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Abstract The aim of this study was to examine whether
cultured rat thoracic aortic endothelial cells (TAECs) have
the ability to metabolize the tertiary amine, imipramine. In
rat TAECs, imipramine was biotransformed into N-demethyl-
ate and N-oxide by cytochrome P450 (CYP) and flavin-
containing monooxygenase (FMO), respectively. The intrinsic
clearance (Vyax/Kyn) for the N-oxide formation was approxi-
mately five times as high as that for the N-demethylate for-
mation, indicating that oxidation by CYP was much higher
than that by FMO. Moreover, we suggest that CYP2C11
and CYP3A2 are key players in the metabolism to N-
demethylate in rat TAECs using the respective anti-rat
CYP antibodies (anti-CYP2C11 and anti-CYP3A2). The
presence of CYP2C11 and CYP3A2 proteins was also
confirmed in cultured rat TAECs using a polyclonal
anti-CYP antibody and immunofluorescence microscopy.
In contrast, the formation rate of N-oxide at pH 8.4 was
higher than that at pH 7.4. Inhibition of N-oxide forma-
tion by methimazole was found to be the best model of
competitive inhibition yielding an apparent K; value of
0.80 wmol/L, demonstrating that N-oxidation was cata-
lyzed by FMO in rat TAECs. These results suggest that
rat TAEC enzymes can convert substrates of exogenous
origin such as imipramine, indicating that TAECs have
an important function for metabolic products, besides
hepatic cells.
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Introduction

Endothelial cells have unique and efficient protective systems
for controlling the passage of materials. The first is a perme-
ability barrier, and the second appears to be a metabolic barrier
formed by the enzymes in the endoplasmic reticulum of
endothelial cells, which metabolize some of the permeable
molecules recognized as substrates. Previous data indicate that
isolated brain capillaries contain activities of enzymes in-
volved in drug metabolism such as cytochrome P450s
(CYPs), nicotinamide adenine dinucleotide phosphate
(NADPH)-cytochrome P450 reductase, 1-naphthol
glucuronyltransferase, and epoxide hydrolase (Ghersi-Egea
et al. 1988). Similar to CYP, flavin-containing
monooxygenases (FMOs) are microsomal enzymes that re-
quire NADPH and O, and catalyze the oxidation of nucleo-
philic tertiary amines to N-oxides and secondary amines to
hydroxylamines and oximes. The expression of FMOI,
FMO2, and FMOS proteins was confirmed in rat brain micro-
vascular endothelial cells (BMECs) by western blotting anal-
ysis, suggesting that N-oxide of d-chlorpheniramine was
formed in rat BMECs (Sakurai et al. 2013). Moreover, our
previous data showed that for detoxification in rat lung mi-
crovascular endothelial cells (LMECs), nicotine was
biotransformed into cotinine and nicotine N'-oxide by CYPs
(CYP2CI11 and CYP3A2) and FMO, respectively (Ochiai
et al. 2006). Thus, it appears that in addition to hepatic cells,
the microvascular endothelium is an important barrier for
metabolic products, suggesting that this metabolic barrier
may control the transfer of drug to the tissue. In contrast,
because aortic endothelial cells construct the systemic
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circulation of the blood, the metabolic ability of drug in
thoracic aortic endothelial cells (TAECs) may be different
from that in BMECs and LMECs. But Borlak et al.
(2003) already showed that the genes and proteins of
major CYP monooxygenases, such as CYP2C8 and
CYP2EI1, are expressed in cultures of primary human
coronary endothelial cells, and the endothelium has the
ability to metabolize verapamil, a commonly and widely
prescribed calcium antagonist. In the present study, we
examined whether cultured rat TAECs have the ability
to form N-demethylate by CYPs and N-oxide by FMO
from the tertiary amine, imipramine, using enzyme in-
hibition or inactivation techniques, and investigated the
significance of drug metabolic ability in rat TAECs.

