.
Certainly, it will be fundamental to expand the data collection to a greater number of
subjects as well as include different populations (not only heathy subject but also patients)
and various types of exercise in order to verify the JVP trend.
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Finally, by considering the limitation above, we avoided in this study to use ex-
ercises requiring maximal effort which are potentially more interesting to assess the
cardiovascular adaptation.

5. Conclusions

The exercise monitoring by means of the novel JVP plethysmography system is feasible
using submaximal exercise, and it provides an additional parameter to the heartbeat rate
parameter. The wearable, cost-effective device presented herein can provide important
parameters for monitoring both cardiovascular and cerebral venous systems, even during
exercise. For the rehabilitation and adapted physical exercise experts, it will also be of
fundamental importance for adjusting the rehab and exercise programs at a distance, using
telemedicine. Further technological advancement of the sensor, aiming to reduce motion
artifacts, is required for a widespread use of non-invasive JVP for exercise monitoring.
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