Materials and Methods

Materials. Imipramine N-oxide was synthesized, as described
by Craig and Purushothaman (1970), and separated by high-
performance liquid chromatography (HPLC), as described
below. Imipramine, desipramine, glucose 6-phosphate dehy-
drogenase, NADP, and glucose 6-phosphate were obtained
from Wako Pure Chemicals (Osaka, Japan). Gentamicin sul-
fate and amphotericin B were purchased from Sigma-Aldrich
(St. Louis, MO). Dulbecco’s modified Eagle’s medium: nutri-
ent mixture F-12 (D-MEM/F-12), heparin, piperazine-N'-(2-
ethane-sulfonic acid) (HEPES), dispase, epidermal growth
factor (EGF), fetal bovine serum (FBS), and donor horse
serum (HS) were obtained from Gibco BRL, Life Technolo-
gies (Rockville, MD). Donkey serum was purchased from
Abcam plc (Cambridge, UK). Dextran T-70 and Percoll
were obtained from Pharmacia (Uppsala, Sweden). Col-
lagenase P was purchased from Boehringer Mannheim
(Mannheim, Germany). Anti-rat CYP2C11, CYP3A2,
CYP1Al, and CYP2B1 goat sera and normal goat se-
rum were purchased from Daiichi Pure Chemicals (To-
kyo, Japan). Acetylated low-density lipoprotein labeled
with a fluorescent probe, 1,1'-dioctadecyl-3,3,3’,3’
tetramethyl-indocarbocyamine perchlorate (Dil-Ac-
LDL), was obtained from Biomedical Technologies
(Stoughton, MA). All other chemicals were of reagent
grade and commercially available.

Isolation and culture of rat TAECs. Three-wk-old male Wistar
rats purchased from Japan SLC (Hamamatsu, Japan) were
housed at a constant temperature (23+1°C) and constant
humidity (55+5%), with automatically controlled lighting
(0700-1900). Twenty rats were killed by decapitation, and
the descending thoracic aorta 2-3 cm in length was removed.
The vessel was rinsed several times in ice-cold phosphate-
buffered saline (PBS), and the anterior end of the vessel was
fastened to an 18.5-gauge hypodermic needle, which was

attached to a 50-mL syringe filled with 0.07% collagenase P
and 0.19% dispase. The vessel was then perfused with colla-
genase P and dispase at a flow rate of 1 mL/min at 37°C, and
fractions of 10 mL were collected. Collected cells were fil-
tered through 100-pm mesh. The rat TAECs were collected by
centrifugation at 600xg for 10 min and resuspended in M199.
The cell suspensions were seeded onto collagen-coated
75-cm? tissue culture flasks (Iwaki Glass, Funabashi,
Japan). Cells were allowed to attach and grow to mono-
layers at 37°C in a humidified atmosphere of 5% CO,/
95% air. The culture medium (D-MEM/F-12 containing
14 mM of sodium bicarbonate, 20 ng/mL of EGEF,
50 pg/mL of gentamycin—amphotericin B solution,
10 U/mL of heparin, 5% FBS, and 5% HS) was
changed every 3 d. Subculture was performed when
the cells reached confluence, after approximately 6—
7 d. Cells were trypsinized at a ratio of 1:3 after
reaching confluence using 0.025% trypsin in HBSS
containing 0.02% EDTA. Secondary subcultured cells
(5x10° cells/cm?) were grown on collagen-coated 225-
cm?® tissue culture flasks. All metabolism experiments
were only performed on TAECs that had undergone two
passages, after cells reached confluence in approximate-
ly 4-5 d.

Immunofluorescence analysis. Rat TAECs grown on
collagen-coated culture slides (FALCON, Bedford, MA) were
fixed in 3% paraformaldehyde in PBS at room temperature for
10 min. The cells were permeabilized with 0.5% Triton X-100
for 5 min and rinsed with PBS. The cells were incubated in
5% donkey serum in PBS for 10 min and then in
polyclonal goat anti-rat CYP2C11 antibody (1:500) and
rabbit anti-rat CYP3A2 (1:500) in the same solution for
60 min. The control data were replaced by donkey
polyclonal anti-goat IgG antibody and anti-rabbit IgG
antibody (Invitrogen, Carlsbad, CA). After rinsing, the
cells were incubated with donkey anti-goat IgG-
fluorescein isothiocyanate (FITC) conjugate (1:1,000)
and donkey anti-rabbit IgG-FITC conjugate (1:1,000)
for 60 min and mounted for observation and photogra-
phy. Culture slides, which received only the secondary
antibody, served as negative controls.

Enzyme assay. For enzyme kinetic studies, cultured rat
TAECs were homogenized in 0.1 mol/L phosphate buffer
(pH 7.4 and pH 8.4). Incubation vessels contained rat TAECs
(0.25 mg protein/mL), MgCl, (25 mmol/L), glucose 6-
phosphate (6.7 mmol/L), nicotine amide (2.5 mmol/L), and
glucose 6-phosphate dehydrogenase (1 U/mL) in a total vol-
ume of 2 mL. Imipramine dissolved in 0.1 mol/L phosphate
buffer (pH 7.4 and pH 8.4) was the substrate at a final
concentration in the range of 5.0-100.0 umol/L. After addi-
tion of NADP (0.5 mmol/L in 0.1 mol/L phosphate buffer),
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the mixtures were incubated for 2 min at 37°C in a shaking
water bath. At the end of the incubation, 1 mL of 5.0 mol/L
NaOH and 7 mL of ethyl acetate were added to stop the
reaction. The mixture was vigorously shaken for 10 min
and centrifuged for 10 min at 800xg. The organic layer
(5 mL) was evaporated to dryness under N,. The residues
were redissolved in 200 pL of the mobile phase of HPLC as
described below, and 20 uL was injected onto an HPLC
column. Protein concentrations were assayed using the
method of Markwell et al. (1978).

Inhibition study. To characterize CYP isoforms in rat TAECs,
five polyclonal antibodies were used for the inhibition study:
anti-CYP1A1, anti-CYP2BI1 that cross-reacts with CYP2B2,
anti-CYP2C11 that cross-reacts with CYP2B1 and CYP2B2,
and CYP3A2. Each anti-CYP serum (10 pL) was incubated
with 25 pL of rat TAEC homogenate (500 pg protein) for
30 min at 37°C. The same volume of normal goat serum
was incubated with the rat TAECs to determine a non-
specific reaction. After this period, 155 uL of the reac-
tion mixture containing 25 pmol/L imipramine was
added to the reaction vessels. All other incubation con-
ditions were as described. Methimazole was also used
for the inhibition study of FMO. Inhibition kinetics for
methimazole were determined in rat TAEC homogenates
using the standard assay procedure with five different
imipramine concentrations and methimazole (1 pmol/L).
Data were analyzed by nonlinear regression analysis to
allow determination of the type of inhibition and inhib-
itory constants.

HPLC condition. HPLC was performed using a Shimadzu
(Kyoto, Japan) LC-6A apparatus equipped with an ultraviolet
(UV) detector (Shimadzu SPD-10AVP, Kyoto, Japan) and
LiChrospher Si60 column (250x4.6 mm i.d., 5 um particle
size; Kanto Chemical Co., INC, Tokyo, Japan). Material was
eluted with acetonitrile/methanol/28% ammonia water
(73:25:2, v/v) at a flow rate of 1 mL/min at 30°C, and the
absorption at 228 nm was measured. The peaks of imipramine
N-demethylate (desipramine) and synthesized imipramine N-
oxide were symmetrical and clearly separated from other
peaks. The calibration curve for metabolites was linear over
the concentration range 50 pg/mL, and the lower limit for
quantitation was 0.1 pg/mL.

Data analysis. The formation of metabolites from imipramine
was calculated as nmol formed/min/mg protein. Kinetic data
were fit to the Michaelis—Menten equation for a one-
enzyme or two-enzyme system using the nonlinear least-
squares regression analysis program MULTI, and appar-
ent K, and V..« values were estimated. Values were
presented as meanzstandard error of the mean for n
experiments. Comparisons of data among groups were
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performed using an analysis of variance and Dunnett’s
post hoc multiple comparisons test. Differences were
considered to be significant at P<0.05 (two-tailed).

Results

The formation rate of imipramine N-demethylate and N-oxide
in rat TAECs. The formation of imipramine N-demethylate
and N-oxide from imipramine (5.0-100 pmol/L) incubated
with cultured rat TAECs were fit to Michaelis—Menten plots,
respectively (Fig. 1). Consequently, the intrinsic clearance
value (Vnax/Km) for N-oxidation was higher than that for N-
demethylation at pH 7.4 (Table 1). Moreover, although there
was no significant difference in N-demethylation activity at
pH 7.4 or pH 8.4, the formation of imipramine N-oxide at
pH 8.4 was significantly higher compared with that at pH 7.4

(Fig. 2).

The inhibitory effect of anti-CYP antibodies on the N-demeth-
yvlation activity in rat TAECs. Addition of 25 pL anti-
CYP2C11 and anti-CYP3A2 antibodies to the reaction mix-
ture containing 500 pg of rat TAECs protein inhibited the
formation of N-demethylate from imipramine to 60.0% and
71.8% of the control values for imipramine, respectively. But
anti-CYP1A1 and anti-CYP2B1 had no inhibitory effects on
the rate of N-demethylation of imipramine (Fig. 3).

Expression of CYP2CI1l and CYP3A2 proteins in rat
TAECs. The presence of CYP2C11 and CYP3A2 was con-

firmed by fluorescence microscopy using the polyclonal anti-
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Figure 1. Michaelis-Menten plots for formation of desipramine (closed
triangle) and imipramine N-oxide (closed circle) from imipramine incu-
bated with homogenized rat TAECs. Imipramine metabolism was deter-
mined at 37°C for 2 min at concentrations between 5.0 and 100 pwmol/L.
Each point represents the mean+SE of five experiments. /" metabolite
formation rate (nmol/mg protein/min), S imipramine concentration
(umol/L).
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Table 1. Kinetic parameters for N-demethylate and N-oxide formation
from imipramine in rat TAECs

K Vinax (nmol/mg VinaxKm (mL/mg

(umol/L)  protein/min) protein/min)
N-Demethylation ~ 39.9+53  0.86+0.42 0.022+0.003
N-Oxide 20.0+4.5  2.27+0.27 0.114+£0.014

Each value is expressed as the mean+standard error of five experiments

CYP antibodies (Fig. 4A, B). The secondary antibody control
of the staining was negative (data not shown).

The inhibitory effect of methimazole on imipramine N-oxide
formation in rat TAECs. Methimazole, an enzyme inhibitor of
FMO activity, competitively inhibited FMO activity, and the
K; value was estimated to be 0.80 pmol/L using Lineweaver—
Burk plots (Fig. 5).

Discussion

The drug appears to be absorbed from the site of administra-
tion into the blood and is then distributed to the tissues. The
transfer of drug to the tissues is important for local drug
response, whereas the accumulation of the drug in the tissues
has toxic effects. Therefore, transfer of drug to the tissues may
be limited in endothelial cells. Because drug in the blood is
always exposed to oxygen, the importance of drug biotrans-
formation in endothelial cells is recognized. Several investi-
gators reported that CYP-dependent drug oxidation activity in
endothelial cells and the induction of endothelial CYP
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Figure 2. Effect of pH on metabolism of imipramine by rat TAECs
homogenates. Imipramine metabolism was determined with 0.1 mol/L
phosphate buffer at pH 7.4 or pH 8.4. Each value is expressed as the mean
+SE of five experiments. *P<0.05 indicates a statistically significant
difference between pH 7.4 and pH 8.4.
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Figure 3. The inhibitory effect of anti-CYP antibodies on the N-demeth-
ylation activity in rat TAECs. The rat TAEC homogenate proteins
(500 pg) were combined with 10 uL each of various anti-rat CYP sera
and normal goat or rabbit serum and incubated at 37°C for 30 min before
adding the reaction mixture containing 25 pmol/L imipramine. Values for
the antibody-treated group are expressed as a percentage of activity of the
control group.

monooxygenases can be achieved with various chemical
agents (Farin et al. 1994; Graier et al. 1995; Stegemann et al.
1995; Adeagbo 1997). We also reported that similar to CYP,
FMOs that oxidize the nucleophilic nitrogen, sulfur, and
phosphorus heteroatom of a variety of xenobiotics exist in
cultured rat brain and LMECs (Ochiai et al. 2006; Sakurai
et al. 2013).

In centrally acting drugs, there are many compounds that
have the chemical structure of a tertiary amine with two
methyl groups attached to the basic nitrogen atom. Some
tricyclic antidepressants, such as imipramine and amitripty-
line, also have the structure of a tertiary amine and have
pronounced effects in the central nervous system. Tertiary
amines are metabolized in the liver by two main routes,
namely N-demethylation by CYP, whereby tertiary amines
are converted to secondary amines, and N-oxidation by
FMO. This metabolism may occur in TAECs to protect
the brain and other tissues. In this study, we have
quantified the activities of two key imipramine metabo-
lizing enzymes, CYP and FMO, and have also charac-
terized isoforms in cultured rat TAECs.

Our results indicate that imipramine N-oxide is pre-
dominantly formed from imipramine, whereas imipra-
mine N-demethylate is a relatively minor metabolite in
rat TAECs. The metabolic route of imipramine involves
primarily N-demethylation to desipramine and aromatic
hydroxylation to 2-hydroxy-imipramine, which are cata-
lyzed by hepatic microsomal P450 in experimental ani-
mals and humans. Because human and rat liver micro-
somes are a small extent in imipramine N-oxide forma-
tion, the metabolic profile obtained by rat TAECs is
different from that obtained by rat liver.

@ Springer
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Figure 4. Indirect immunofluorescent histochemistry of rat TAECs
using the polyclonal anti-CYP 2C11 (4) and anti-CYP 3A2 (B)
antibodies.

Thum and Borlak (2000) showed that rat aortic endothelial
cells express several genes (CYP1A1, CYP2B1/2, CYP2Cl11,
and CYP2EL1) that code for drug-metabolizing enzymes. They
also found CYP1A1l, CYP2A6/7, CYP2A13, CYP2B6/7,
CYP2C8, CYP2E1, CYP2J2, and cyclophilin (housekeeping
gene) to be expressed in cultures of human coronary arterial
endothelial cells, but transcript levels of other CYPs were
below the limit of detection (Borlak et al. 2003). In this report,
characterization of the CYP isoenzymes involved in N-de-
methylation of imipramine was investigated using anti-rat
CYP antibodies (anti-CYP2CI11, anti-CYP3A2, anti-
CYP1Al, and anti-CYP2B1). As shown in Fig. 3, the
immunoinhibition study suggests that CYP2C11 and
CYP3A2 are the major CYP isoenzymes involved in the N-
demethylation of imipramine in cultured rat TAECs. CYP2BI1
and CYP2B?2 are also present in the hepatic microsomes of
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Figure 5. Inhibition of imipramine N-oxidation by methimazole in rat
TAECs. Lineweaver—Burk plots of the reciprocal of the initial velocity of
imipramine N-oxidation against the reciprocal of the imipramine concen-
tration in the presence of methimazole. Each /ine is the best fit through the
mean of FMO activities for three data points. Closed circle no drug added;
closed square mechimazole (1 pmol/L).

untreated male rats at low levels (Guengerich et al. 1982;
Christou et al. 1987; Imaoka et al. 1989; Yamazoe et al.
1987). In contrast, the two major CYP isoenzymes, CYP1A1
and CYP1A2, are potently induced by 3-methylcholanthrene
(Degawa et al. 1988; Juedes and Kupfer 1990). However, anti-
CYP2BI and anti-CYP1A1 did not clearly inhibit N-demeth-
ylation of imipramine in cultured rat TAECs. Moreover, as
shown in Fig. 4, we also confirmed the presence of CYP2C11
and CYP3A2 proteins in cultured rat TAECs using a poly-
clonal anti-CYP antibody and immunofluorescence microsco-
py, suggesting that characterization of the CYP isoenzymes
involved in oxidation in rat TAECs is similar to that in rat
LMECs (Ochiai et al. 2006). On the other hand, because
imipramine and desipramine are oxidized at the 2-position
by CYP2D, further study on the relation between the expres-
sion of CYP2D protein and 2-hydroxy-imipramine formation
is necessary in cultured rat TAECs.

In general, FMO is relatively thermolabile and has a higher
optimal pH in the reaction compared with reactions mediated
by CYP (Ziegler 1988). Therefore, the condition of these
enzymes in some reactions can be altered by the experimental
conditions such as pH. In this study, the formation rate of N-
oxide at pH 8.4 was higher than that at pH 7.4 in cultured rat
TAECs, suggesting that FMO is the enzyme responsible for
the formation of imipramine N-oxide. However, there was no
significant difference in the formation of N-demethylate at
pH 7.4 or pH 8.4. Moreover, to determine the contribution
of the FMO enzyme with the formation of imipramine
N-oxide, we examined the effect of methimazole on this
activity. Methimazole is a well-known inhibitor of FMO
(Ziegler 1988). As shown in Fig. 5, the formation of
imipramine N-oxide was competitively inhibited by
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methimazole in a dose-dependent manner, demonstrating
the presence of the FMO enzyme in rat TAECs. Till
date, five isoforms of FMO (FMOI1-FMOS5) have been
identified in humans (Burnett et al. 1994; Hines et al.
1994). Other mammals also express different FMOs in a
species- and tissue-specific manner (Ziegler 2002).
Therefore, further experiments on characterization of
FMO isoforms will be necessary in cultured rat TAECs.

Conclusions

Rat TAEC enzymes can convert substrates of exogenous origin,
such as imipramine for detoxification, indicating that TAECs
have an important function for metabolic products, in addition
to being a permeability barrier to the passage of materials.

Open AccessThis article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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